Стенд для испытания длинномерных образцов при многоточечном изгибе


 


Владельцы патента RU 2511712:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" (RU)

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит основание, опорный элемент в виде трубы, нагружатели, установленные на внутренней поверхности трубы, разъемные фиксаторы нагружателей на трубе и захваты, размещенные по длине образца и связанные с соответствующими нагружателями. Стенд дополнительно снабжен ударным механизмом, выполненным в виде электромагнитной катушки, якоря, взаимодействующего с катушкой, упругого элемента для возврата катушки в исходное положение, толкателя, соединенного с якорем, и ударника, закрепленного на толкателе с возможностью взаимодействия с поверхностью трубы. На трубе установлены торцевые заглушки, а труба заполнена наполнителем. Технический результат: приближение условий испытаний к реальным условиям работы длинномерных изделий путем обеспечения испытаний при нагружении длинномерного образца не только многоточечным статическим изгибом в разных направлениях, но и ударными радиальными или линейными волнами в одном или во встречных направлениях с изменением ориентации волн относительно радиальных направлений образца при распространении волн через реальную среду наполнителя. 5 з.п. ф-лы, 1 ил.

 

Изобретение относится к испытательной технике, к испытаниям на прочность.

Известен стенд для испытания длинномерных образцов при многоточечном изгибе (положительное решение по заявке №2010132527/28, кл. G01N 3/20, от 30.05 2011), содержащий основание, опорный элемент, нагружатели, разъемные фиксаторы установленные на каждом нагружателе, и захваты, размещенные по длине образца и связанные с соответствующими нагружателями.

Недостатком стенда является отсутствие возможности проводить испытания при статическом изгибе образца в разных направлениях и нагружении образца ударными волнами.

Известен стенд для испытания длинномерных образцов при многоточечном изгибе (положительное решение по заявке №2010132524/28, кл. G01N 3/20, от 30.05 2011), содержащий основание, опорный элемент, нагружатели, разъемные фиксаторы установленные на каждом нагружателе, и захваты, размещенные по длине образца и связанные с соответствующими нагружателями.

Недостатком стенда также является отсутствие возможности проводить испытания при статическом изгибе образца в разных направлениях и нагружении образца ударными волнами.

Известен стенд для испытания образцов материалов при многоточечном изгибе (положительное решение по заявке №2010139106/28, кл. G01N 3/20, от 07.07.2011), принимаемый за прототип. Стенд содержит основание, опорный элемент в виде трубы, нагружатели, установленные на внутренней поверхности трубы, разъемные фиксаторы нагружателей на трубе и захваты, размещенные по длине образца и связанные с соответствующими нагружателями.

Недостатком стенда также является отсутствие возможности проводить испытания при статическом изгибе образца в разных направлениях и нагружении образца ударными волнами.

Техническим результатом изобретения является приближение условий испытаний к реальным условиям работы длинномерных изделий путем обеспечения испытаний при нагружении длинномерного образца не только многоточечным статическим изгибом в разных направлениях, но и ударными радиальными или линейными волнами в одном или во встречных направлениях с изменением ориентации волн относительно радиальных направлений образца при распространении волн через реальную среду наполнителя.

Технический результат достигается тем, что стенд для испытания длинномерных образцов при многоточечном изгибе, содержащий основание, опорный элемент в виде трубы, нагружатели, установленные на внутренней поверхности трубы, разъемные фиксаторы нагружателей на трубе и захваты, размещенные по длине образца и связанные с соответствующими нагружателями, согласно изобретению снабжен ударным механизмом, выполненным в виде электромагнитной катушки, якоря, взаимодействующего с катушкой, упругого элемента для возврата катушки в исходное положение, толкателя, соединенного с якорем, и ударника, закрепленного на толкателе с возможностью взаимодействия с поверхностью трубы, при этом на трубе установлены торцевые заглушки, а труба заполнена наполнителем.

Технический результат достигается также тем, что стенд снабжен сменными инерционными грузами, связанными с ударником.

Технический результат достигается также тем, что стенд снабжен второй электромагнитной катушкой, закрепленной соосно первой катушке с противоположной стороны от якоря с возможностью взаимодействия с ним, скобой, одним концом соединенной с ударником и охватывающей трубу, вторым ударником, закрепленным на втором конце скобы оппозитно первому ударнику.

Технический результат достигается также тем, что ударник имеет шаровую форму.

