Система охлаждения камеры жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям.

В системе охлаждения камеры жидкостного ракетного двигателя, содержащей цилиндрическую камеру сгорания и сопло, содержащее, в свою очередь, сужающуюся и расширяющуюся части и критическое сечение между ними, выполненные в виде наружной оболочки, внутренней оболочки с основными ребрами постоянной толщины, образующими тракт охлаждения, согласно изобретению на внутренней поверхности внешней оболочки в районе сужающейся и расширяющейся частей камеры сгорания выполнены дополнительные продольные ребра, при этом высота и толщина дополнительных продольных ребер не превышает высоты и толщины основных ребер. Изобретение обеспечивает улучшение охлаждения критического сечения сопла и увеличение удельной тяги двигателя. 4 ил.

 

Изобретение относится к области ракетного двигателестроения и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД), в частности для безгенераторных ЖРД, работающих на криогенных компонентах, например кислороде и водороде.

Известен тракт охлаждения камеры жидкостного ракетного двигателя, содержащий внутреннюю профилированную оболочку с выполненными в ней ребрами постоянной толщины, образующими каналы тракта охлаждения, имеющими трапецеидальный профиль переменной ширины со скругленными по радиусу углами, примыкающими к внутренней поверхности оболочки, профилированную наружную оболочку, установленную на внутренней и скрепленную с ней (М.В. Добровольский и др. "Жидкостные ракетные двигатели. Основы проектирования", Москва, "Высшая школа", 1968 г., рис.4.26. г., стр.166-167).

В указанном тракте охлаждения охладитель подается между ребрами, выполненными на тыльной стороне оболочки. Рабочая поверхность, обращенная к источнику тепла, в данном случае, взаимодействующая с продуктами сгорания, выполнена гладкой цилиндрической. Продукты сгорания, контактируя с рабочей поверхностью, отдают ей тепло. За счет теплопроводности металла тепло от оболочки передается на ребра тракта охлаждения, которые омываются охладителем. Охладитель, проходя через каналы охлаждения, контактирует с поверхностями ребер и тыльной стороной оболочки и при этом, нагреваясь сам, охлаждает ребра и внутреннюю рабочую поверхность внутренней оболочки.

При такой конструкции тракта охлаждения необходимо подобрать оптимальную толщину рабочей огневой стенки, ребер и площадь поверхности теплообмена. С одной стороны, с утонением огневой рабочей стенки улучшаются условия теплообмена, с другой - толщина стенки ограничена условиями прочности и изготовления. Увеличение количества ребер ведет к улучшению условий теплопередачи, но в то же время приводит к загромождению тракта, что увеличивает гидравлическое сопротивление тракта охлаждения и ведет к увеличению мощности насоса для подачи охладителя в тракт охлаждения.

При использовании данного тракта охлаждения в двигателях, работающих по безгенераторной схеме, не обеспечивается требуемый теплосъем с поверхности камеры сгорания. Охладитель, который затем используется для привода турбины ТНА, не нагревается до заданной температуры, что приводит к снижению эффективности работы турбины и всего турбонасосного агрегата в целом.

Известна система охлаждения камеры жидкостного ракетного двигателя по патенту РФ на изобретение № 2158841, МПК F02K 9/62, опубл. 10.11.2000 г. Эта камера содержит корпус, средства воспламенения и смесительную головку. Смесительная головка состоит из внутреннего огневого днища, среднего днища, наружного днища, двухкомпонентные форсунки закреплены во внутреннем огневом днище и среднем днище. Часть двухкомпонентных форсунок установлена выступающей за внутреннее огневое днище, а другая часть утоплена в огневом днище. Средства воспламенения выполнены из струйных форсунок, установленных в силовом корпусе за внутренним огневым днищем. Оси расходных отверстий струйных форсунок расположены под острым углом к выходу из силового корпуса и отклонены по кругу в поперечной плоскости от продольной оси силового корпуса в одинаковом направлении. Корпус камеры включает камеру сгорания и сопло, выполненные из силовой оболочки, огневой стенки. Тракт регенеративного охлаждения расположен между силовой оболочкой и огневой стенкой. Кольцевая щель пояса завесы выполнена во внутренней огневой стенке перед критическим сечением сопла. Тракт регенеративного охлаждения камеры выполнен с разветвленным входом. Одна из его ветвей сообщена с полостью тракта охлаждения между критическим сечением сопла и его срезом, вторая ветвь - с полостью тракта охлаждения перед критическим сечением сопла, а третья - с полостью тракта охлаждения перед кольцевой щелью пояса завесы. Такое выполнение камеры и корпуса позволит повысить технико-эксплуатационные характеристики двигателя и его ресурс при многократном включении.

