Теплотрубный винтовой нагнетатель

Изобретение относится к теплоэнергетике и может быть использовано для утилизации вторичных энергоресурсов и низкопотенциальной энергии природных источников. Технический результат достигается в теплотрубном винтовом нагнетателе, включающем испарительную, рабочую и конденсационную камеры, расположенные в одном цилиндрическом корпусе, внутренние поверхности верхней и нижней торцевых стенок которого соприкасаются фитилем, проходящим по центральной оси корпуса, покрытым обечайкой с образованием зазоров у верхней и нижней торцевых стенок. В испарительной и конденсационной камерах расположены направляющие пластины, соединенные с рабочей камерой, между корпусом и испарительной и конденсационной камерами существуют кольцевые зазоры, образующие горячую и холодную кольцевые рубашки с выпускными окнами. Внутренняя поверхность торцевых и боковых стенок испарительной и конденсационной камер покрыта решеткой, выполненной из тонких полос пористого материала. Рабочая камера выполнена с винтовой канавкой на наружной поверхности и соединена с испарительной и конденсационной камерами через кольцевые уплотнения, ее наружный корпус снабжен всасывающим и нагнетательным патрубками. Изобретение направлено на повышение эффективности теплотрубного винтового нагнетателя. 5 ил.

 

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для утилизации вторичных тепловых энергоресурсов и низкопотенциальной тепловой энергии природных источников, а именно трансформации тепловой энергии в механическую для перемещения и нагнетания жидкостей (газов).

Известно устройство - винтовой насос, содержащий статор (корпус), с впускным (всасывающим) и выпускным (нагнетательным) каналами (патрубками), размещенный в статоре ротор с винтовой канавкой [А.с. СССР №470658, мкл. F04D 3/02, 1975].

Основными недостатками известного устройства являются невозможность утилизации низкопотенциальных вторичных тепловых энергоресурсов, тепловых ресурсов природных источников, что сужает область применения и снижает его эффективность.

Более близким к предлагаемому изобретению является винтовой насос, являющийся составной частью коаксиального теплотрубного двигателя, содержащего последовательно расположенные испарительную камеру, находящуюся в контакте с горячей средой, рабочую камеру, конденсационную камеру, находящуюся в контакте с холодной средой, соединенные между собой кольцевым уплотнением, при этом испарительная и конденсационная камеры выполнены в форме цилиндрических колпаков, внутренние боковые стенки которых покрыты фитилем, соединенным с решеткой, выполненной из тонкого слоя пористого материала, покрывающей внутреннюю поверхность торцевых стенок, рабочая камера выполнена в форме цилиндрической трубы, внутри ее устроены коаксиально, друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к ее внутренней поверхности, конденсационная камера состоит из обоймы (корпуса), закрывающей винтовую поверхность рабочей камеры, образуя винтовой питательный насос и конденсационные зоны [Патент РФ №2320878, мкл. F01K 17/00, 2008].

Основными недостатками известного устройства являются использование для теплообмена только поверхности торцевых стенок, что снижает его производительность и невозможность его использования непосредственно для перекачки и нагнетания жидкостей и газов, что сужает область его применения и, в конечном счете, снижает его эффективность.

Техническим результатом, на решение которого направлено предлагаемое изобретение, является повышение эффективности теплотрубного винтового нагнетателя.

