Акустический способ обнаружения неисправности рельсового пути

Использование: для акустической дефектоскопии неисправностей рельсового пути. Сущность: заключается в том, что в рельсы передают акустический сигнал, принимают отраженный сигнал, а по времени распространения акустических сигналов к месту неисправности и обратно определяют его координату, отраженный сигнал принимают пьезоэлектрическими преобразователями, установленными на подшипниках скольжения, расположенными на валу колесной пары, передачу и прием акустических сигналов осуществляют попеременно, при этом в качестве источника мощности акустических сигналов используют удары колесных пар на стыках межрельсового пути, стабилизируют импульсы постоянным весом локомотива в рабочем диапазоне его скоростей под углом наката α=0,001÷0,002°, регистрируют одновременно частоту следования сформированных ударных импульсов, фоновую интенсивность и частотный спектр акустического шума в интервале между первым и вторым ударными импульсами и отраженными сигналами от не менее 2-х колесных пар, преобразуя сформированные ударные импульсы в импульсы прямоугольной формы, определяют их длительность между временами заднего фронта и переднего фронта, разлагая прямоугольные импульсы с правой и левой колеи в ряд Фурье и выделяют основную гармонику правой и левой колеи, после чего проводят дальнейшую обработку полученных данных, определяя неисправности рельсового пути. Технический результат: обеспечение возможности выявления сложных дефектов в рельсовом пути. 4 ил.

 

Изобретение относится к измерительной технике, а конкретнее к неразрушающему контролю материалов и может быть использовано при акустической дефектоскопии неисправностей рельсового пути.

Известен ультразвуковой способ контроля головки рельсов рельсовой колеи при движении транспортных средств, заключающийся в том, что на поверхность катания головки рельса на его продольной оси устанавливают пару наклонных электроакустических преобразователей, развернутых под одинаковыми острыми углами относительно продольной оси рельса к боковым граням головки рельса, перемещают преобразователи вдоль продольной оси рельса, излучают и принимают ультразвуковые колебания в заданных временных зонах и по параметрам принятых колебаний судят о наличии дефекта, на продольной оси устанавливают вторую пару преобразователей с идентичными параметрами, углы ввода ультразвуковых колебаний в металл рельса и углы разворота первой пары преобразователей выбирают из условия пересечения осей ультразвуковых лучей, переотраженных от зон радиусного перехода боковой и нижней граней головки рельса, на продольной оси поверхности катания, расстояние между парами преобразователей наряду с углами ввода ультразвуковых колебаний и углами разворота второй пары преобразователей выбирают из условия приема сигналов от дефектов в виде поперечных трещин в боковых частях головки рельсов, а о наличии и ориентации дефекта судят по совместному анализу принятых преобразователями сигналов, при этом эхо-сигналы от возможных дефектов выделяют в четырех временных зонах, первая из которых предназначена для приема эхо-сигналов от дефектов в боковой грани головки рельса при озвучивании их прямым ультразвуковым лучом, вторая зона - для приема второй парой преобразователей зеркально отраженных сигналов от дефектов в боковых частях головки рельсов, третья зона - для приема эхо-сигналов при озвучивании дефектов однократно отраженным от радиусного перехода боковой и нижней граней головки рельса ультразвуковым лучом, четвертая зона - для приема сигналов, излученных одним преобразователем и принятых другим преобразователем, после отражения их от уголкового отражателя, сформированного поперечной трещиной и поверхностью катания или горизонтальной трещиной, а о расположении трещины в головке рельса и ее ориентации судят по совместному анализу принятых сигналов (Патент RU 2184374, МПК G01N 29/04, B61K 9/10, опубл. 27.06.2002. БИ №18, автор Марков А.А. и др. «Ультразвуковой способ контроля головки рельсов»).

Недостатками способа, выбранного за аналог, являются низкая его информативность и оперативность выявления всех дефектов в рельсовом пути. Существенным недостатком является и низкая надежность, и точность, связанная с трудоемкостью обеспечения надежного контакта и точной ориентации преобразователей к сложным геометриям дефекта в исследуемом объекте, включая головку, шейку и подошву, невозможностью увеличить общую скорость дефектоскопии.

Известен акустический способ обнаружения неисправности рельсового пути, возникающей при трещинообразовании, в процессе движения состава по железной дороге, при котором в рельсы передают акустический сигнал, принимают отраженный сигнал и по времени распространения акустических сигналов к месту неисправности и обратно определяют его координату, отраженный сигнал принимают пьезоэлектрическими преобразователями акустических колебаний в электрические сигналы, установленными на подшипниках скольжения, надетых на вал колесной пары, при этом передачу и прием акустических сигналов осуществляют попеременно. (Патент RU 2126339, МПК B61K 9/10, опубл. 20.02.1999. Бюл. №5. Коган Ф.И., Фролов А.Ф. и др. «Акустический способ обнаружения неисправности рельсового пути в процессе движения состава по железной дороге»).

Данное техническое решение выбрано авторами в качестве прототипа.

Недостатком данного технического решения являются низкая информативность и оперативность выявления всех дефектов в рельсовом пути: нарушение сплошности, изменение зазора, ширины и его параллельности, а также несовершенство критериев оценки эксплуатационной безопасности движения. При переменной передаче и приеме акустических сигналов уменьшается быстродействие и точность преобразования акустических сигналов в электрические сигналы, что снижает достоверность анализа результатов диагностики.

Техническим результатом является повышение информативности за счет выявления сложных дефектов в рельсовом пути: нарушение сплошности, изменение зазора, ширины и непараллельности.

