Способ обеспечения бессрывной работы турбонасосного агрегата многорежимного жидкостного ракетного двигателя на режимах глубокого дросселирования


 


Владельцы патента RU 2513023:

Открытое акционерное общество "НПО Энергомаш имени академика В.П. Глушко" (RU)

Изобретение относится к области машиностроения, а именно к высокооборотным шнекоцентробежным насосам турбонасосных агрегатов дросселируемых жидкостных ракетных двигателей. Способ обеспечения бессрывной работы насосов турбонасосного агрегата дросселируемого жидкостного ракетного двигателя, основанный на установке перед насосами бустерных насосов, привод каждого из которых осуществляется турбиной газовой или гидравлической, при этом вход в каждую турбину гидравлически соединен с помощью трубопровода либо с выходом одного из насосов в случае гидротурбины, либо с газовым трактом, расположенным за турбиной турбонасосного агрегата, в случае газовой турбины, при этом при снижении давления на входе в насосы ниже уровня, необходимого для бессрывной работы насосов, возможного при глубоком дросселировании двигателя, осуществляют повышение напоров бустерных насосов путем подвода рабочего тела к дополнительным сопловым аппаратам со своими входными коллекторами, предварительно установленными в указанных турбинах, через трубопроводы с регулирующими устройствами. В качестве регулирующих устройств могут быть применены многопозиционные клапаны или регуляторы давления. Изобретение обеспечивает бескавитационную работу насосов турбонасосного агрегата, входящего в состав системы подачи, при работе на низких режимах. 2 з.п. ф-лы, 1 ил.

 

Область техники

Изобретение относится к области машиностроения, а именно к высокооборотным шнекоцентробежным насосам, преимущественно к насосам, к которым предъявляются высокие требования по обеспечению антикавитационных свойств (характеристик) в широком диапазоне регулирования, например к насосам турбонасосных агрегатов дросселируемых жидкостных ракетных двигателей.

Предшествующий уровень техники

В технике известен способ обеспечения высоких антикавитационных качеств высокооборотных шнекоцентробежных насосов турбонасосного агрегата (ТНА) обеспечиваются с помощью различных вспомогательных (бустерных) насосов, обладающих высокими антикавитационными качествами и установленными перед входом в основные насосы. Бустерные насосы поддерживают давления на входе в основные насосы ТНА, на уровне необходимом для бессрывной работы (см. например Овсянников Б.В., Боровский Б.И. Теория и расчет агрегатов питания жидкостных ракетных двигателей. - 3-е изд., перераб. и доп. М., Машиностроение, 1986 г. С.211-212). Указанный способ принимаем за аналог предлагаемого изобретения.

Недостатком аналога является то, что для упомянутых бустерных насосов не предусматривается регулирование режима их работы, следовательно, напор бустерных насосов необходимо будет определять применительно к режиму работы двигателя, при котором для обеспечения работы основных насосов потребуется максимальное входное давление. Таким образом, при изменении режима работы двигателя, прежде всего при его дросселировании, напор, развиваемый бустерными насосами, может оказаться неоптимальным для обеспечения работы основных насосов, что приводит к излишним затратам мощности.

В технике также известен способ обеспечения высоких антикавитационных качеств высокооборотных шнекоцентробежных насосов турбонасосного агрегата (ТНА) с помощью вспомогательных (бустерных) насосов, обладающих высокими антикавитационными качествами и установленных перед входом в основные насосы. В качестве бустерных насосов используются лопаточные насосы с приводом от турбин, гидравлических или газовых, встроенных непосредственно в конструкцию бустерных насосов, при этом рабочее тело для турбин отбирается из магистралей двигателя. В случае применения гидравлической турбины отбор осуществляется с выхода насоса, на входе в который установлен бустерный насос, а в случае применения газовой турбины - из газового тракта, расположенного за турбиной ТНА. При этом параметры рабочего тела турбин, приводящих бустерные насосы, напрямую зависят только от режима работы двигателя, поскольку характеристики, (зависимость гидравлического сопротивления от расхода) трубопроводов, по которым на турбины подаются рабочие тела, являются постоянными.