Недостаток - уменьшение удельной тяги двигателя из-за применения завесного охлаждения.

Известна система охлаждения камеры ЖРД по патенту РФ на изобретение № 2403424, МПК F02K 9/64, опубл. 27.06.2010 г., прототип.

Эта камера содержит камеру сгорания цилиндрической формы и сопло, имеющее сужающуюся и расширяющуюся части и критическое сечение между ними, при этом сопло имеет внутреннюю и внешнюю стенки камеры, при этом на внутренней стенке выполнены ребра, соединенные спаиванием с внешней стенкой.

Недостаток - плохое охлаждение критического сечения сопла и зоны около него (перед и за критическим сечением) из-за высоких удельных тепловых потоков. Дополнительные ребра увеличивают теплосъем, но не уменьшают температуры внутренней оболочки. Наличие ребер в газовом тракте сопла уменьшает удельную тягу двигателя из-за дополнительных газодинамических потерь.

Задачей изобретения является устранение указанных недостатков и создание тракта охлаждения, конструкция которого позволит улучшить условия теплообмена между продуктами сгорания и охладителем в районе критического сечения и увеличить удельную тягу двигателя.

Решение указанных задач достигнуто в системе охлаждения камеры жидкостного ракетного двигателя, содержащее цилиндрическую камеру сгорания и сопло, содержащей, в свою очередь, сужающуюся и расширяющиеся части и критическое сечение между ними, выполненные в виде наружной оболочки, внутренней оболочки с основными ребрами постоянной толщины, образующими тракт охлаждения, тем, что согласно изобретению на внутренней поверхности внешней оболочки в районе сужающейся и расширяющейся частей камеры сгорания выполнены дополнительные продольные ребра, при этом высота и толщина дополнительных продольных ребер не превышает высоты и толщины основных ребер

Наиболее оптимальные условия по теплопередаче и охлаждению достигаются в случае, когда высота и толщина дополнительных продольных ребер не превышает толщины стенки донной части канала. Дальнейшее увеличение геометрических размеров выше указанных пределов ведет к ухудшению условий теплосъема, обгоранию и оплавлению дополнительных ребер.

Сущность изобретения иллюстрируется чертежами фиг.1…4, где:

на фиг.1 показан продольный осевой разрез камеры сгорания,

на фиг.2 - поперечное сечение тракта охлаждения.

на фиг.3 и 4 приведен разрез камеры сгорания с размещением основных и дополнительных ребер.

Конструкция камеры представлена на фиг.1…4 и содержит камеру сгорания 1 и сопло 2.

Камера сгорания 1 выполнена цилиндрической. Сопло 2 имеет сужающуюся часть 3, расширяющуюся часть 4 и критическое сечение 5 между ними.

Камера сгорания 1 и сопло 2 имеют внутреннюю оболочку 6 и наружную оболочку 7. На внутренней оболочке 6 выполнены основные ребра 8 постоянной толщины, образующие между ними каналы 9 тракта охлаждения. Каналы 9 имеют трапецеидальный профиль переменной ширины

На внутренней поверхности наружной оболочки 7 в районе критического сечения 5 (до него и после по потоку выхлопных газов), выполнены дополнительные ребра 10. Дополнительные ребра 10 размещены между основными ребрами 8 и имеют меньшую толщину и высоту, чем основные ребра 8.