Технический результат достигается тем, что в акустическом способе обнаружения неисправности рельсового пути, возникающей при трещинообразовании в процессе движения состава по железной дороге, при котором в рельсы передают акустический сигнал, принимают отраженный сигнал, а по времени распространения акустических сигналов к месту неисправности и обратно определяют его координату, отраженный сигнал принимают пьезоэлектрическими преобразователями, установленными на подшипниках скольжения, расположенными на валу колесной пары, передачу и прием акустических сигналов осуществляют попеременно, в качестве источника мощности акустических сигналов используют удары колесных пар на стыках межрельсового пути, стабилизируют импульсы постоянным весом локомотива в рабочем диапазоне его скоростей под углом наката α=0,001÷0,002°, регистрируют одновременно частоту следования сформированных ударных импульсов, фоновую интенсивность и частотный спектр акустического шума в интервале между первым и вторым ударными импульсами и отраженными сигналами от не менее 2-х колесных пар, преобразуя сформированные ударные импульсы в импульсы прямоугольной формы, определяют их длительность между временами заднего фронта и переднего фронта, разлагая прямоугольные импульсы с правой и левой колеи в ряд Фурье и выделяют основную гармонику правой и левой колеи вида

UПК(t)=Uisin(ω1t+φ0) правой и

UЛК(t)=Uisin((ω1t+φ0) левой колеи,

где Ui - амплитуда;

ω1 - частота;

φ0 -фаза первой гармоники при эксплуатационном зазоре рельсового пути;

затем устанавливают корреляционную связь между величиной изменения межстыкового зазора и изменениями параметров электрического сигнала из условия пропорциональности:

Δlзi(пк)=К1Δτi имп и Δlзi(пк)=К2Δφi,

Δlзi(лк)=К1Δτi имп и Δlзi(лк)=К2Δφi,

где Δlзi(пк) - величина изменения i-го межстыкового зазора на правой колеи,

Δlзi(лк) - величина изменения i-го межстыкового зазора на левой колеи,

i - порядковый номер межстыкового зазора от 1 до ∞,

К1 - коэффициент корреляционной связи между длительностью импульса,

К2 - коэффициент корреляционной связи между величиной фазы,

τi имп - длительность импульса,

Δφi - величина фазы;

определяют коэффициент относительного изменения зазора путем отношения длительности импульса и фазы при нормальном зазоре к длительности импульса и фазы при фактическом зазоре и по его величине в интервале (0,8÷0,2) судят о изменении межрельсового зазора, определяя его место нахождение по формуле:

x i = i = 1 N l 0 ,

где l0 - длина рельсового пути между стыками, м;

i - порядковый номер l0 по координате x;

N - число прямоугольных ударных импульсов,

при этом фиксируя фоновую интенсивность и частотный спектр акустического шума между ударным и отраженным импульсами при исправном рельсовом пути из условия пропорциональности, зависимость устанавливают между дефектами и объемом дефектной области и параметрами акустической фоновой интенсивности и частотным спектром акустического шума:

Δ V Д Е Ф = К Д W Ф . Ш . Э К С и Δ V Д Е Ф = К с ш W Ф . Ш . Э К С ,

где КД - коэффициент корреляционной связи между эксплуатационным фоновым шумом и частотным спектром и объемом дефектной области,

Ксш - коэффициент корреляционной связи между отношением сигнал/шум,

ΔVДЕФ - объемом дефектной области,

W Ф . Ш . Э К С - акустическая фоновая интенсивность и частотный спектр акустического шума;

далее определяют коэффициент относительного изменения интенсивности акустического фонового шума и частотного спектра из отношения эксплуатационного фонового шума и частотного спектра к уровню фонового шума и частотного спектра при возникновении дефектов и по его величине в интервале 0,8÷0,2 судят о величине развития дефектов в рельсовом пути, а затем определяют временные интервалы между задним фронтом первого импульса и передним фронтом второго импульса правой и левой колеи от 2-х колесных пар, разлагают временные интервалы прямоугольных импульсов в ряд Фурье и выделяют основную гармонику вида:

UПК(t)=Uisin(ω1t+φ0)

UЛК(t)=Uisin((ω1t+φ0),

где Ui - амплитуда,

ω1 - частота основной первой гармоники при эксплуатационной параллельности рельсового пути,

φ0 - фаза основной первой гармоники при эксплуатационной параллельности рельсового пути;

устанавливают корреляционную связь между величиной изменения параллельности и изменениями параметров электрического сигнала - длительностью импульса и величиной фазы из условия пропорциональности

ΔLi=К3Δτi имп и ΔLi=К4Δφi,

где К3 - коэффициент корреляционной связи между длительностью импульса;

К4 - коэффициент корреляционной связи между величиной фазы,

Δτi имп - длительность импульса,

Δφi - величина фазы;

а затем определяют коэффициент относительного изменения параллельности рельсового пути равным отношению длительности импульса и фазы правой колеи к длительности импульса и фазы левой колеи, а по величине коэффициента относительного изменения параллельности в интервале 0,9÷0,8 и по разности и изменению знака между изменениями длительности импульса

Δτii.имп±τ0 и фазы Δφii.имп±φ0

судят о нарушении параллельности рельсовой колеи.