Технический результат достигается также тем, что ударник выполнен в виде стержня, закрепленного на толкателе вдоль образующей трубы.

Технический результат достигается также тем, что стенд снабжен устройством для поворота трубы вокруг своей оси.

На рис.1 представлена схема стенда, вид сбоку (рис.1а) и сечение А-А вида сбоку (рис.1б).

Стенд для испытания длинномерных образцов при многоточечном изгибе содержит основание 1, опорный элемент в виде трубы 2, нагружатели 3, установленные на внутренней поверхности трубы, разъемные фиксаторы 4 нагружателей на трубе и захваты 5, размещенные по длине образца 6 и связанные с соответствующими нагружателями 3.

Стенд снабжен ударным механизмом, выполненным в виде электромагнитной катушки 7, якоря 8, взаимодействующего с катушкой, упругого элемента 9 для возврата катушки в исходное положение, толкателя 10, соединенного с якорем, и ударника 11, закрепленного на толкателе с возможностью взаимодействия с поверхностью трубы 2. На трубе 2 установлены торцевые заглушки 12, 13. Труба 2 заполнена наполнителем 14.

Стенд снабжен сменными инерционными грузами 15, связанными с ударником 11.

Стенд снабжен второй электромагнитной катушкой 16, закрепленной соосно первой катушке 7 с противоположной стороны от якоря 8 с возможностью взаимодействия с ним, скобой 17, одним концом соединенной с ударником 11 и охватывающей трубу 2, вторым ударником 18, закрепленным на втором конце скобы 17 оппозитно первому ударнику 11.

Ударник 11 может иметь шаровую форму.

Ударник 11 может быть выполнен в виде стержня (рис.1а), закрепленного на толкателе вдоль образующей трубы 2.

Стенд снабжен устройством 19 для поворота трубы 2 вокруг своей оси.

Труба 2 поворачивается вокруг своей оси в направляющих роликах 20 вместе с элементами, размещенными внутри трубы. Образец 6 может закрепляться на трубе 2 захватами 21, 22. Катушки и якорь располагаются в направляющей 23. Скоба 17 может располагаться на роликах 24. Нагружатели 3 выполнены гидравлическими и состоят из гидроцилиндров и поршней. Разъемные фиксаторы 4 нагружателей на трубе выполнены электромагнитными. Наполнитель 14 подбирается в соответствии с реальными условиями работы изделия, представленного образцом, например, для нефтяных и газовых труб реальной средой наполнителя является грунт, песчаная подушка и т.п. При необходимости при испытании трубчатого образца его нагружают внутренним давлением, осевой нагрузкой (соответствующие нагружатели имеют типовую конструкцию и на рисунке не показаны).

Стенд работает следующим образом.

Нагружателями 3 создают изгиб образца 6 в заданных направлениях и с заданными усилиями. Для испытаний при нагружении сосредоточенными ударами в одном направлении используют ударник 11 шаровой формы. Включают электромагнитную катушку 7, отчего якорь 8 перемещает толкатель 10 и ударником 11 наносит удар по трубе 2. Ударная волна распространяется от места нанесения удара радиально через наполнитель 14 на образец 6. При отключении катушки 7 упругий элемент 9 возвращает якорь 8 в исходное положение, после чего ударное нагружение может повторяться заданное число раз и с заданными интервалами между ударами. Для регулирования величины ударного импульса изменяют массу инерционного груза 15. Для нагружения образца 6 ударными волнами, распространяющимися во встречных направлениях, попеременно включают катушки 7 и 10 и с помощью скобы 17 используют ударники 11, 18. Для таких же испытаний, но с созданием линейных ударных волн, вместо шаровых ударников устанавливают ударники в виде стержней, ориентированных вдоль образующих поверхности трубы. Для изменения ориентировки направления распространения волн относительно радиальных направлений образца 6 устройством 19 поворачивают трубу 2 вместе с размещенными в ней элементами на заданный угол вокруг оси трубы. При необходимости проведения испытаний при дополнительном нагружении образца внутренним давлением или осевой нагрузкой дополнительно применяют соответствующие типовые нагружатели.

Стенд обеспечивает проведение испытаний в новых условиях - при нагружении длинномерного образца не только многоточечным статическим изгибом в разных направлениях, но и ударными радиальными или линейными волнами в одном или во встречных направлениях с изменением ориентации волн относительно радиальных направлений образца при распространении волн через реальную среду наполнителя, что приближает условия испытаний к реальным условиям работы изделий типа нефтегазовых труб.

