Поршневой расходомер


 


Владельцы патента RU 2511638:

Палицын Андрей Владимирович (RU)

Изобретение относится к контрольно-измерительным средствам для учета расхода топлива двигателями внутреннего сгорания и может быть использовано в системе контроля и управления работой мобильных и стационарных энергосредств, в том числе и сельскохозяйственной техники. Поршневой расходомер, содержащий прямоугольный корпус с технологическими и крепежными отверстиями, закрытый с двух сторон крышками с датчиками положения поршня, четыре электромагнитных клапана, поршень, и измерительный цилиндр, а также подводящий и отводящий штуцеры. Поршень изготавливается с оптимальным зазором для топливных систем ДВС, имеющих, как известно, пульсирующий характер движения топлива в трубопроводах, и между измерительным цилиндром и поршнем отсутствует уплотнение. При этом утечек топлива через зазор в сопряжении «цилиндр-поршень» из одной измерительной камеры в другую удается избежать ввиду того, что поршень имеет такой же удельный вес, как и вытесняемый им объем жидкости, при этом сила тяжести поршня уравновешивается архимедовой силой. Поршень в данном расходомере является меткой для электронного блока контроля и управления, которая свободно перемещается с потоком топлива по измерительному цилиндру. Каждый из двух емкостных датчиков положения поршня имеет одну металлическую обкладку конденсатора, а второй обкладкой таких датчиков служит торцевая часть поршня. Технический результат заключается в повышении точности измерения расхода топлива на всех режимах работы двигателя внутреннего сгорания за счет уменьшения динамической составляющей погрешности измерения; повышении функциональных возможностей, заключающихся в повышении универсальности использования расходомера как для учета расхода топлива, так и других жидких сред, неагрессивных к материалам измерительной системы, за счет снижения требований к качеству и чистоте учитываемой жидкости. 1 ил.

 

Изобретение относится к контрольно-измерительным средствам для учета расхода топлива двигателями внутреннего сгорания и может быть использовано в системе контроля и управления работой мобильных и стационарных энергосредств, в том числе и сельскохозяйственной техники.

Из литературы известны конструкции поршневых расходомеров [3], [4], [5]. Недостатками данных поршневых расходомеров являются повышенное сопротивление перемещению поршня по цилиндру за счет уплотнения сопряжения «цилиндр - поршень», «подклинивание» поршня в цилиндре при недостаточном качестве очистки топлива, за счет этого возрастает динамическая погрешность при измерении расхода топлива; недостаточно надежная система позиционирования поршня в крайних точках измерительной системы, а также система привода клапанов управления потоками топлива.

Известен универсальный объемный расходомер топлива [6]. Измерительные камеры расходомера разделены мембраной, что позволило умень-шить динамическую составляющую погрешности прибора. Но при этом при «старении» разделительной мембраны изменяется ее жесткость и как следствие неодинаковый прогиб при работе. Вследствие чего изменяются единичные объемы измерительных камер и возрастает погрешность при измерении.

Наиболее близким к заявляемому поршневому расходомеру является расходомер топлива, включающий элементы управления электромагнитными клапанами, элементы управления измерительного сигнала в виде поршневого первичного измерительного преобразователя, представляющего собой цилиндр, внутри которого расположена поршневая система, снабженная планкой с нанесенным на нее оптическим растором. В стенку цилиндрической внутренней полости первичного измерительного преобразователя жестко вмонтированы фотоэлементы устройства получения измерительного сигнала с двумя ветвями, представляющие собой электрическую лампочку и фоторезистор. Электромагнитные клапаны и фотоэлементы подключены к электронному блоку [1].

Недостатками известного устройства являются: с достигаемой относительной погрешностью может производиться измерение только суммарного расхода топлива, а при измерении текущих значений расхода топлива погрешность увеличивается в зависимости от режима работы двигателя внутреннего сгорания, т.к. на поршневой первичный измерительный преобразователь оказывает влияние пульсирующий характер движения топлива в трубопроводах [2]; расходомер имеет ограниченное применение, т.к. его конструкция не позволяет измерять расход малопрозрачных и непрозрачных жидкостей; производство и настройка данного прибора также затруднительна, т.к. некоторые его детали требуют высокой точности обработки.