Используя удары колесных пар на стыках межрельсового пути в качестве источника мощных импульсных стабильных акустических сигналов зондирующих рельсовый путь, преобразовывая их в импульсы прямоугольной формы, разлагая прямоугольные импульсы с правой и левой колеи в ряд Фурье и выделяя основную гармонику синусоидальной формы правой и левой колеи, устанавливают корреляционные связи между дефектами и параметрами электрических сигналов: Xi - амплитудой; ωi - частотой и φ0 - фазой, с одновременной регистрацией фоновой интенсивности и частотного спектра, это повышает информативность и оперативность обнаружения неисправности рельсового пути, а также достоверность и точность прогнозирования уровня безопасности движения за счет новых критериев оценки, таких как изменение относительного межрельсового зазора с указанием его места, величина развития дефектов в рельсовом пути, параллельность рельсового пути.

Действия способа поясняются чертежами:

На фиг.1 представлена функциональная схема акустического способа обнаружения неисправности рельсового пути по двухканальной схеме приема акустических шумов; где в 1-м канале измеряют зазор между стыками рельсов и определяют нарушение сплошности в рельсовом пути; во 2-м канале измеряют ширину и непараллельность рельсового пути.

На фиг.2 представлена схема взаимодействия системы - колесная пара на межстыковом рельсовом участке, где а - частота следования ударных акустических импульсов, б - формирование прямоугольного импульса, в - частота следования счетных импульсов, г - прямоугольный импульс, д - величина зазора, пропорциональная числу коротких импульсов.

На фиг.3 представлена иллюстрация акустических сигналов при дефектах, где а - иллюстрация нарушения сплошности в рельсовом пути, б - иллюстрация рельсового пути без дефектов.

На фиг.4 представлена иллюстрация развития непараллельности рельсового пути, а - основные гармоники: U1 - правой колеи, U2 - левой колеи со сдвигом фазы, б - частота следования импульсов прямоугольной формы, пропорциональных сдвигу фаз между гармониками, в - частота следования счетных импульсов, г - сдвиг фазы, пропорциональный числу счетных импульсов при нормальной параллельности пути, д - иллюстрация длительности участка рельсового пути с нарушением параллельности, например левой колеи.

Акустический способ обнаружения неисправности рельсового пути представлен функциональной схемой и содержит: источник акустических сигналов 1, вал одноосной колесной пары 2, приемники акустических сигналов 3, 4, 5, 6; преобразователи электрических сигналов 7, 8, 9, 10; блоки анализа дефектов 11, 12, 13, 14; блок сравнения информации 15 и 16; блок хранения оперативной информации 17 и 18; дистанционный канал передачи информации 19, стационарный пункт дефектоскопии пути 20, навигатор 21, библиотеку стандартных электрических сигналов (акустические шумы ответственных участков рельсового пути) 22, блок оперативной текущей информации 23, анализатор состояния рельсового пути 24.

Акустический способ обнаружения изменений межрельсового зазора и оценку уровня безопасности рельсового пути реализуют по первому каналу следующим образом (фиг.1). Источник акустических сигналов 1 выполнен в виде системы «колесная пара - стыковой зазор» (фиг.2). При накате колесной пары 2 на зазор происходит механический удар, энергию которого преобразовывают в акустический импульс. Из геометрического смысла удара вытекает, что, если провести радиусы от центра диаметра колеса к кромкам стыка, образуется равнобедренный треугольник (фиг.2), из которого определяют угол наката колесной пары под углом α. Удары колесной пары на межрельсовых стыках преобразовывают в импульсные акустические сигналы, стабильные по амплитуде при нормальном эксплутационном зазоре Δl0 между стыками под углом α=0,001÷0,002°. Стабильность импульсных акустических сигналов достигают постоянством веса локомотива, т.е. энергия удара постоянна.

Акустические импульсы передают последовательно от одного элементарного отрезка рельсового пути другому, отраженные сигналы от торца конца этого отрезка принимают приемники 3, 4, 5, 6. На следующем зазоре по ходу движения локомотива вновь формируют ударный акустический импульс, зондируя следующий участок рельсового пути аналогичным образом. В процессе движения локомотива по железной дороге в рельсы передают времена распространения акустических сигналов к месту неисправности и обратно, воспринимают приемниками акустические сигналы датчиками 3, 4, 5, 6, которые преобразовывают в электрические сигналы в преобразователях акустических сигналов 7, 8, 9, 10. Иллюстрация преобразования акустических сигналов, их регистрация и обработка сигналов при измерении, например, зазора показана на фиг.2 (б÷д). С учетом скорости движения поезда и скорости распространения акустического ударного импульса не менее 6000 м/с, оценивают точность обнаружения дефектов и их объемы в рельсовом пути. При движении поезда со скоростью 60÷90 км/час по рельсовому пути, поезд проходит единичный участок например, длиной l0=25 м, содержащий межстыковой зазор, при этом акустический импульс проходит путь в сторону зондирования и отразится от другого стыка за время, намного меньшее времени << 1 с. Временной интервал между импульсным акустическим и зондирующим отраженным сигналом выполняет функцию передачи оперативной информации о состоянии рельсового пути с высокой степенью информативности и надежности. Акустические сигналы могут содержать продольные и поперечные составляющие, образующие при дисперсии продольной составляющей на дефектах типа трещины. Акустические сигналы преобразуют в электрические сигналы преобразователями акустических сигналов 7, 8, 9, 10.

Измерение зазора межрельсового расстояния осуществляют в первом канале, который включает: источник акустических сигналов 1, вал одноосной колесной пары 2, приемники акустических сигналов 3, 5; преобразователи электрических сигналов 7, 8; блоки анализа дефектов 11, 12; блок сравнения информации 15; блок хранения оперативной информации 17; дистанционный канал передачи информации 19, стационарный пункт дефектоскопии пути 20, навигатор 21, библиотеку стандартных электрических сигналов (акустических шумов ответственных участков рельсового пути) 22, блок оперативной текущей информации 23, анализатор состояния рельсового пути 24.