1. Стенд для испытания длинномерных образцов при многоточечном изгибе, содержащий основание, опорный элемент в виде трубы, нагружатели, установленные на внутренней поверхности трубы, разъемные фиксаторы нагружателей на трубе и захваты, размещенные по длине образца и связанные с соответствующими нагружателями, отличающийся тем, что он снабжен ударным механизмом, выполненным в виде электромагнитной катушки, якоря, взаимодействующего с катушкой, упругого элемента для возврата катушки в исходное положение, толкателя, соединенного с якорем, и ударника, закрепленного на толкателе с возможностью взаимодействия с поверхностью трубы, при этом на трубе установлены торцевые заглушки, а труба заполнена наполнителем.

2. Стенд по п.1, отличающийся тем, что он снабжен сменными инерционными грузами, связанными с ударником.

3. Стенд по п.1, отличающийся тем, что он снабжен второй электромагнитной катушкой, закрепленной соосно первой катушке с противоположной стороны от якоря с возможностью взаимодействия с ним, скобой, одним концом соединенной с ударником и охватывающей трубу, вторым ударником, закрепленным на втором конце скобы оппозитно первому ударнику.

4. Стенд по п.1, отличающийся тем, что ударник имеет шаровую форму.

5. Стенд по п.1, отличающийся тем, что ударник выполнен в виде стержня, закрепленного на толкателе вдоль образующей трубы.

6. Стенд по п.1, отличающийся тем, что он снабжен устройством для поворота трубы вокруг своей оси.



 

Похожие патенты:

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд для испытания образцов материалов при многоточечном изгибе содержит раму, опорный элемент в виде трубы, направляющие, установленные на внутренней поверхности трубы, разъемные фиксаторы направляющих на трубе, нагружатели в виде гидроцилиндра с плунжером, установленные на каждой направляющей, и захваты, размещенные по длине образца и связанные с соответствующими нагружателями.

Изобретение относится к технике измерений параметров кабелей и может быть использовано для измерения жесткости оптических кабелей с высокой прочностью на разрыв при низких температурах.

Изобретение относится к механическим испытаниям газотермических покрытий, а более точно касается определения остаточных напряжений в покрытии и энергии, необходимой для их высвобождения.

Изобретение относится к испытательной технике и может быть использовано в стандартных испытательных машинах для испытания металлических образцов на сжатие без потери устойчивости.

Изобретение относится к испытательной технике и может быть использовано при испытании на релаксацию напряжения облученных металлических образцов при четырехточечном изгибе.

Изобретение относится к испытательной технике, к испытаниям на прочность. .

Изобретение относится к испытательной технике и может быть использовано при испытании на релаксацию напряжения металлических образцов при изгибе. .

Изобретение относится к области определения механических свойств материалов путем приложения заданных нагрузок. .

Изобретение относится к технике испытаний конструкций на динамические воздействия. .

Изобретение относится к механическим нагрузочным устройствам и может быть использовано для нагружения поверхностей образцов чистым изгибом и определения полей деформаций и напряжений в экспериментальных исследованиях лабораторных макетов и натурных объектов.

Группа изобретений относится к области метрологии, а именно к средствам получения чистого изгиба эталонной балки для испытаний тензодатчиков. Устройство содержит станину, установленную в ней эталонную балку с системой измерения деформаций, систему нагружения балки с контактными роликами и движителем. Станина выполнена в виде стойки с закрепленной на ней горизонтальной распорной балкой, по концам которой установлены цилиндрические шарниры, служащие осями подвеса двух вертикально расположенных симметричных рычагов, нижние концы рычагов шарнирно соединены посредством противоположно направленных соосных тяг с общим для них дифференциальным «плавающим» движителем. В верхней части каждого рычага попарно сверху и снизу от эталонной балки установлены четыре опорных ролика. Между роликами и эталонной балкой, также сверху и снизу, размещены «подушки» в виде плоских пластин с полуцилиндрическими выступами на противоположных краях, контактирующих с эталонной балкой непосредственно по образующим цилиндрических поверхностей этих выступов, а точки контакта опорных роликов с плоскими сторонами пластин-«подушек» попарно находятся на соответствующих нормалях к плоской поверхности пластин-«подушек». Технический результат: получение чистого изгиба балки с повышенной степенью точности достижения необходимой относительной деформации, снижение прилагаемых усилий для получения необходимой деформации, а также уменьшение габаритов и массы стенда. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области испытаний строительных материалов и конструкций, а именно к технике контроля качества материалов и исследования их деформативных свойств. Устройство для контроля прочности железобетонных конструкций включает силовую раму из штанг и закрепленных на ней с помощью гаек ригелей, траверсу с центрирующими опорами, гидравлический домкрат. Устройство также содержит дополнительный ригель, дополнительную траверсу, грузовую консоль с уровнем и страховочные рейки, прикрепленные к неподвижным ригелям. При этом дополнительный ригель расположен между неподвижными верхним и нижним ригелями с возможностью перемещения при малых усилиях посредством гаек и упорных подшипников, расположенных между верхней гайкой и ригелем, а при больших - с помощью установленного на нем домкрата, причем один конец грузовой консоли расположен между траверсами, а второй - оснащен грузовой платформой. Причем для испытания балок на поперечный изгиб один образец укладывается на нижний ригель, а второй - на верхнюю траверсу с опорой на дополнительный ригель через центрирующие опоры, расположенные с расчетным эксцентриситетом. Техническим результатом является получение достоверных результатов при проведении испытаний образцов на поперечный изгиб или продольное сжатие при различных схемах нагружения как при длительных, так и кратковременных, в том числе и при длительных испытаниях на ползучесть. 1 з.п. ф-лы, 2 ил.