Указанный способ, реализованный в системе подачи, изображенной на схеме двигателя РД180 (см. Двигатели 1944-2000: - авиационные, ракетные, морские, промышленные. М., «АКС-Конверсалт», 2000 г. С.270), принимаем за прототип предлагаемого изобретения.

Недостатком прототипа является то, что изменение параметров рабочих тел, используемых для работы турбин, связанное с изменением режима работы двигателя, приводит к изменению напора, развиваемого бустерными насосами. Так во время дросселирования двигателя уменьшается давление на входе в турбины, приводящие бустерные насосы, а для газовой турбины уменьшается еще и температура. В результате падает частота вращения бустерных насосов и их напор. На режимах же глубокого дросселирования двигателя, падение напора бустерных насосов может оказаться таким, что приведет к снижению давления на входе в насосы до уровня, недостаточного для их бессрывной работы, что в свою очередь может привести к падению напора основных насосов до уровня, недопустимого для нормальной работы турбонасосного агрегата в составе двигателя. При этом постоянство характеристик трубопроводов не позволяет скомпенсировать падение давления за счет увеличения мощности турбин, приводящих бустерные насосы.

Раскрытие изобретения

Техническая задача, на решение которой направлено изобретение, состоит в обеспечении бессрывной или бескавитационной работы насосов турбонасосного агрегата, входящего в состав системы подачи, при работе на низких режимах.

Это достигается тем, что в способе обеспечения бессрывной работы насосов турбонасосного агрегата дросселируемого жидкостного ракетного двигателя, основанном на установке перед насосами бустерных насосов, привод каждого из которых осуществляется турбиной газовой или гидравлической, при этом вход в каждую турбину гидравлически соединен с помощью трубопровода либо с выходом одного из насосов в случае гидротурбины, либо с газовым трактом, расположенным за турбиной турбонасосного агрегата, в случае газовой турбины, при этом при снижении давления на входе в насосы ниже уровня, необходимого для бессрывной работы насосов, возможного при глубоком дросселировании двигателя, осуществляют повышение напоров бустерных насосов путем подвода рабочего тела к дополнительным сопловым аппаратам со своими входными коллекторами, предварительно установленными в указанных турбинах, через трубопроводы с регулирующими устройствами.

Кроме того, в качестве регулирующих устройств могут быть применены многопозиционные клапаны или регуляторы давления.

Полученный технический результат заключается в том, что на режимах глубокого дросселирования бессрывная работа насосов достигается за счет форсирования бустерных насосов.

Краткое описание чертежей

На фиг.1 представлена схема насосной системы подачи, в которой реализован предлагаемый способ в варианте с дополнительными сопловыми аппаратами в турбинах бустерных насосов, гидравлически соединенными с трубопроводами подвода рабочего тела на основные турбины бустерных насосов через регулирующие устройства.

Пример реализации изобретения

Система подачи по фиг.1, в которой реализован предлагаемый способ, содержащая турбонасосный агрегат 1, включающий в себя турбину 2 и насосы 3 и 4, а также установленные перед насосами бустерные насосы 5 и 6, привод каждого из которых осуществляется турбиной, газовой 7 или гидравлической 8, каждая из которых имеет сопловой аппарат 9 или 10 с входным коллектором 11 или 12. Входные коллекторы 11 и 12 гидравлически соединены трубопроводами 13 и 14 с источниками рабочего тела. При этом отбор рабочего тела для газовой турбины 7 осуществляется по трубопроводу 13 из газового тракта 15, расположенного за турбиной 2 турбонасосного агрегата 1, а для гидротурбины 8 - по трубопроводу 14 с выхода насоса 4, перед которым установлен бустерный насос 6.