Зона размещения дополнительных ребер 10 (фиг.3 и 4) определяется из условия:

- до критического сечения 5:

11=(0,4…0,6)L1, где L1 - длина дозвуковой части сопла.

- после критического сечения 5:

12=(0,4…0,6) L2,

где L2 - длина расширяющейся части (сверхзвуковой) сопла от критического сечения до сечения, имеющего диаметр D1, равный внутреннему диаметру камеры сгорания.

Каждое второе основное ребро 10 выполнено укороченным 11. В этом случае дополнительные ребра 12 размещаются в освободившемся промежутке тракта охлаждения 9 (фиг.4).

Предложенное устройство работает следующим образом.

При работе камеры ЖРД продукты сгорания компонентов топлива движутся по каналам 9 вдоль стенки внутренней оболочки 6 и передают ей и основным ребрам 8 тепло. За счет теплопроводности прогревается вся внутренняя оболочка 6, включая основные ребра 8. По каналам 9 тракта охлаждения поступает охладитель, который омывает внутреннюю оболочку 6, основные ребра 8 и дно канала 9. Охладитель, имея температуру ниже температуры ребер и дна канала 0, отбирает у них тепло и нагревается сам.

Для улучшения условий теплопередачи от продуктов сгорания к охладителю на внутренней поверхности внешней оболочки 7 выполнены дополнительные ребра 10. В этом случае часть тепла будет отбираться у продуктов сгорания при помощи указанных дополнительных ребер 10. Кроме того, наличие дополнительных ребер 10 загромождает каналы 9 и увеличивает в них скорость движения охладителя примерно в 2 раза и тем самым повышает коэффициент теплоотдачи к охладителю на 80%…90%. Это значительно улучшит охлаждение критического сечения 5 и зоны около него.

Система охлаждения камеры жидкостного ракетного двигателя, содержащая цилиндрическую камеру сгорания и сопло, содержащее, в свою очередь, сужающуюся и расширяющуюся части и критическое сечение между ними, выполненные в виде наружной оболочки, внутренней оболочки с основными ребрами постоянной толщины, образующими тракт охлаждения, отличающаяся тем, что на внутренней поверхности внешней оболочки в районе сужающейся и расширяющейся частей камеры сгорания выполнены дополнительные продольные ребра, при этом высота и толщина дополнительных продольных ребер не превышает высоты и толщины основных ребер.



 

Похожие патенты:

Изобретение относится к жидкостным ракетным двигателям. В системе охлаждения камеры сгорания жидкостного ракетного двигателя, содержащей наружную и внутреннюю стенки, установленные с зазором и соединенные пайкой через ребра, выполненные на внутренней стенке, по меньшей мере, одно устройство завесного охлаждения внутренней стенки камеры сгорания, содержащее, в свою очередь, кольцевую деталь, сцентрированную по внутренней стенке с образованием кольцевой полости, кольцевую щель во внутренней стенке и внутренние тангенциальные отверстия, соединяющие эту щель с кольцевой полостью, дозирующие отверстия, соединяющие зазор между двумя стенками с кольцевой полостью, согласно изобретению кольцевая деталь и кольцевая полость в ней выполнены трапециевидной формы, при этом кольцевая деталь содержит переднюю стенку, цилиндрическую стенку и заднюю стенку, установленные с зазором внутри коллектора, дозирующие отверстия выполнены тангенциально и направлены аналогично внутренним тангенциальным отверстиям, а высота зазора между передним торцом и коллектором выполнена меньше, чем высота зазора между наружной и внутренней стенками.

Изобретение относится к жидкостным ракетным двигателям. В системе охлаждения камеры жидкостного ракетного двигателя, содержащей цилиндрическую камеру сгорания и сопло, содержащее, в свою очередь, сужающуюся и расширяющиеся части и критическое сечение между ними, выполненные в виде наружной оболочки, внутренней оболочки с основными ребрами постоянной толщины, образующими тракт охлаждения и, по меньшей мере, один пояс завесы с тангенциальными отверстиями и коллектором, внутри которого установлена кольцевая деталь, согласно изобретению кольцевая деталь выполнена в форме полутора с полостью, на кольцевой детали под углом к оси камеры сгорания выполнены входные отверстия с возможностью закрутки потока охладителя в плоскости, при этом ось этих отверстий пересекает часть стенки кольцевой детали перед тангенциальными отверстиями.