Измерительный процесс в первом канале осуществляют следующим образом.

На фиг.2 показана четырехколесная пара на рельсовой колеи и межрельсовый эксплуатационный зазор - Δl0 и аварийный зазор - Δ l з а в а р . . Частота следования ударных импульсов без фонового шума (фиг.2а) и пример измерительного процесса межрельсового зазора (фиг.2б÷фиг.2д).

В приемниках 3 и 5 ударные импульсы преобразовываются в блоках 7 и 8 в электрические сигналы прямоугольной формы без фонового акустического шума. Фоновый акустический шум подавляют, например, в фильтрах режекторного типа, встроенных в преобразователях 7 и 8. Временной интервал заполняют счетными короткими импульсами. Число счетных импульсов пропорционально величине зазора N=k·Δli=Δl0 во временном интервале и измеряют в блоках 7 и 8.

Повышение точности может быть достигнуто путем определения длительности (τимп.) между временами заднего фронта (tз.ф.) и переднего фронта (tп.ф.) импульсов прямоугольной формы, разложения прямоугольных импульсов в ряд Фурье правой и левой колеи и выделения основной гармоники вида UПК(t)=Uisin(ω1t+φ0) правой и UЛК(t)=Uisin(ω1t+φ0) левой колеи, где

Ui - амплитуда,

ω1 - частота;

φ0 - фаза основной первой гармоники при эксплуатационном зазоре рельсового пути,

устанавливают корреляционную связь между величиной изменения межстыкового зазора ΔlЗi и изменениями параметров электрического сигнала: длительностью пульса (Δτi имп) и величиной фазы (Δφi) из условия пропорциональности:

ΔlЗi1Δτi имп и ΔlЗi2Δφi,

где К1 - коэффициент корреляционной связи между длительностью импульса;

К2 - коэффициент корреляционной связи между величиной фазы, определяют коэффициент относительного изменения зазора равным отношению длительности импульса (τ0) и фазы (φ0) при нормальном зазоре к длительности импульса (τi имп) и фазы (φi) при фактическом зазоре и по его величине в интервале (0,8÷0,2) судят о изменении межрельсового зазора. Оценку безопасности движения производят в блоках 11, 12 и 15.

Если в процессе отладки измерительного процесса установлена корреляционная связь из условия пропорциональности: ΔlЗi1Δτi имп и ΔlЗi2Δφi, то оперативно и достоверно определяют дефект рельсового пути, а дефектное место, где изменилась величина зазора до предельно допустимого уровня эксплуатации определяют по формуле:

x i = i = 1 N l 0 ,

где l0 - длина рельсового пути между стыками, м;

i - порядковый номер l0 по координате x;

N - число прямоугольных ударных импульсов, x;

X - расстояние до дефекта от X0 до Xi.

Определение нарушения сплошности рельсового пути (трещинообразных дефектов) и объема дефектной области осуществляют в первом канале (фиг.1) следующим образом.

Далее ударные акустические и отраженные сигналы от первой и второй колесной пары поступают в приемники 3 и 5, преобразуют преобразователями 7 и 8 в электрические сигналы с наличием фонового акустического шума. Фоновый акустический шум выделяют, как например, с помощью фильтров режекторного типа, встроенных в преобразователях 7 и 8 и анализируют в блоках анализа дефектов 11 и 12 и судят о нарушениях сплошности рельсового пути и объеме дефектной области:

Δ V Д Е Ф = К Д W Ф . Ш . Э К С и Δ V Д Е Ф = К с ш W Ф . Ш . Э К С ,

где КД - коэффициент, характеризующий влияние дефектов,

Ксш - коэффициент, характеризующий отношение сигнал/шум,

W Ф . Ш . Э К С - частотный спектр акустического шума.

Коэффициент относительного изменения интенсивности акустического фонового шума и частотного спектра (Wи.ф.ш.) определяют в блоках сравнения 11, 12 и в блоке 15, в который поступает одновременно шум и спектр от правого и левого рельсового участка пути, разностный сигнал выделяется в блоке 15. В блоках 11, 12 и 15 вычисляется и анализируется отношение эксплуатационного фонового шума и частотного спектра ( W Ф . Ш . Э К С ) к уровню фонового шума и частотного спектра при возникновении дефектов ( W Ф . Ш . Д Е Ф ) и определяется величина коэффициента интенсивности фонового шума (Wи.ф.ш.). По интервалу коэффициента относительного изменения интенсивности акустического фонового шума и частотного спектра (0,8÷0,2) судят о величине и объеме развития трещинообразных дефектов в процессе эксплуатации рельсового пути.

Диагностика сплошности рельсового пути может осуществляется и по многопараметрической физической модели в первом канале (фиг.1). Ударные акустические импульсы от второй колесной пары поступают на вход датчиков 3 и 5 с полосой пропускания частотного спектра не более 1,5 МГц. Акустические сигналы преобразуются в электрические сигналы преобразователями 7 и 8, подаются на входы группы полосовых фильтров анализатора спектра, встроенные в блоки 7 и 8. Число фильтров определяется диапазоном анализируемого спектра, например, в диапазоне частот (100÷450) кГц. На выходе каждого фильтра включен детектор. Выделенные ударные и отраженные акустические сигналы и фоновый эксплуатационный акустический шум поступают с выходов анализатора гармонических колебаний блока анализа дефектов 11 и 12 в первый блок хранения и анализа оперативной информации 17. Уровень акустического фонового шума и спектр гармонических составляющих, например, в диапазоне частот 100÷450 кГц определяется развитием микротрещин, интенсивностью и скоростью развития дефектов. По спектру частотного шума между двумя ударными и отраженными импульсами судят об образовании трещинообразных дефектов, месте и объеме их образования. Оценивают безопасность движения по коэффициенту интенсивности акустического шума, который определяют как отношение эксплуатационного фонового шума ( W Ф . Ш . Э К С ) к уровню фонового шума при возникновении дефектов ( W Ф . Ш . Д Е Ф ) и по его величине (Wи.ф.ш.) в интервале (0,8÷0,2) судят о трещинообразовании в рельсовом пути. Коэффициент интенсивности акустического шума определяют многопараметрическими параметрами системы «рельсы-сигнал-отраженное эхо» как сложной функцией, характеризующей нарушение сплошности, объем дефектов, скорость их развития и определяемой соотношением:

W и ш н о р м = 1 К с ш К Д α V Д : К P α P P x l 0 W и ш п р е д . д о п . = 0,8 ÷ 0,2 , по величине которой определяют уровень предельно допустимого и аварийного состояния участка пути,

где КP - коэффициент, характеризующий влияние параметра p, связанного с усредненными дефектными параметрами рельсового пути, изменяющимися с нарушением сплошности рельсового пути;

l0 - длина контролируемого участка между рельсовыми стыками;

α P - скорость изменения отраженного сигнала при изменении параметра p;

P x - скорость изменения усредненного параметра в направлении отражения;

Ксш - отношение сигнал/шум;

КД - коэффициент, характеризующий влияние дефекта;

VД - объем дефектной области.

При обработке сигналов шумового фона по величине амплитуды, частотному спектру, временным интервалам ударных акустических сигналов определяют дефектное состояние рельсового пути. Сравнение коэффициентов относительного изменения интенсивности акустического фонового шума и частотного спектра (Wи.ф.ш.) равным отношению эксплуатационного фонового шума и частотного спектра ( W Ф . Ш . Э К С ) к уровню фонового шума и частотного спектра при возникновении дефектов ( W Ф . Ш . Д Е Ф ) акустических сигналов и их параметров с правой и левой колеи в блоке вторичной обработки информации 15 повышается достоверность определения дефектов и суждения о состоянии рельсового пути в целом и по его величине (Wи.ф.ш.).

Непараллельность рельсового пути и безопасность движения определяется во втором канале фиг.1 следующим образом.

Второй канал (фиг.1) содержит: источник акустических сигналов 1, вал одноосной колесной пары 2, приемники акустических сигналов 4, 6; преобразователи электрических сигналов 9, 10; блоки анализа дефектов 13, 14; блок сравнения информации 16; блок хранения оперативной информации 18; дистанционный канал передачи информации 19, стационарный пункт дефектоскопии пути 20, навигатор 21, библиотеку стандартных электрических сигналов (акустических шумов ответственных участков рельсового пути) 22, блок оперативной текущей информации 23, автоматизированный анализатор состояния рельсового пути 24.

Ударные акустические сигналы воспринимаются приемниками-датчиками 4 и 6, попарно расположенными по разные стороны на одинаковом расстоянии ΔL по ширине рельсового пути (L-2ΔL) между двумя колесами колесной пары.

Ударные акустические и отраженные сигналы от первой и второй колесной пары поступают в приемники 4 и 6 и в преобразователи 9 и 10 в электрические сигналы. Фоновый шум подавляется в преобразователях 9 и 10 с помощью, например режекторного типа фильтров, встроенных в преобразователи 9 и 10

Временные интервалы прямоугольной формы выделяются в блоках 13, 16, 17 между задним фронтом ( t з . ф . 1 ) первого ударного импульса и передним фронтом ( t з . ф . 2 ) второго импульса на правой и левой колеи от 2-х колесных пар, временные интервалы прямоугольных импульсов разлагаются в ряд Фурье с выделением основной гармоники вида

UПК(t)=Uisin(ω1t+φ0) и UЛК(t)=Uisin((ω1t+φ0),

где Ui - амплитуда,

ω1 - частота,

φ0 - фаза основной первой гармоники при эксплуатационной параллельности рельсового пути.

Устанавливают корреляционную связь между величиной изменения параллельности ΔLi и изменениями параметров электрического сигнала: длительностью импульса (Δτi имп) и величины фазы (Δφi) из условия пропорциональности

ΔLi3Δτi имп и ΔLi4Δφi,

где К3 - коэффициент корреляционной связи между длительностью импульса;

К4 - коэффициент корреляционной связи между величиной фазы, определяют коэффициент относительного изменения параллельности рельсового пути равным отношению длительности импульса (τi имп)ПР.К и фазы (φi имп)ПР.К правой колеи к длительности импульса (τi имп)Л.К и фазы (φi имп)Л.К левой колеи и по величине коэффициента относительного изменения параллельности в интервале (0,9÷0,8), оценка о развитии непараллельности рельсового пути и безопасности движения осуществляется в блоке 18, а по разности и изменению знака между изменениями длительности импульса и фазы Δτii.имп±τ0; Δφii.имп±φ0 определяют причины, вызывающие нарушение параллельности во втором блоке хранения и оперативной передачи информации 18. Достоверность и точность оценки параллельности по измерению фазового сдвига достигается за счет того, что методы измерения фаз и сдвига фаз являются более чувствительными и точными. Чувствительность, достоверность и точность оценки непараллельности достигается и за счет разложения прямоугольных импульсов в гармонические сигналы вида U=U0sin(ωt+φ) и точного определения величины фазы и знака отклонения от параллельности, а сравнивая фазы прямоугольных сигналов, повышают надежность прогнозирования и точность определения дефектов.