Технический результат заключается в повышении точности измерения расхода топлива на всех режимах работы двигателя внутреннего сгорания за счет уменьшения динамической составляющей погрешности измерения; повышении функциональных возможностей, заключающихся в повышении универсальности использования расходомера как для учета расхода топлива, так и других жидких сред, неагрессивных к материалам измерительной системы, за счет снижения требований к качеству и чистоте учитываемой жидкости.

Технический результат достигается тем, что в предлагаемом поршневом расходомере, содержащем прямоугольный корпус с технологическими и крепежными отверстиями, закрытыми с двух сторон крышками с датчиками по-ложения поршня, четыре электромагнитных клапана, поршень и измерительный цилиндр, а также подводящие и отводящие штуцеры.

Поршень изготавливается с оптимальным зазором для топливных систем ДВС, имеющих, как известно, пульсирующий характер движения топлива в трубопроводах, и между измерительным цилиндром и поршнем отсутствует уплотнение.

При этом утечек топлива через зазор в сопряжении «цилиндр - поршень» из одной измерительной камеры в другую удается избежать ввиду того, что поршень имеет такой же удельный вес, как и вытесняемый им объем жидкости. При этом сила тяжести поршня уравновешивается архимедовой силой. Поршень в данном расходомере является меткой для электронного блока контроля и управления, которая свободно перемещается с потоком топлива по измерительному цилиндру.

В данном расходомере позиционирование поршня осуществлено при помощи емкостных датчиков положения, сигнал с которых воспринимается электронным блоком управления. Каждый из двух емкостных датчиков положения поршня имеет одну металлическую обкладку конденсатора, а второй обкладкой таких датчиков служит торцевая часть поршня. При приближении поршня к емкостному датчику наблюдается скачкообразное увеличение емкости, что воспринимается электронной системой управления клапанами.

Привод клапанов управления потоками топлива осуществлен посредством электромагнитов, получающих питание от бортовой сети энергосредства через электронный блок управления. В предлагаемом расходомере применены четыре электромагнитных клапана, работающих по «диагональной» схеме, осуществляющих распределение потоков жидкости между мерными полостями измерительного цилиндра.

На чертеже изображена структурная схема предлагаемого устройства, состоящая из прямоугольного корпуса - 1, четырех электромагнитных клапанов - 2, 3, 4, 5. В корпусе расположены подводящая - 6 и отводящая - 7 магистрали, в центральной части корпуса запрессован измерительный цилиндр - 8, по которому перемещается поршень - 9, разделяя цилиндр по длине на две измерительные камеры «А» и «В». С двух сторон цилиндр закрыт крышками - 12, 13 с емкостными датчиками положения поршня - 10, 11.

Расходомер, например, устанавливается в топливную систему двигателя между фильтром грубой очистки топлива и топливоподкачивающим насосом.

Электромагнитные клапаны, электронный блок контроля и управления подключаются к бортовой сети.

Расходомер топлива работает следующим образом. При работающем двигателе топливоподкачивающий насос перемещает топливо по закрытой топливной системе двигателя, при этом электронный блок управления подает напряжение на два электромагнитных клапана (например, 2 и 5), включенных по диагональной схеме. Топливо из подводящей магистрали - 6 через открытый электромагнитный клапан - 2 поступает в измерительную камеру «А», заставляя при этом перемещаться поршень - 9 в сторону измерительной камеры «В». Топливо из измерительной камеры «В» через открытый электромагнитный клапан - 5 поступает в отводящую магистраль - 7 и далее в топливоподкачивающий насос. Поршень, дойдя до емкостного датчика, изменяет суммарную емкость датчика, что воспринимается электронным блоком контроля и управления как сигнал для реверсирования направления потока топлива и окончания единичного измерительного цикла. Электромагнитные клапана - 2 и 5 отключаются и под действием возвратной пружины запирают топливные отверстия. Питание подается на электромагнитные клапаны - 3 и 4. В измерительную камеру «В» начинает поступать топливо, а измерительная камера «А» начинает опорожняться. Поршень начинает движение в сторону измерительной камеры «А» и рабочий цикл поршневого расходомера повторяется. Блок контроля суммирует число единичных ходов поршня. Зная единичный объем измерительной камеры, расход топлива может быть отображен в любой удобной для дальнейшего счисления форме, в том числе и с учетом коррекции по температурной составляющей.