В турбинах 7 и 8 установлены дополнительные сопловые аппараты 16 и 17 с входными коллекторами 18 и 19, которые трубопроводами 20 и 21 с установленными в них регулирующими устройствами 22 и 23 гидравлически соединены либо непосредственно с источником рабочего тела турбины, либо с трубопроводом 13 или 14, через который осуществляется гидравлическое соединение входных коллекторов 11 и 12 турбин 7 и 8 с источником рабочего тела.

При дросселировании двигателя ниже заданного режима регулирующие устройства 22 и 23 срабатывают, подключая трубопроводы 20 и 21 к источникам рабочего тела, обеспечивая тем самым подачу рабочего тела во входные коллекторы 18 и 19 дополнительных сопловых аппаратов 16 и 17, что приводит к увеличению мощности турбин, форсированию бустерных насосов, увеличению их напора и повышению давления на входе в основные насосы. При обратном форсировании двигателя выше того же предела, регулирующие устройства 22 и 23 отключают трубопроводы 20 и 21 и, соответственно, дополнительные сопловые аппараты 16 и 17 от источников рабочего тела.

При дросселировании двигателя ниже заданного режима регулирующие устройства 22 и 23 срабатывают, подключая трубопроводы 20 и 21 к источникам рабочего тела, обеспечивая тем самым подачу рабочего тела во входные коллекторы 18 и 19 дополнительных сопловых аппаратов 16 и 17, что приводит к увеличению мощности турбин, форсированию бустерных насосов, увеличению их напора и повышению давления на входе в основные насосы. При обратном форсировании двигателя выше того же предела, регулирующие устройства 22 и 23 отключают трубопроводы 20 и 21 и, соответственно, дополнительные сопловые аппараты 16 и 17 от источников рабочего тела.

В принципе, возможен и другой вариант решения задачи, более простой технологически, поскольку не требует введения дополнительных элементов в конструкцию турбины, но с существенно меньшим диапазоном регулирования, заключается в том, что в трубопроводах, через которые осуществляется гидравлическое соединение входных коллекторов турбин с источниками рабочего тела, установлены регулирующие устройства, обеспечивающие при дросселировании двигателя ниже определенного режима изменение (уменьшение) сопротивления трубопроводов, а при обратном форсировании двигателя выше того же предела, восстановление прежнего уровня сопротивления. Уменьшение сопротивления трубопроводов приводит к повышению давления рабочего тела на входе в турбины, увеличению частоты вращения и повышению напора бустерных насосов. Изменение сопротивления трубопроводов может быть как непрерывным, так и ступенчатым, а регулирующие устройства будут представлять собой, соответственно, либо регуляторы давления, либо многопозиционные клапаны.

Режим, ниже которого регулирующие устройства включаются в работу, а также необходимая величина форсирования бустерных насосов определяется расчетным путем на этапе проектирования и подтверждается в ходе экспериментальной отработки двигателя.

Время выдачи команды на включение регулирующих устройств определяется либо по моменту достижения заранее рассчитанного режима, либо по показаниям датчиков, измеряющих параметры компонента на входе в насос.

Работа устройства.

В варианте, изображенном на фиг.1, при дросселировании двигателя ниже режима, на котором напор, создаваемый бустерными насосами, становится недостаточным для обеспечения бескавитационной работы насосов 3 и 4 или величина падения напора насосов 3 и 4 в результате кавитации становится неприемлемой для работы турбонасосного агрегата в составе двигателя, регулирующие устройства 22 и 23 срабатывают, подключая трубопроводы 20 и 21 к источникам рабочего тела, обеспечивая тем самым подачу рабочего тела во входные коллекторы 18 и 19 дополнительных сопловых аппаратов 16 и 17, что приводит к увеличению мощности турбин, форсированию бустерных насосов, увеличению их напора и повышению давления на входе в основные насосы. При обратном форсировании двигателя выше того же предела, регулирующие устройства 22 и 23 отключают трубопроводы 20 и 21 и, соответственно, дополнительные сопловые аппараты 16 и 17 от источников рабочего тела.