Повышение быстродействия и оперативность диагностики рельсового пути достигаются за счет сравнения текущих измерений эксплутационного фонового шума, длительность ударных акустических импульсов, сдвига фаз, фонового шума между импульсами и сравнении со стандартными сигналами для ответственных участков рельсового пути.

Информация о состоянии рельсового участка пути поступает в кабину машиниста из блока хранения 17 и 18 по оперативной связи 19 и передается на стационарный пункт дефектоскопии пути 20 для принятия решения об устранении дефектов.

Таким образом, достигается расширение функциональных возможностей диагностики состояния рельсового пути и прогнозирования безопасности по предлагаемому способу. Обеспечивается оперативность контроля и прогнозирование безопасности движения на всей протяженности рельсового пути по основным показателям и критериям оценки и высокая скорость дефектоскопии в процессе движения.

Акустический способ обнаружения неисправности рельсового пути, возникающей при трещинообразовании в процессе движения состава по железной дороге, при котором в рельсы передают акустический сигнал, принимают отраженный сигнал, а по времени распространения акустических сигналов к месту неисправности и обратно определяют его координату, отраженный сигнал принимают пьезоэлектрическими преобразователями, установленными на подшипниках скольжения, расположенными на валу колесной пары, передачу и прием акустических сигналов осуществляют попеременно, отличающийся тем, что в качестве источника мощности акустических сигналов используют удары колесных пар на стыках межрельсового пути, стабилизируют импульсы постоянным весом локомотива в рабочем диапазоне его скоростей под углом наката α=0,001÷0,002°, регистрируют одновременно частоту следования сформированных ударных импульсов, фоновую интенсивность и частотный спектр акустического шума в интервале между первым и вторым ударными импульсами и отраженными сигналами от не менее 2-х колесных пар, преобразуя сформированные ударные импульсы в импульсы прямоугольной формы, определяют их длительность между временами заднего фронта и переднего фронта, разлагая прямоугольные импульсы с правой и левой колеи в ряд Фурье и выделяют основную гармонику правой и левой колеи вида
UПК(t)=Uisin(ω1t+φ0) правой и
UЛК(t)=Uisin(ω1t+φ0) левой колеи,
где Ui - амплитуда;
ω1 - частота;
φ0 - фаза первой гармоники при эксплуатационном зазоре рельсового пути;
затем устанавливают корреляционную связь между величиной изменения межстыкового зазора и изменениями параметров (длительностью импульса и величиной фазы) электрического сигнала из условия пропорциональности:
ΔlЗi(пк)=К1Δτi.имп и ΔlЗi(пк)=К2Δφi,
ΔlЗi(лк)=К1Δτi.имп и ΔlЗi(лк)=К2Δφi,
где ΔlЗi(пк) - величина изменения i-го межстыкового зазора на правой колеи,
ΔlЗi(лк) - величина изменения i-го межстыкового зазора на левой колеи,
i - порядковый номер межстыкового зазора от 1 до ∞,
К1 - коэффициент корреляционной связи между длительностью импульса,
К2 - коэффициент корреляционной связи между величиной фазы,
τi.имп - длительность импульса,
Δφi - величина фазы;
определяют коэффициент относительного изменения зазора путем отношения длительности импульса и фазы при нормальном зазоре к длительности импульса и фазы при фактическом зазоре и по его величине в интервале (0,8÷0,2) судят о изменении межрельсового зазора, определяя его место нахождение по формуле:
,
где l0 - длина рельсового пути между стыками, м;
i - порядковый номер l0 по координате х;
N - число прямоугольных ударных импульсов,
при этом, фиксируя фоновую интенсивность и частотный спектр акустического шума между ударным и отраженным импульсами при исправном рельсовом пути, устанавливают корреляционную связь между дефектами и объемом дефектной области и параметрами акустической фоновой интенсивности и частотным спектром акустического шума:
и ,
где ΔVДЕФ - объемом дефектной области,
КД - коэффициент корреляционной связи между эксплуатационным фоновым шумом и частотным спектром и объемом дефектной области,
Ксш - коэффициент корреляционной связи между отношением сигнал/шум и объемом дефектной области,
- акустическая фоновая интенсивность и частотный спектр акустического шума;
далее определяют коэффициент относительного изменения интенсивности акустического фонового шума и частотного спектра путем отношения эксплуатационного фонового шума и частотного спектра к уровню фонового шума и частотного спектра при возникновении дефектов и по его величине в интервале 0,8÷0,2 судят о величине и объеме развития дефектов в рельсовом пути, а затем определяют временные интервалы между задним фронтом первого импульса и передним фронтом второго импульса правой и левой колеи от 2-х колесных пар, разлагая временные интервалы прямоугольных импульсов в ряд Фурье, и выделяют основную гармонику вида:
UПК(t)=Uisin(ω1t+φ0)
UЛК(t)=Uisin(ω1t+φ0),
где Ui - амплитуда,
ω1 - частота основной первой гармоники при эксплуатационной параллельности рельсового пути,
φо - фаза основной первой гармоники при эксплуатационной параллельности рельсового пути;
устанавливают корреляционную связь между величиной изменения параллельности и изменениями параметров электрического сигнала - длительностью импульса и величиной фазы из условия пропорциональности:
ΔLi3Δτi.имп и ΔLi4Δφi,
где К3 - коэффициент корреляционной связи между длительностью импульса;
К4 - коэффициент корреляционной связи между величиной фазы,
Δτi.имп - длительность импульса,
Δφi - величина фазы;
а затем определяют коэффициент относительного изменения параллельности рельсового пути равным отношению длительности импульса (τi.имп)ПК и фазы (φi.имп)ПК правой колеи к длительности импульса (τi.имп)ЛК и фазы (φi.имп)ЛК левой колеи, а по величине коэффициента относительного изменения параллельности в интервале (0,9÷0,8) и по разности и изменению знака между изменениями длительности импульса:
Δτii.имп±τо
и фазы
Δφii.имп±φo
судят о нарушении параллельности рельсовой колеи.