По сравнению с известными решениями предлагаемый поршневой расходомер топлива позволяет повысить точность измерения расхода топлива на всех режимах работы двигателя внутреннего сгорания за счет уменьшения динамической составляющей погрешности измерения как при измерении суммарных, так и текущих значений расхода топлива, а также расширить его функциональные возможности, повысить универсальность использования расходомера как для учета расхода топлива, так и других жидких сред, неагрессивных к материалам измерительной системы, за счет снижения требований к качеству и чистоте учитываемой жидкости.

Использованные источники

1. Кремлевский П.П. Расходомеры и счетчики количества. Справочник. Изд. 4. Л.: Машиностроение, 1989, с.614-616, рис. 362.

2. «Тракторы и сельскохозяйственные машины», 2005, №6. Точность измерения расхода топлива ДВС с помощью поршневых расходомеров. С 37 - 38.

3. Авторское свидетельство СССР N 1185093, кл. G01F 9/00, 1985.

4. Авторское свидетельство СССР N 1435944, кл. G01F 3/16, 1988.

5. Патент № 2084833, кл. G01F 03/3.

6. Диссертационная работа на соискание ученой степени доктора технических наук Глотова Сергея Викторовича «Повышение эффективности функционирования машинно-тракторных агрегатов за счет совершенствования контроля эксплуатационных параметров тракторов». 2004 г.

Поршневой расходомер, содержащий прямоугольный корпус с технологическими и крепежными отверстиями, закрытый с двух сторон крышками с датчиками положения поршня, четыре электромагнитных клапана, поршень и измерительный цилиндр, а также подводящий и отводящий штуцеры, отличающийся тем, что между измерительным цилиндром и поршнем отсут-ствует уплотнение, при этом поршень имеет такой же удельный вес, как и объем вытесняемой им измеряемой жидкости, а каждый из двух емкостных датчиков положения поршня имеет одну металлическую обкладку конденсатора, а второй обкладкой таких датчиков служит торцевая часть поршня.



 

Похожие патенты:

Изобретение относится к области арматуростроения, в частости к регулирующей насадке для управления радиаторным клапаном, и предназначено для регулирования потока жидкости.

Изобретение относится к области измерения расхода газа и может быть использовано для коммерческого учета расхода газа потребителями в промышленности и в коммунальном хозяйстве.

Изобретение относится к области гидравлики, в частности к сливу жидкостей из емкостей. .

Изобретение относится к измерительной технике и может быть использовано при измерении продукции нефтяной скважины непосредственно на месте добычи нефти. .

Изобретение относится к отображению графической информации на дисплее. .

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам и устройствам для измерения дебита жидкости нефтяной или газоконденсатной скважины, и может применяться для определения суточной производительности скважины как в процессе опробования разведочной скважины, так и для оперативного учета дебита эксплуатирующейся скважины в стационарной системе нефтегазосбора.

Изобретение относится к технологии получения радиационно-защитного композиционного материала, который может быть использован при изготовлении элементов защиты в различной аппаратуре, применяемой для дефектоскопии, для медицинских целей, для радиоактивного каротажа нефтяных и газовых скважин, в портативных нейтронных генераторах и др.

Изобретение относится к устройствам для измерения расхода газов и может быть использовано для измерения малых расходов газа и микрорасходов газа. .