Изменение сопротивления трубопроводов 13 и 14 может быть как непрерывным, так и ступенчатым, а регулирующие устройства 22 и 23 будут представлять собой, соответственно, либо клапаны-регуляторы давления, либо многопозиционные клапаны.

В варианте, изображенном на фиг.1, при дросселировании двигателя ниже режима, на котором напор, создаваемый бустерными насосами, становится недостаточным для обеспечения бескавитационной работы насосов 3 и 4 или величина падения напора насосов 3 и 4 в результате кавитации становится неприемлемой для работы турбонасосного агрегата в составе двигателя, регулирующие устройства 21 и 22 срабатывают и изменяют (уменьшают) сопротивления трубопроводов 13 и 14, тем самым снижая потери в трубопроводах, что в свою очередь приводит к некоторому повышению давления во входных коллекторах 10 и 11 т.е. на входе в сопловые аппараты, форсированию бустерных насосов, увеличению их напора и повышению давления на входе в основные насосы. При обратном форсировании двигателя выше того же предела, регулирующие устройства 22 и 23 восстанавливают прежний уровень сопротивления трубопроводов 13 и 14. Изменение сопротивления трубопроводов 13 и 14 может быть как непрерывным, так и ступенчатым, а регулирующие устройства 22 и 23 будут представлять собой, соответственно, либо регуляторы давления, либо многопозиционные клапаны.

Промышленная применимость

Изобретение может использоваться в системах подачи компонентов жидкостных ракетных двигателей, предназначенных для работы в широком диапазоне регулирования, прежде всего с глубоким дросселированием, и имеющих в своем составе бустерные насосы, привод которых обеспечивается турбинами, работающими на рабочих телах, отбираемых из магистралей двигателя, а также при использовании компонентов, не допускающих работу насосов на режимах с кавитацией, например при работе на жидкостях с большим количеством растворенных газов.

1. Способ обеспечения бессрывной работы насосов турбонасосного агрегата дросселируемого жидкостного ракетного двигателя, основанный на установке перед насосами бустерных насосов, привод каждого из которых осуществляется турбиной газовой или гидравлической, при этом вход в каждую турбину гидравлически соединен с помощью трубопровода либо с выходом одного из насосов в случае гидротурбины, либо с газовым трактом, расположенным за турбиной турбонасосного агрегата, в случае газовой турбины, отличающийся тем, что при снижении давления на входе в насосы ниже уровня, необходимого для бессрывной работы насосов, возможного при глубоком дросселировании двигателя, осуществляют повышение напоров бустерных насосов путем подвода рабочего тела к дополнительным сопловым аппаратам со своими входными коллекторами, предварительно установленными в указанных турбинах, через трубопроводы с регулирующими устройствами.

2. Способ по п.1, отличающийся тем, что в качестве регулирующих устройств может быть применен многопозиционный клапан.

3. Способ по п.1, отличающийся тем, что в качестве регулирующих устройств применен регулятор давления.



 

Похожие патенты:

Изобретение относится к ракетной технике и может быть использовано в зенитных ракетах с жидкостным ракетным двигателем (ЖРД). Зенитная ракета содержит головную часть, осесимметричный корпус с баками окислителя и горючего и ЖРД с камерой сгорания и турбонасосным агрегатом (ТНА), четыре радиально установленные управляющие сопла.

Изобретение относится к ракетной технике. В жидкостном ракетном двигателе, содержащем турбонасосный агрегат, содержащий, в свою очередь, турбину, насосы окислителя и горючего и дополнительный насос горючего, и камеру сгорания, имеющую цилиндрическую часть с форсунками окислителя и горючего и сопло с главным коллектором горючего, отличающийся тем, что турбонасосный агрегат и камера сгорания установлены соосно, при этом турбина выполнена внутри цилиндрической части камеры сгорания, камера сгорания выполнена двухзонной и содержит дополнительные форсунки горючего на своей цилиндрической части ниже турбины.