Технический результат достигается в теплотрубном винтовом нагнетателе, который содержит последовательно расположенные в одном цилиндрическом корпусе испарительную, рабочую и конденсационную камеры, в котором верхние и нижние торцевые стенки снабжены верхними и нижними впускными отверстиями, внутренние поверхности торцевых стенок соприкасаются с фитилем, проходящим по центральной оси корпуса и покрытым обечайкой с образованием зазоров у верхней и нижней торцевых стенок, причем в испарительной и конденсационной камерах верхние и нижние кромки цилиндрических стенок соединены с внутренней поверхностью верхней и нижней торцевой стенок корпуса с образованием горячей и холодной кольцевых рубашек между цилиндрическими стенками испарительной и конденсационной камер и стенкой цилиндрического корпуса, которые снабжены верхними и нижними выпускными окнами, соответственно, внутренняя поверхность цилиндрических и торцевых стенок в испарительной и конденсационной камерах покрыты решеткой, выполненной из тонких полос пористого материала, примыкающей в центре верхней и нижней торцевых стенок к верхней и нижней кромкам фитиля, цилиндрическая рабочая камера соединена через верхнее и нижнее кольцевые уплотнения с нижней кромкой цилиндрической стенки испарительной камеры и верхней кромкой конденсационной камеры, соответственно, внутри рабочей камеры устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными и внутренними кромками лопастей к ее стенке и обечайке фитиля по нормали к ним, а ее наружная поверхность снабжена винтовой канавкой, к наружной поверхности верхнего и нижнего кольцевых уплотнений рабочей камеры прикреплены верхние и нижние направляющие пластины, расположенные в полостях горячей и холодной кольцевых рубашек, при этом часть корпуса, покрывающая винтовую канавку рабочей камеры образует винтовой нагнетатель, снабжена всасывающим и нагнетательным патрубками и отделена от горячей и холодной кольцевых рубашек верхней и нижней кольцевыми перегородками, соединенными своими наружными кромками с внутренней поверхностью неподвижного цилиндрического корпуса, а внутренними кромками через кольцевые уплотнения с рабочей камерой.

На фиг.1 представлен общий вид предлагаемого теплотрубного винтового нагнетателя (ТТВН), на фиг.2-5 - разрезы и узлы.

ТТВН содержит цилиндрический корпус 1, в котором верхние и нижние торцевые стенки 2 снабжены верхними и нижними впускными отверстиями 3, расположенными по окружности на их периферии, а их внутренние поверхности соприкасаются с фитилем 4, проходящим по центральной оси корпуса 1 и покрытым обечайкой 5 с образованием зазоров 6, 7 у верхней и нижней торцевых стенок 2. По ходу движения пара внутри корпуса 1 расположены: испарительная камера 8, верхние кромки цилиндрической стенки 9 которой соединены с внутренней поверхностью верхней торцевой стенки 2 с образованием горячей кольцевой рубашки 10 между наружной поверхностью цилиндрической стенки 9 и внутренней поверхностью стенки цилиндрического корпуса 1, снабженной выпускными окнами 11, внутренняя поверхность цилиндрической стенки 9 и верхней торцевой стенки 2 в испарительной камере 8 покрыты решетками 12, выполненными из тонких полос пористого материала, примыкающей в центре верхней торцевой стенки 2 к фитилю 4 (расстояние между полосами решетки 12 и верхней кромкой фитиля 4 принимают равным диаметру его пор); цилиндрическая рабочая камера 13, соединенная с нижней кромкой цилиндрической стенки 9 испарительной камеры 8 через верхнее кольцевое уплотнение 14, внутри которой устроены коаксиально друг за другом силовые турбины 15, жестко закрепленные периферийными и внутренними кромками лопастей к внутренней поверхности стенки рабочей камеры 13 и наружной поверхности обечайки 5 фитиля 4 по нормали к ним, снабженная на наружной поверхности винтовой канавкой 16; конденсационная камера 17, соединенная с нижней кромкой цилиндрической рабочей камеры 13 через нижнее кольцевое уплотнение 14, нижние кромки цилиндрической стенки 18 которой соединены с внутренней поверхностью нижней торцевой стенки 2 корпуса 1 с образованием между ними и внутренней поверхностью стенки цилиндрического корпуса 1 холодной кольцевой рубашки 19 с выпускными окнами 20, причем внутренняя поверхность цилиндрической стенки 18 и нижней торцевой стенки 2 конденсационной камеры 17 покрыты решетками 12, выполненными из тонких полос пористого материала, примыкающей в центре нижней торцевой стенки 2 к фитилю 4 (расстояние между полосами решетки 12 и фитилем 4 принимают равным диаметру его пор); при этом к наружной поверхности верхнего и нижнего кольцевых уплотнений 14 рабочей камеры 13 прикреплены верхние и нижние направляющие пластины 21, расположенные в полостях горячей и холодной кольцевых рубашках 10 и 19. Часть корпуса 1, покрывающая винтовую канавку 16 рабочей камеры 13, образует винтовой нагнетатель 22 и снабжена всасывающим 23 и нагнетательным 24 патрубками и отделена от горячей и холодной кольцевых рубашек 10 и 19 верхним и нижним кольцевыми перегородками 25 и 26, соединенными своими наружными кромками с внутренней поверхностью неподвижного корпуса 1, а внутренними кромками через кольцевые уплотнения 27 и 28 с рабочей камерой 13, причем кольцевые уплотнения 27 и 28 прикреплены к наружной поверхности стенки у верхней и нижней кромок рабочей камеры 13, а всасывающий и нагнетательный патрубок 23, 24 устроены вблизи горячей и холодной кольцевых рубашек 10 и 19, соответственно.