Изобретение относится к ракетной технике. Блок тяги жидкостного ракетного двигателя содержит раму, камеру сгорания с соплом и устройство защиты блока тяги, имеющее донные экраны.

Изобретение относится к жидкостным ракетным двигателям (ЖРД), преимущественно кислородно-керосиновым. .

Изобретение относится к ракетной технике, а именно к способу изготовления сопла камеры сгорания жидкостного ракетного двигателя (ЖРД). .

Изобретение относится к области двигателестроения и может быть использовано при создании жидкостных ракетных двигателей (ЖРД). .

Изобретение относится к области ракетной техники и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). .

Изобретение относится к области ракетного двигателестроения и может быть использовано при создании безгенераторных жидкостных ракетных двигателей, работающих на криогенных компонентах, например кислороде и водороде.

Изобретение относится к жидкостным ракетным двигателям. .

Изобретение относится к области ракетного двигателестроения и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД), в частности, для безгенераторных ЖРД, работающих на криогенных компонентах, например кислороде и водороде.

Изобретение относится к жидкостным ракетным двигателям. В системе охлаждения камеры сгорания жидкостного ракетного двигателя, содержащей наружную и внутреннюю стенки, соединенные пайкой через ребра, выполненные на внутренней стенке, по меньшей мере, одно устройство завесного охлаждения внутренней стенки камеры сгорания, содержащее, в свою очередь, кольцевую деталь, сцентрированную по внутренней стенке с образованием кольцевой полости, кольцевую щель во внутренней стенке и внутренние тангенциальные отверстия, соединяющие эту щель с кольцевой полостью, дозирующие отверстия, соединяющие зазор между двумя стенками с кольцевой полостью, согласно изобретению, дозирующие отверстия выполнены тангенциально и направлены аналогично внутренним тангенциальным отверстиям. Внутренние тангенциальные отверстия могут быть выполнены в плоскости, перпендикулярной оси камеры сгорания. Кольцевая деталь может быть выполнена с цилиндрической и двумя торцовыми стенками передней и задней, при этом один из торцов выполнен наклонным. На переднем торце может быть выполнено оребрение. На заднем торце может быть выполнено оребрение. На цилиндрической стенке может быть выполнено оребрение. Соотношение длины внутренних тангенциальных отверстий к их диаметру может быть выполнено в диапазоне от 1,0 до 2,5. Дозирующие отверстия могут быть выполнены калиброванными. В дозирующие отверстия могут быть установлены калиброванные жиклеры. Изобретение обеспечивает улучшение охлаждения и увеличение удельной тяги двигателя. 8 з.п. ф-лы, 7 ил.

Изобретение относится к области ракетной техники, а именно к двигателестроению и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). Тракт охлаждения теплонапряженных конструкций содержит наружную и огневую оболочки с каналами охлаждения между ними, образованными двутавровыми проставками, на которых размещены турбулизаторы потока. Полки двутавровых проставок выполнены переменной ширины за счет выполнения на них чередующихся выборок, при этом турбулизаторы потока образованы указанными чередующимися выборками, выборки на каждой полке двутавровой проставки выполнены в шахматном порядке, выборки на верхней и нижней полках двутавровой проставки выполнены в шахматном порядке, выборки смежных проставок расположены таким образом, что выборки на полках одной проставки располагаются напротив выступов смежной с ней проставки, глубина выборки составляет 25-75% ширины полки, в вертикальных стенках двутавровых проставок выполнены сквозные каналы. 5 з.п. ф-лы, 6 ил.