Изобретение относится к испытательной технике, к установкам для испытания образцов материалов на изгиб. Установка содержит основание, установленную на нем поворотную платформу, захват образца, закрепленный на платформе, два центробежных груза, предназначенные для закрепления на концах образца, привод вращения платформы, включающий вал с приводом вращения, пару катков, установленных с эксцентриситетом по разные стороны от оси вращения платформы и предназначенных для фрикционного взаимодействия с ней, один из которых установлен на валу. Установка дополнительно снабжена вторым валом, установленных соосно первому валу, и приводом вращения второго вала, при этом второй каток установлен на втором валу. Технический результат: расширение функциональных возможностей установки путем обеспечения испытаний как при знакопеременном изгибе в двух плоскостях, так и при знакопеременном изгибе в одной плоскости и знакопостоянном изгибе во второй плоскости, а также при круговом изгибе и круговом изгибе с растяжением. 1 ил.

Изобретение относится к области строительства, а именно к механическим испытаниям материалов, в частности к способам испытания строительных конструкций, и может быть использовано для испытания балочных конструкций на изгиб. Сущность: на образец прикладывают регулируемую циклическую нагрузку и по скорости нагружения или скорости разгружения, и по ее величине, выбранные параметры нагрузки выдерживают на заданном промежутке времени. Диапазон и место приложения нагрузок регулируют устройством нагружения и силовым устройством, а прочностные и деформационные параметры испытываемой конструкции измеряют в заданном интервале времени. Установка содержит закрепленные в силовом полу опоры для размещения испытываемого образца, устройство нагружения с силовым устройством. Устройство нагружения выполняют в виде, по меньшей мере, одного рычага, а силовое устройство выполняют в виде грузовой емкости, которую размещают на каждом рычаге устройства нагружения и выполняют с возможностью заполнения ее жидкостью. Технический результат: возможность оценить прочностные и эксплуатационные параметры изгибаемых строительных конструкций в реальных режимах изменения нагрузок при эксплуатации после полной и частичной разгрузки. 2 н. и 3 з.п. ф-лы, 2 ил.

Изобретение относится к испытательной технике, к испытаниям на прочность. Установка содержит основание, установленные на нем соосно торцевые и центральный захваты с общей осью вращения и отверстиями для образца, привод вращения торцевых захватов, толкатель, одним концом связанный с центральным захватом, и нагружатель, соединенный с другим концом толкателя. Отверстия в захватах имеют некруглое сечение и выполнены в соответствии с сечением образца. Технический результат: увеличение объема информации путем проведение испытаний при одноцикловом и двухцикловом нагружении изгибом с постоянным соотношением усилий в продольных сечениях образца. 1 з.п. ф-лы, 1 ил.

Изобретение относится к испытательной технике, а именно к способам испытаний плоских образцов на изгиб. Сущность: концы образцов закрепляют на опоре, выполненной в виде замкнутой рамы с двумя подвижными распорками. Изгибают образцы и определяют величину прогиба в условиях сложного изгиба. При этом коэффициент распора в процессе нагружения является переменным. Технический результат: возможность проводить испытания в условиях сложного изгиба с переменным в процессе погружения коэффициентом распора, что дает возможность выполнять экспериментальные исследования накопления остаточных прогибов в пластинах обшивки корпусов судов в процессе эксплуатации. 3 ил.