Предлагаемый ТТВН работает следующим образом. Перед началом работы из камер 8, 13, 17 ТТВН удаляют воздух и заполняют фитиль 4, пористый материал решеток 12 рабочей жидкостью, которую выбирают в зависимости от температурного потенциала холодной и горячей сред (штуцера для удаления воздуха и подачи рабочей жидкости на фиг.1-5 не показаны). При этом в результате малого расстояния (длиной. равной диаметру капилляров фитиля 4) между верней и нижней кромками фитиля 4 и полосами пористого материала решетки 12, происходит образование капиллярных каналов между ними, по которым рабочая жидкость способна перемещаться за счет капиллярных сил. Далее ТТВН устанавливают таким образом, чтобы испарительная камера 8 контактировала с горячей средой, а конденсационная камера 17 с холодной, и жестко фиксируют корпус 1, в результате чего также жестко фиксируются испарительная и конденсационная камеры 8 и 17. При нагреве неподвижной испарительной камеры 8 (ее теплообменная поверхность увеличена по сравнению с известным устройством за счет использования в процессе теплообмена наряду с поверхностью верхней торцевой стенки 2 поверхности цилиндрической стенки 9 испарительной камеры 8) скорость теплообмена с горячей средой возрастает также за счет наличия в пространстве горячей кольцевой рубашке 10 направляющих пластин 21, которые, вращаясь вместе с корпусом рабочей камеры 13, засасывают горячую среду через верхние впускные отверстия 3, сообщают ей турбулентное движение у поверхности боковой и верхней торцевой стенок камеры 8 и выбрасывают ее через выпускные окна 11 наружу. В результате нагрева испарительной камеры 8 происходит интенсивное испарение рабочей жидкости с внутренней поверхности верхней торцевой стенки 2 и цилиндрической стенки 9, которая поступает из вращающегося фитиля 4 в пористый материал решетки 12 в результате образования между ними временных капиллярных каналов и воздействия на жидкость центробежной силы, возникающей из-за вращения фитиля 4, причем решетка 12 предотвращает образование паровой пленки на внутренней поверхности камеры 8 и, таким образом, интенсифицирует процесс испарения [Тепловые трубы и теплообменники: от науки к практике. Сборник научн. тр. - М., 1990, с.22]. Образовавшийся пар поступает в рабочую камеру 13 на лопатки последовательно расположенных силовых турбин 15, вращает ее корпус и, соответственно, сообщает вращательное движение винтовой канавки 16. В результате вращения корпуса рабочей камеры 13 в винтовую канавку 16 из всасывающего патрубка 23 поступает перемещаемая жидкость (газ), которой сообщается требуемое давление и через нагнетательный патрубок 24 подается в напорный трубопровод (на фиг.1-5 не показан) и далее к потребителю. В рабочей камере 13 происходит изоэнтропное теплопадение пара с одновременным снижением его температуры и давления [И.Н.Сушкин. Теплотехника. - М.: Металлургия, 1973, с.331], после чего отработавший мятый пар поступает в неподвижную конденсационную камеру 17. При охлаждении конденсационной камеры 17 (теплообменная поверхность которой увеличена по сравнению с известным устройством за счет использования в процессе теплообмена наряду с поверхностью нижнего торца 3 части поверхности цилиндрической стенки ее корпуса 18) скорость теплообмена с холодной средой возрастает также за счет наличия в полости холодной кольцевой рубашки 19 направляющих пластин 21, которые, вращаясь вместе с корпусом рабочей камеры 13, засасывают холодную среду через нижние впускные отверстия 3, сообщают турбулентное движение холодной среде у поверхности цилиндрической и торцевой стенок камеры 17 и выбрасывают ее через выпускные окна 20 наружу. При охлаждении конденсационной камеры 17 происходит интенсивная конденсация рабочей жидкости на ее внутренней поверхности, которая поступает во вращающийся фитиль 4 из пористого материала капиллярных потоков жидкости в фитиле 4 в сторону испарительной камеры 8. В камере 8 рабочая жидкость поступает из фитиля 4 в пористый материал решетки 12, после чего происходит вышеописанный процесс испарения и далее цикл повторяется. При этом размещение всасывающего патрубка 23 вблизи горячей кольцевой рубашки 10 и кольцевого уплотнения 27 позволяет проводить процесс охлаждения уплотнения 27 перекачиваемой жидкостью (газом), которая на входе, как правило, имеет невысокую температуру, а охлаждение кольцевого уплотнения 28 осуществляется холодной средой при ее контакте с ним через кольцевую перегородку 26 перед удалением через выпускные окна 20.