Изобретение относится к подводному кораблестроению. Атомная подводная лодка содержит прочный корпус, охватывающий его легкий корпус, цистерны между этими корпусами, прочную рубку и спасательную всплывающую камеру, установленную внутри прочного корпуса под прочной рубкой, кормовую оконечность с гребным винтом со ступицей, установленной на гребном валу, соединенном с электродвигателем, и, по меньшей мере, один ядерный реактор, соединенный трубопроводами контура циркуляции с турбогенератором, который электрическим кабелем соединен с аккумуляторами и с электродвигателем, ракетный отсек.

Изобретение относится к судостроению, преимущественно атомному подводному. .

Изобретение относится к ракетной технике и может быть использовано преимущественно в ЖРД. .

Изобретение относится к жидкостным ракетным двигателям, работающим на жидком водороде. .

Изобретение относится к жидкостным ракетным двигателям, работающим на водороде. .

Изобретение относится к насосостроению и может быть использовано в турбонасосных агрегатах (ТНА) жидкостных ракетных двигателей. .

Изобретение относится к ракетной технике и может быть использовано преимущественно в ЖРД. .

Изобретение относится к области машиностроения, а именно к способу захолаживания криогенной магистрали жидкостного ракетного двигателя при многократных включениях двигателя.

Изобретение относится к ракетному двигателестроению и может быть использовано при проектировании жидкостных ракетных двигателей (ЖРД). Целью предлагаемого изобретения является повышение энергетических возможностей ЖРД, выполненных по схеме с дожиганием генераторного газа. Поставленная цель достигается тем, что в ЖРД, содержащем камеру, газогенератор, топливные насосы и двухступенчатую турбину, питаемую генераторным газом, согласно изобретению, выход из первой ступени турбины сообщен с форсуночной головкой камеры, а выход из второй ступени турбины сообщен со входом в насос одного из компонентов топлива или с окружающей средой. 2 ил.

Изобретение относится к ракетной технике. В жидкостном ракетном двигателе, содержащем турбонасосный агрегат, включающий установленные на валу турбину, насосы окислителя и горючего и дополнительный насос горючего и камеру сгорания, имеющую цилиндрическую часть с форсунками окислителя и горючего и сопло с главным коллектором горючего, при этом турбонасосный агрегат и камера сгорания установлены соосно, камера сгорания выполнена двухзонной и содержит первую кольцевую зону с кольцевым форсуночным блоком и вторую зону с центральным форсуночным блоком, имеющим дополнительные форсунки горючего, а турбина установлена внутри первой зоны камеры сгорания. Выход из насоса окислителя соединен трубопроводом, содержащим клапаны окислителя, с камерой сгорания. Центральный форсуночный блок выполнен пустотелым, и его полость соединена осевым отверстием, проходящим внутри вала турбонасосного агрегата, с входом в дополнительный насос горючего. Изобретение обеспечивает уменьшение его поперечного габарита и веса. 2 з.п. ф-лы, 2 ил.

Изобретение относится к жидкостным ракетным двигателям (ЖРД), в частности к многокамерным ракетным двигателям. Жидкостный ракетный двигатель, включающий камеры (не менее двух) с трактами регенеративного охлаждения и смесительные головки; турбонасосную систему питания (ТНА) газогенераторов и камер двигателя; систему управления и регулирования, имеющую пускоотсечные клапаны, регулятор тяги и дроссель соотношения компонентов топлива, согласно изобретению турбонасосная система питания двигателя содержит два турбонасосных агрегата, питаемых двумя автономными окислительными газогенераторами, при этом первый и второй ТНА имеют одинаковую мощность и включают соосно установленные и последовательно расположенные на одном валу насос горючего, насос окислителя и газовую турбину, причем насос горючего второго ТНА выполнен двухступенчатым, кроме того, выходы из насосов горючего и окислителя первого ТНА соединены трубопроводами со входами насосов горючего и окислителя второго ТНА, насос окислителя второго ТНА соединен со смесительными головками указанных газогенераторов через трубопроводы, в которых установлены пускоотсечные клапаны, а выход из первой ступени насоса горючего второго ТНА соединен со смесительными головками камер двигателя через дроссель соотношения компонентов топлива, пускоотсечные клапаны, трубопроводы и тракты регенеративного охлаждения камер, а выход из второй ступени насоса горючего второго ТНА соединен со смесительными головками газогенераторов через трубопровод и регулятор тяги. Изобретение обеспечивает снижение динамических нагрузок на ТНА с одновременным увеличением тяги. 1 ил.