Изобретение относится к ракетно-космической технике и может быть использовано для охлаждения сверхзвуковой части сопла жидкостных ракетных двигателей. Задачей предлагаемого изобретения является создание работоспособного на переходных и стационарных режимах работы устройства охлаждения сверхзвуковой части сопла с низким уровнем давления охладителя (Рохл<<Рк), что должно обеспечить возможность создания высокоэкономичных ЖРД с повышенным давлением в камере, с одновременным упрощением изготовления сопел и повышением их надежности. Решение поставленной задачи достигается тем, что в контуре циркуляции теплоносителя на магистрали, соединяющей выход тракта охлаждения сверхзвуковой части сопла с входом турбины, установлен обратный клапан, а бак теплоносителя с клапаном присоединен к этой магистрали на участке между обратным клапаном и турбиной. Кроме этого, на участке магистрали между выходом тракта охлаждения сверхзвуковой части сопла и обратным клапаном подключен выхлопной патрубок с клапаном или ресивер. Изобретение позволяет повысить надежность двигателя и снизить его стоимость при одновременном обеспечении высокой экономичности. 2 ил.

Изобретение относится к жидкостным ракетным двигателям. В системе охлаждения камеры жидкостного ракетного двигателя, содержащей цилиндрическую камеру сгорания и сопло, содержащее, в свою очередь, сужающуюся и расширяющиеся части и критическое сечение между ними, выполненные в виде наружной оболочки, внутренней оболочки с основными ребрами постоянной толщины, образующими тракт охлаждения и, по меньшей мере, один пояс завесы с тангенциальными отверстиями и коллектором, внутри которого установлена кольцевая деталь, согласно изобретению кольцевая деталь выполнена в форме полутора с полостью, на кольцевой детали в плоскости, перпендикулярной оси камеры сгорания, выполнены входные тангенциальные отверстия с возможностью закрутки потока охладителя в плоскости, а параллельно оси камеры выполнены выходные отверстия. На внешней поверхности кольцевой детали перед тангенциальными отверстиями выполнены турбулизаторы потока. Пояс завесы выполнен в месте стыка камеры сгорания и сопла, или на середине сужающейся части сопла, или выполнены два пояса завесы. Изобретение обеспечивает улучшение охлаждения критического сечения сопла и увеличение удельной тяги двигателя. 4 з.п. ф-лы, 8 ил.