Таким образом, предлагаемый ТТВН обеспечивает возможность транспортировки жидкостей (газов) и создания в них давления за счет утилизации вторичных тепловых энергоресурсов различного потенциала (энергии сбросных вод, отходящих газов и т.д.), тепловых ресурсов природных источников (энергии солнца, воды и т.д.), что обеспечивает его высокую эффективность.

Теплотрубный винтовой нагнетатель, включающий последовательно расположенные испарительную, рабочую и конденсационную камеры, соединенные между собой через кольцевые уплотнения, снабженные фитилем, частично покрытым обечайкой с образованием зазоров у верхней и нижней торцевых стенок и проходящим по их центральной оси, в котором внутренняя поверхность торцевых стенок испарительной и конденсационной камер покрыта решетками, выполненными из полос пористого материала, рабочая камера снабжена винтовой канавкой на ее наружной поверхности и покрыта корпусом с нагнетательным и всасывающим патрубками, внутри ее устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности ее стенки, отличающийся тем, что испарительная, рабочая и конденсационная камеры расположены внутри одного цилиндрического корпуса, в котором верхние и нижние торцевые стенки снабжены верхними и нижними впускными отверстиями, внутренние поверхности торцевых стенок соприкасаются с фитилем, в испарительной и конденсационной камерах верхние и нижние кромки цилиндрических стенок соединены с внутренней поверхностью верхней и нижней торцевой стенок корпуса, образуя горячую и холодную кольцевые рубашки между цилиндрическими стенками испарительной и конденсационной камер и стенкой цилиндрического корпуса, которые снабжены верхними и нижними выпускными окнами, соответственно, внутренние поверхности цилиндрических стенок в испарительной и конденсационной камерах покрыты решетками, выполненными из тонких полос пористого материала, соединенными с вышеупомянутыми решетками верхней и нижней торцевых стенок, которая примыкает в центре верхней и нижней торцевых стенок к верхней и нижней кромкам фитиля, к наружной поверхности верхнего и нижнего кольцевых уплотнений рабочей камеры прикреплены верхние и нижние направляющие пластины, расположенные в полостях горячей и холодной кольцевых рубашек, при этом часть корпуса, покрывающая винтовую канавку рабочей камеры и образующая винтовой нагнетатель, отделена от горячей и холодной кольцевых рубашек верхним и нижним кольцевыми перегородками, соединенными своими наружными кромками с внутренней поверхностью неподвижного цилиндрического корпуса, а внутренними кромками через кольцевые уплотнения с рабочей камерой.