 

Похожие патенты:

Использование: для оценки поврежденности материала конструкций. Сущность: заключается в том, что оценка поврежденности материала (на стадии накопления рассеянных микроповреждений) эксплуатируемых элементов основана на определении критерия степени поврежденности металла элементов и определении по нему временной зависимости от момента контроля до вероятного разрушения элемента оборудования.

Использование: для контроля качества акустического контакта при ультразвуковой дефектоскопии. Сущность: заключается в том, что в призму пьезопреобразователя излучают пучок ультразвуковых колебаний, измеряют амплитуду трансформированных поперечных колебаний и по ее величине судят о наличии или отсутствии акустического контакта, при этом трансформированную волну, отраженную от рабочей поверхности призмы, принимают специальной пьезопластиной для приема поперечных колебаний или упомянутую трансформированную волну, отраженную от рабочей поверхности призмы, далее трансформируют с использованием дополнительной плоскости призмы пьезопреобразователя из поперечной в продольную и регистрируют колебания обычной пьезопластиной, причем угол падения поперечной волны на дополнительную плоскость выбирают исходя из максимального коэффициента преобразования в продольные колебания.

Использование: для контроля средних параметров волокон в волоконной массе. Сущность: заключается в том, что массу волокон, принятых за эталон, прочесывают с выходом на барабан с акустически прозрачной, например, сетчатой поверхностью, под поверхностью и над поверхностью сетчатой стенки барабана соосно, нормально к поверхности стенки, устанавливают излучающий и воспринимающий датчики акустических колебаний и обкладки воздушного конденсатора, после каждого полного оборота барабана фиксируют величину акустического сигнала и величину емкости воздушного конденсатора, отбирая от навоя образцы, стандартными методами определяют поверхностную плотность навоя и количество волокон в направлении прозвучивания, строят зависимости поверхностной плотности навоя от емкости воздушного конденсатора и величины акустического сигнала от количества волокон в направлении прозвучивания, устанавливают на зависимостях эталонное значение требуемого количества волокон, прочесывают контролируемое волокно с выходом на барабан, непрерывно регистрируя при каждом обороте барабана количество волокон в направлении прозвучивания до установленного эталонного значения, по достижении которого навой прекращают, а о среднем параметре волокон судят по величине поверхностной плотности полученного навоя.

Использование: для эхо-локации. Сущность заключается в том, что устройство для излучения и приема ультразвуковых волн содержит источник напряжения, к которому подключены последовательно в указанной очередности первый резистор, конденсатор и второй резистор, пьезоэлектрический преобразователь, одним своим выводом соединенный с «землей» источника напряжения, электронный ключ, подключенный одним выводом к точке соединения первого резистора с конденсатором, а вторым выводом к первому выводу третьего резистора, второй вывод которого соединен с «землей» источника напряжения, схему управления, выход которой подключен к управляющему входу электронного ключа, два встречно-параллельных диода, включенных параллельно третьему резистору, и приемно-усилительный тракт, вход которого подключен к первому выводу третьего резистора, при этом оно выполнено с возможностью создания на пьезоэлектрическом преобразователе перепада напряжения, превышающего напряжение источника питания, для генерации ультразвуковой волны за счет включения индуктивности, один из выводов которой подключен к точке соединения конденсатора и второго резистора, а второй вывод - к свободному выводу пьезоэлектрического преобразователя.

Использование: для ультразвукового контроля изделий. Сущность: способ, заключающийся в том, что выполняют ввод ультразвуковых колебаний в изделие, теневое прозвучивание изделия импульсами ультразвуковых колебаний и прием прошедших свод изделия ультразвуковых колебаний в воздушной среде приемным преобразователем, отличается тем, что ультразвуковой контроль изделия проводят не одним, а двумя ультразвуковыми приборами или двумя блоками одного прибора, из которых один используют для излучения и ввода ультразвуковых колебаний в изделие, а другой - для приема прошедших свод изделия ультразвуковых колебаний и отображения их на экране прибора, при этом работу блоков каждого из приборов не синхронизируют друг с другом, в частности, частоту следования импульсов ультразвуковых колебаний на излучающем блоке прибора устанавливают не равной, а более высокой по сравнению с частотой следования импульсов, синхронизирующих работу блоков приемного прибора, в том числе блока развертки, обеспечивающего отображение принятых ультразвуковых колебаний на экране прибора, и не кратной частоте следования синхроимпульсов, а о качестве изделия судят по наличию и амплитуде движущихся в соответствии с определенным соотношением на экране прибора импульсов.