Изобретение относится к нефтедобыче и может быть использовано для измерения плотности жидкости в продукции нефтяных и газоконденсатных скважин при помощи измерительных установок дебита гидростатического действия.

Дозатор // 2304761
Изобретение относится к средствам дозирования гранулированного материала, в частности гранул диоксида (сухого льда), и предназначено для использования при очистке наружных поверхностей и внутренних полостей электрических двигателей железнодорожного подвижного состава.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для измерения дебита скважин. Технический результат направлен на повышение точности и качества измерения дебита скважин. Устройство содержит вертикальную цилиндрическую емкость, входную и выходную в виде сифона, жидкостные линии, газовую линию, датчики давления и температуры газовой фазы, счетно-решающий блок. Объемный счетчик жидкости, запорный клапан, установленный, как и счетчик, на общей линии вслед за ним перед впадением ее в сборный коллектор, и при этом газовая и выходная жидкостная нисходящей ветвью сифона линии сообщены с гидравлическим замком. Датчики давления и температуры установлены на газовой линии, запорный клапан, объемный счетчик жидкости и счетно-решающий блок взаимосвязаны между собой через импульсный распределительный блок определения измеряемой рабочей среды. Запорный клапан выполнен перепускным дискретного действия с магнитной фиксацией, разгрузкой и контролем положения: «Открыто» или «Закрыто».1 з.п. ф-лы, 1 ил.

Электромагнитный способ измерения расхода электропроводной жидкости, протекающей в магнитном поле через немагнитную трубу, в которой установлены два электрода, магнитное поле создается с помощью электромагнита, имеющего индукционную катушку, через которую пропускается электрический ток, причем расход жидкости определяется в результате измерения тока, протекающего через индукционную катушку, и разности потенциалов между электродами, отличающийся тем, что дополнительно измеряют напряжение на клеммах индукционной катушки, а величину расхода вычисляют по формуле Q = k U I [ 1 − λ ρ k ( U k I − R k ) ] где Q - расход измеряемой среды, k - градуировочный коэффициент, U - разность потенциалов между электродами, I - ток, протекающий через индукционную катушку, Uk - напряжение на клеммах индукционной катушки, Rk - электрическое сопротивление индукционной катушки при градуировочной температуре измеряемой среды, λ - температурная погрешность расходомера [1/°С], ρk - изменение электрического сопротивления индукционной катушки при изменении температуры измеряемой среды на градус Цельсия. Технический результат - повышение точности измерения расхода в широком изменении температуры измеряемой среды. 1 з.п. ф-лы.

Изобретение относится к области приборостроения, в частности к устройствам для измерения объемного расхода жидких и газообразных материалов в потоке, и предназначено для использования в химической, нефтегазовой, горнорудной, медицинской, пищевой и других отраслях промышленности, а также в коммунальном и сельском хозяйстве, где требуются точные замеры объемов при слабых потоках. Объемный расходомер содержит корпус узла управления, состоящий из двух полушарий, корпус мерника, панель крепления узла управления и мерника, счетный механизм, крепящийся на корпусе мерника, трехканальную мембрану управления, размещающуюся в узле управления между его полушариями, мембрану мерильную в виде гофрированной камеры, то есть сильфонообразного чувствительного элемента, попеременно заполняющей собой внутренний объем мерника то в одном, то в противоположном направлении, соединительные трубопроводы, соединяющие узел управления с мерником, подводящий патрубок, отводящий патрубок, клапаны выпускные и перепускные, прикрепляемые к мембране управления соединительной мембраной (выпускные клапаны, установлены подпружиненно в клапанном гнезде корпуса управления), толкатель, нижняя часть которого прикреплена к внутренней стороне корпуса мерника посредством мембраны толкателя, а верхняя часть взаимодействует с рычагом счетного механизма через кулисообразное звено. Трехканальная мембрана управления, в теле которой имеются три канала - подводящий и два отводящих, в корпусе узла управления устанавливается в предварительно сжатом состоянии. Технический результат - повышение точности измерения расходов. 2 ил.
Наверх