 

Похожие патенты:

Изобретение относится к энергетике. Система теплоснабжения включает теплогенератор, утилизационную установку, потребителя, прямую магистраль, по которой нагретая в теплогенераторе вода подается потребителю, обратную магистраль, по которой охлажденная вода транспортируется к теплогенератору, обратный клапан, мембранный насос, мембранный нагнетатель и ударный узел.

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. .

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. .

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. .

Изобретение относится к теплоэнергетике и может быть использовано на электростанциях при эксплуатации теплофикационных турбоустановок с промежуточным перегревом пара.

Изобретение относится к области теплоэнергетики. .

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электрических станциях. .

Изобретение относится к теплоэнергетике. .

Изобретение относится к области теплоэнергетики и может быть использовано в теплоэнергетических установках. .

Изобретение относится к энергетике. Энергетическая установка, работающая на органическом топливе, включает в себя котельный агрегат, установленную следом за котельным агрегатом через горячий трубопровод промежуточного перегрева паровую турбину и устройство для отделения диоксида углерода, причем устройство для отделения диоксида углерода через трубопровод технологического пара соединено с горячим трубопроводом промежуточного перегрева котельного агрегата. При этом в трубопровод технологического пара включена паровая турбина, работающая с противодавлением. Изобретение позволяет предотвратить несимметричную нагрузку энергетического процесса и минимизировать потери энергии. 2 н.и 6 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике. Способ дооборудования энергоустановки, работающей на ископаемом топливе, содержащей многокорпусную паровую турбину и конденсатор, устройством отделения диоксида углерода, при котором поглощающая способность паровой турбины согласуется с технологическим паром, отбираемым для работы устройства отделения диоксида углерода, и устройство отделения диоксида углерода посредством паропровода присоединяется к соединяющему два корпуса паровой турбины перепускному трубопроводу. Изобретение позволяет создать недорогой способ дооборудования устройством отделения диоксида углерода, который предотвращает замену ступени низкого давления паровой турбины и обеспечивает отбор пара низкого давления из перепускного трубопровода так, что это не приводит к падению давления на ступени низкого давления. 2 н. и 3 з. п. ф-лы, 2 ил.

Изобретение относится к энергетике. Тепловая электрическая станция, содержащая конденсатор паровой турбины, декарбонизатор с воздуховодом, систему оборотного водоснабжения, включающую градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, причём ороситель градирни выполнен в виде модуля из слоев полимерных ячеистых труб, трубы выполнены цилиндрическими, размещены во всех слоях параллельно друг другу и сварены по торцам модуля между собой в местах соприкосновения, при этом полости каждой из труб и межтрубное пространство заполнены полыми полимерными шарами, причем диаметр шаров на 5÷10% больше максимального размера ячейки труб, а разбрызгивающие сопла вытяжной башни градирни выполнены в виде форсунки с распылительным диском. Изобретение позволяет повысить экономичность тепловой электрической станции. 3 з.п. ф-лы, 7 ил.

Изобретение относится к энергетике. Способ работы тепловой электрической станции, по которому в котле вырабатывают пар, подают его в турбину, пар отборов турбины используют для нагрева сетевой воды в нижнем и верхнем сетевых подогревателях, подпиточную воду деаэрируют в деаэраторе, для чего в деаэратор подают десорбирующий агент, который с выделившимися газами удаляют из деаэратора, а деаэрированную подпиточную воду направляют в обратный сетевой трубопровод перед нижним сетевым подогревателем, в качестве десорбирующего агента в деаэраторе используют газ, подаваемый в горелки котла. Изобретение позволяет повысить экономичность тепловой электрической станции путем исключения затрат пара на деаэрацию и снижения температуры подпиточной воды теплосети. 1 ил.