Изобретение относится к области ракетной техники. Сопло камеры жидкостного ракетного двигателя содержит наружную и огневую оболочки с каналами охлаждения между ними, образованными двутавровыми проставками, на которых размещены турбулизаторы потока. Полки двутавровых проставок выполнены переменной ширины за счет выполнения на них чередующихся выборок, при этом турбулизаторы потока образованы указанными чередующимися выборками, выборки на каждой полке двутавровой проставки выполнены в шахматном порядке, выборки на верхней и нижней полках двутавровой проставки выполнены в шахматном порядке, выборки смежных проставок расположены таким образом, что выборки на полках одной проставки располагаются напротив выступов смежной с ним проставки, глубина выборки составляет 25-75% ширины полки, в вертикальных стенках двутавровых проставок выполнены сквозные каналы. Изобретение обеспечивает повышение эффективности теплообмена в каналах. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области ракетной техники. Тракт регенеративного охлаждения камеры жидкостного ракетного двигателя содержит наружную и огневую оболочки с каналами охлаждения между ними, образованными двутавровыми проставками, на которых размещены турбулизаторы потока. Полки двутавровых проставок выполнены переменной ширины за счет выполнения на них чередующихся выборок, при этом турбулизаторы потока образованы указанными чередующимися выборками, выборки на каждой полке двутавровой проставки выполнены в шахматном порядке, выборки на верхней и нижней полках двутавровой проставки выполнены в шахматном порядке, выборки смежных проставок расположены таким образом, что выборки на полках одной проставки располагаются напротив выступов смежной с ним проставки, глубина выборки составляет 25-75% ширины полки, в вертикальных стенках двутавровых проставок выполнены сквозные каналы. Изобретение обеспечивает повышение эффективности теплообмена в каналах. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области ракетной техники, а именно - к созданию камер жидкостных ракетных двигателей (ЖРД). Способ изготовления тракта регенеративного охлаждения камеры жидкостного ракетного двигателя заключается в изготовлении наружной и огневой оболочек с последующим их скреплением между собой по вершинам двутавровых проставок с образованием каналов охлаждения между ними, при этом полки двутавровых проставок выполняют переменной ширины за счет выполнения на них чередующихся выборок, при этом турбулизаторы потока образованы указанными чередующимися выборками. Выборки на каждой полке двутавровой проставки выполняют в шахматном порядке. Выборки на верхней и нижней полках двутавровой проставки выполняют в шахматном порядке. Выборки смежных проставок располагают таким образом, что выборки на полках одной проставки располагаются напротив выступов смежной с ним проставки. Глубина выборки составляет 25-75% ширины полки. В вертикальных стенках двутавровых проставок выполняют сквозные каналы. Изобретение обеспечивает интенсифицирование процесса теплопередачи между поверхностью огневой стенки и охладителем. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области ракетной техники. Камера жидкостного ракетного двигателя содержит наружную и огневую оболочки с каналами охлаждения между ними, образованными двутавровыми проставками, на которых размещены турбулизаторы потока. Полки двутавровых проставок выполнены переменной ширины за счет выполнения на них чередующихся выборок, при этом турбулизаторы потока образованы указанными чередующимися выборками, выборки на каждой полке двутавровой проставки выполнены в шахматном порядке, выборки на верхней и нижней полках двутавровой проставки выполнены в шахматном порядке, выборки смежных проставок расположены таким образом, что выборки на полках одной проставки располагаются напротив выступов смежной с ним проставки, глубина выборки составляет 25-75% ширины полки, в вертикальных стенках двутавровых проставок выполнены сквозные каналы. Изобретение обеспечивает повышение эффективности теплообмена в каналах. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области ракетной техники и может быть использовано при разработке и изготовлении сопел камер сгорания жидкостных ракетных двигателей (ЖРД). Способ изготовления сопла камеры сгорания ЖРД, включающий изготовление наружной и внутренней оболочек, сборку оболочек, пайку, выполнение перепускных отверстий охладителя в одном или нескольких подколлекторных кольцах, сварку одного или нескольких коллекторов с подколлекторными кольцами, согласно изобретению пайку сопла камеры сгорания осуществляют до выполнения перепускных отверстий охладителя в подколлекторных кольцах или при выполнении перепускных отверстий охладителя не на всю толщину стенки подколлекторных колец, затем после пайки в подколлекторных кольцах выполняют перепускные отверстия охладителя на всю толщину стенки подколлекторных колец и приваривают коллекторы с наконечниками к соплу, причем отверстия выполняют механическим или электроэрозионным сверлением. Изобретение обеспечивает повышение качества паяного соединения, а также исключает засорение перепускных отверстий в подколлекторном кольце и пазов охлаждающего тракта. 1 з.п. ф-лы, 4 ил.

Изобретение относится к устройствам, предназначенным для перегрева водяного пара при организации рабочего процесса паровых, парогазовых энергетических установок и газоперекачивающих агрегатов. Противоточная водород-кислородная камера сгорания содержит воспламенитель, форсунки горючего, конический стабилизатор пламени и основной контур разделения пара. В торцевой части основного контура разделения пара поток низкотемпературного пара разделяется на три канала - контур подачи основного пара, контур смешения и контур охлаждения конического стабилизатора. Противоточная водород-кислородная камера также имеет систему тангенциальных закручивающих устройств, компенсатор теплового расширения жаровой трубы, дроссельный регулятор, камеру предварительного смешения в запальном устройстве, коллектор равномерного распределения топлива по форсункам, и коллектор распределения окислителя по контуру смешения. Изобретение направлено на уменьшение гидравлических потерь в системе подвода компонентов, возможности поддержания начальной степени закрутки по длине жаровой трубы, компенсации теплового расширения жаровой трубы и регулирования расхода окислителя, снижение неравномерности распределения топлива по форсункам, неравномерности концентрации окислителя в контуре смешения, снижение вероятности возникновения взрывоопасной ситуации. 6 з.п. ф-лы, 4 ил.
Наверх