Изобретение относится к технике испытаний протяженных объектов с переменной по длине жесткостью. Сущность: объект консольно закрепляют на силовой колонне и с помощью механического кривизномера измеряют кривизну отдельных его участков, средние сечения которых располагаются в заданных расчетных сечениях, при изгибе объекта под действием заданной нагрузки, приложенной к свободному его концу. Кривизну отдельных участков, расположенных в различных сечениях по длине объекта, измеряют путем последовательной перестановки кривизномера от сечения к сечению по реперным шайбам, сначала в исходном деформированном состоянии при изгибе под действием некоторой начальной нагрузки, а затем при изгибе после приложения заданной дополнительной нагрузки. Вычисляют кривизну каждого участка, соответствующую изгибающему моменту от заданной нагрузки, как разность значений кривизны, измеренной кривизномером в двух указанных деформированных состояниях объекта, и определяют изгибную жесткость в расчетном сечении как частное от деления изгибающего момента в среднем сечении участка на измеренную кривизну, умноженное на поправочный коэффициент, который предварительно находят расчетным способом по известным функциям распределения номинальных изгибных жесткостей объекта и изгибающих моментов, задаваемых при испытании, как отношение номинального значения средней кривизны участка к номинальному значению кривизны в среднем его сечении. Технический результат: повышение точности и снижение трудоемкости. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области строительства и предназначено для контроля жесткости балок, изготовленных из материала, обладающего физически нелинейными свойствами (в частности, железобетонных балок), и нагруженных равномерно распределенной нагрузкой. Согласно заявленному способу изготавливают для определенного типа балок из физически нелинейного материала эталонную конструкцию с соблюдением всех технологических требований по качеству. Определяют в указанной конструкции основную или первую резонансную частоту колебаний ω0. Нагружают конструкцию ступенчато возрастающей равномерно распределенной нагрузкой, измеряют максимальный прогиб w0 на каждом этапе нагружения и по результатам испытаний эталонной балки строят аппроксимирующую функцию По этой зависимости при контроле жесткости серийно выпускаемых балок определенного типа определяют значение параметра К, соответствующего заданной контрольной нагрузке q0. Технический результат − расширение технологических возможностей неразрушающего способа контроля жесткости балок, изготовленных из материала, обладающего физически нелинейными свойствами. 1 табл., 3 ил.

Изобретение относится к области испытательной техники, а именно к устройствам для определения упругих характеристик материалов при изгибе, и может быть использовано для определения зависимости модуля упругости конструкционных материалов как от температуры, так и от величины изгибающих напряжений. Устройство содержит помещенный в муфельную печь, оснащенную системой регулирования температуры, опорный столик с призматическими опорами, нагружающий механизм. Нагружающий механизм со стороны приложения нагрузки содержит набор калиброванных разновесов, а со стороны опорного столика нагрузочную скобу, снабженную опорными призматическими выступами, непосредственно контактирующими с испытуемым образцом. Технический результат: повышение точности измерений модуля упругости, расширение функциональных возможностей устройства и снижение трудоемкости процесса испытаний. 2 ил.

Изобретение относится к области машиностроения и авиационно-космической отрасли промышленности и может быть использовано при проведении наземных испытаний оболочек типа тел вращения. Заявленный способ испытания на прочность оболочки типа тела вращения включает нагружение установленной на платформе оболочки поперечной силой. Нагружение оболочки поперечной силой осуществляют посредством вращения платформы вокруг неподвижной оси параллельной оси симметрии оболочки с установленными на ее внешней поверхности инерционными элементами, при этом масса инерционного элемента выбирается из условия: Δ m i = M i ω 2 ⋅ R ⋅ h i − m i , где Δmi - масса i-го инерционного элемента; Mi - расчетное значение изгибающего момента в i-ой части оболочки; mi - масса i-ой части оболочки, на которой расположен i-ый инерционный элемент; ω - угловая скорость вращения оболочки; R - расстояние от оси симметрии оболочки до неподвижной оси вращения платформы; hi - расстояние от i-ой части оболочки до плоскости вращения платформы. Технический результат − повышение точности воспроизведения изгибающего момента по высоте оболочки, когда расчетное распределение имеет нелинейный характер. 2 ил.
Наверх