Использование: для контроля средних параметров волокон в волоконной массе. Сущность: заключается в том, что подготавливают три пакета прочеса волокна: два пакета волокна, принятого за эталон, и один - контролируемого волокна, причем один пакет из эталонного волокна должен иметь количество слоев, обеспечивающий максимальное, а второй - обеспечивающий минимальное изменение акустического сигнала в диапазоне контроля, из пакетов эталонного и контролируемого волокна вырезают требуемое количество образцов заданного размера и конфигурации, все полученные образцы выдерживают необходимое время в одинаковых климатических условиях, закладывают в кассету с двумя ячейками, первая из которых служит для закладки эталонного образца, а вторая, имеющая акустически прозрачные крышки-обкладки воздушного конденсатора, для закладки контролируемого образца, закладывают в первую ячейку эталонный образец с максимальным количеством слоев, во вторую закладывают эталонный образец с минимальным количеством слоев, прозвучивают последовательно первую и вторую ячейки, калибруют диапазон контроля акустического сигнала, затем эталонное волокно из второй ячейки заменяют на контролируемое, прозвучивают, по показаниям импеданса и известной характеристике импеданса воздушного конденсатора от веса, полученный акустический сигнал нормируют по весу до нормативного, а результат находят как отношение сигналов через максимальный эталонный образец к сигналу через контрольный образец.
Использование: для контроля средних параметров волокон в волоконной массе. Сущность заключается в том, что волоконную массу заданного веса прочесывают, формируют в ленту, пропускают через фильеру, снабженную акустическими датчиками, и последовательно расположенные по направлению движения ленты, пластины воздушного конденсатора, отличающийся тем, что, с целью повышения точности, объективности и оперативности контроля датчики акустических колебаний и пластины воздушного конденсатора располагают взаимно перпендикулярно друг другу в плоскости, нормальной к направлению движения ленты, воздушный конденсатор включают в колебательный контур генератора акустических колебаний, подстройкой индуктивности в LC-контуре или резистора в RC-контуре добиваются требуемой опорной частоты генерируемых акустических колебаний на эталонном образце волоконной массы, пропускают через указанную систему акустических датчиков и конденсатора контролируемую волоконную массу в виде ленты, а о средних параметрах волокон судят по среднему акустическому сигналу и среднему отклонению частоты излучаемых колебаний от опорной по всей длине контролируемой ленты.

Использование: для выявления внутренних расслоений стенок труб. Сущность заключается в том, что осуществляют подготовку поверхности трубы к ультразвуковому контролю, сканирование ее ультразвуковым преобразователем, подключенным к прибору, и выявление мест расслоений по показаниям прибора, при этом на контролируемую поверхность наносят координатную сетку, выполняют измерения толщины стенки трубы в каждой ячейке координатной сетки последовательно двумя преобразователями с разными рабочими частотами, определяют наличие внутреннего расслоения на основании разности значений толщины стенки, регистрируемых в каждой ячейке координатной сетки двумя преобразователями, и изменения количества ячеек со значениями толщины, составляющими 20…80% от номинального значения толщины стенки трубы.

Использование: для ультразвуковой дефектоскопии. Сущность изобретения заключается в том, что щуп (2) расположен внутри отверстия (26) и проходит в аксиальном направлении (L).

Использование: для измерения остаточных напряжений в ободьях цельнокатаных железнодорожных колес. Сущность: заключается в том, что излучают в боковую стенку обода ультразвуковыми датчиками две акустические волны поперечной поляризации, направления колебаний в которых ориентированы в радиальном и окружном направлениях, измеряют время их распространения между боковыми стенками обода с последующим расчетом остаточных напряжений, при этом дополнительно из колеса той же партии, к которой относится исследуемое колесо, вырезают образец в виде секторной части обода и излучают в его боковую стенку две акустические волны поперечной поляризации, направления колебаний в которых ориентированы в радиальном и окружном направлениях, измеряют времена их распространения между боковыми гранями сектора обода и рассчитывают остаточные напряжения по соответствующему математическому выражению.

Изобретение относится к области неразрушающего контроля с помощью ультразвуковых (УЗ) волн для визуализации внутреннего строения объекта и обнаружения внутренних дефектов, в частности, в сварных стыках рельсов.

Изобретение относится к области диагностики состояния рельсовой колеи железнодорожного и трамвайного пути. .

Изобретение относится к неразрушающему контролю материалов и может быть использовано при ультразвуковой дефектоскопии железнодорожных рельсов и других длинномерных изделий.

Изобретение относится к неразрушающему контролю материалов и может быть использовано при ультразвуковой дефектоскопии железнодорожных рельсов и других длинномерных изделий.

Изобретение относится к железнодорожному транспорту, в частности к контрольно-регистрирующим приборам для определения состояния подвижного состава и рельсового пути, и предназначено для использования при научных исследованиях процессов взаимодействия пути и подвижного состава, а также оценки ожидаемого износа гребней бандажей колесных пар и рельсов в кривых.

Изобретение относится к железнодорожной автомашине, в частности к системам измерения, контроля и диагностики, и может быть использовано в устройствах для бесконтактного контроля геометрических параметров верхнего строения пути и ходовых частей подвижного состава.

Изобретение относится к технике испытаний и измерений, а именно к способу определения жесткости легкодеформируемых композитных, преимущественно кожевенных и текстильных, материалов и других волокнистых систем, и может быть использовано в легкой промышленности. Сущность: в качестве информативного параметра используют значение резонансной секундной частоты измеряемого образца, которую определяют путем возбуждения в образце вынужденных поперечных колебаний с частотой 0.1-20 Гц. Регистрируют квазирезонансный спектр собственных частот образца с его передачей в память процессора. Параметр жесткости материала с помощью процессора рассчитывают по формуле и сохраняют полученные результаты в виде базы данных на электронном носителе информации. Технический результат: расширение технологических возможностей способа, повышение его точности и обеспечение возможности формирования электронной базы данных, содержащей параметры жесткости для различных материалов, одновременно с определением жесткости. 1 ил.
Наверх