Изобретение относится к энергетике. Тепловая электрическая станция, содержащая паровой котел, теплофикационную турбину с отборами пара, подключенными к регенеративным подогревателям, деаэратор добавочной питательной воды с подключенными к нему трубопроводом исходной воды и патрубками подвода и отвода десорбирующего агента, бак-аккумулятор деаэратора, связанный трубопроводом деаэрированной добавочной питательной воды с трубопроводом основного конденсата турбины, патрубки подвода и отвода десорбирующего агента деаэратора добавочной питательной воды включены в газопровод, подключенный к горелкам котла, а трубопровод деаэрированной добавочной питательной воды подключен к трубопроводу основного конденсата турбины перед охладителем основных эжекторов и охладителем пара уплотнений турбины. Изобретение позволяет повысить экономичность тепловой электрической станции путем исключения затрат пара на деаэрацию и эффективного охлаждения охладителя основных эжекторов и охладителя пара уплотнений турбины. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электрических станциях. Тепловая электрическая станция, содержащая турбину с отопительными отборами пара, подключенными к нижнему и верхнему сетевым подогревателям, включенным по нагреваемой среде между обратным и подающим сетевыми трубопроводами, вакуумный деаэратор с трубопроводом исходной воды, в который включен подогреватель исходной воды, бак-аккумулятор, подключенный трубопроводом деаэрированной воды к вакуумному деаэратору и трубопроводом подпиточной воды через подпиточный насос к обратному сетевому трубопроводу перед нижним сетевым подогревателем. Трубопровод деаэрированной подпиточной воды между подогревателем исходной воды и регулятором подпитки теплосети соединен со сливным трубопроводом между вакуумным деаэратором и баком-аккумулятором трубопроводом-перемычкой, в который включен регулирующий орган регулятора расхода, соединенного с датчиком расхода, установленным на трубопроводе деаэрированной подпиточной воды между насосом подпитки теплосети и регулятором подпитки теплосети. Изобретение позволяет повысить надежность теплофикационной установки, обеспечить стабильный нагрев исходной воды перед вакуумным деаэратором. 1 ил.

Изобретение относится к энергетике. Паротурбинная электростанция содержит некоторое количество парциальных турбин, соответственно с возможностью прохождения через них пара, перепускной трубопровод, расположенный между первой парциальной турбиной и второй парциальной турбиной, и промежуточный пароперегреватель в перепускном трубопроводе. При этом к первой парциальной турбине, после ступени расширения, перед промежуточным пароперегревателем гидравлически подключена линия отбора для отбора пара. Кроме того, предусмотрено расширительное устройство, в которое впадает линия отбора, а потребитель подключен посредством паропровода технологического пара к расширительному устройству. Изобретение позволяет обеспечить потребителя высоким расходом пара при возможно более низких издержках и более высоком коэффициенте полезного действия. 9 з.п. ф-лы, 4 ил.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизацию низкопотенциальной теплоты обратной сетевой воды осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. Изобретение позволяет обеспечить повышение коэффициента полезного действия тепловой электрической станции за счет полного использования сбросной теплоты и обеспечить повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, в тепловой электрической станции используют теплообменник-охладитель сетевой воды, который устанавливают на обратном трубопроводе сетевой воды, а также конденсационную установку, имеющую конденсатор второй паровой турбины, и дополнительно осуществляют утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в первой турбине пара, утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. В качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения. В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8. Изобретение позволяет утилизировать тепло и осуществить дополнительную выработку электрической энергии. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего подогревателей, утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. В качестве низкокипящего рабочего тела используют сжиженный углекислый газ СО2. Изобретение позволяет повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду. 2 з.п. ф-лы, 1 ил.
Наверх