Изобретение относится к ракетной технике. Жидкостной ракетный двигатель, содержащий турбонасосный агрегат, содержащий установленные на валу турбину, насосы окислителя и горючего, и камеру сгорания, имеющую цилиндрическую часть с форсунками окислителя и горючего, и сопло с главным коллектором горючего и системой регенеративного охлаждения, согласно изобретению турбонасосный агрегат и камера сгорания установлены соосно, камера сгорания выполнена двухзонной и содержит первую кольцевую зону с кольцевым форсуночным блоком и верхним коллектором горючего и вторую зону с центральным форсуночным блоком, имеющим дополнительные форсунки горючего, а турбина установлена между первой и второй зонами камеры сгорания. Выход из насоса окислителя соединен с камерой сгорания трубопроводом, содержащим клапан окислителя. Выход из насоса горючего соединен трубопроводами с главным и верхним коллекторами горючего. Турбина выполнена состоящей из соплового аппарата, рабочего колеса и спрямляющего аппарата с полостью внутри него, центральный форсуночный блок выполнен пустотелым и его полость соединена осевыми отверстиями через полость внутри спрямляющего аппарата с зазором регенеративного охлаждения сопла и второй зоны камеры сгорания. Изобретение обеспечивает улучшение удельных характеристик ЖРД, повышение надежности. 4 з.п. ф-лы, 2 ил.

Изобретение относится к ракетной технике. Жидкостный ракетный двигатель, содержащий турбонасосный агрегат, содержащий установленные на валу турбину, насосы окислителя и горючего, и камеру сгорания, имеющую цилиндрическую часть с форсунками окислителя и горючего и сопло с главным коллектором горючего и системой регенеративного охлаждения, согласно изобретению турбонасосный агрегат и камера сгорания установлены соосно, камера сгорания выполнена двухзонной и содержит первую кольцевую зону с кольцевым форсуночным блоком и верхним коллектором горючего, и вторую зону с центральным форсуночным блоком, выполненным в виде пустотелого цилиндра, имеющего осевые дополнительные форсунки горючего, а турбина установлена между первой и второй зонами камеры сгорания, турбина выполнена состоящей из соплового аппарата, рабочего колеса и спрямляющего аппарата с полостью внутри него, центральный форсуночный блок выполнен пустотелым и его полость соединена осевым отверстиями через полость внутри спрямляющего аппарата с зазором регенеративного охлаждения сопла и второй зоны камеры сгорания, а полость внутри спрямляющего аппарата щелевыми отверстиями соединена с второй зоной. Выход из насоса окислителя соединен трубопроводом, содержащим клапана окислителя, с камерой сгорания. Выход из насоса горючего соединен трубопроводами с главным и верхним коллекторами горючего. Изобретение обеспечивает повышение удельных характеристик ЖРД и повышение его надежности. 2 з.п. ф-лы, 3 ил.

Изобретение относится к ракетной технике. Жидкостный ракетный двигатель содержит турбонасосный агрегат, содержащий в свою очередь установленные на валу турбину, насосы окислителя и горючего, и камеру сгорания, имеющую цилиндрическую часть с форсунками окислителя и горючего и сопло с главным коллектором горючего и системой регенеративного охлаждения, согласно изобретению турбонасосный агрегат и камера сгорания установлены соосно, камера сгорания выполнена двухзоной и содержит первую кольцевую зону с кольцевым форсуночным блоком и верхним коллектором горючего и вторую зону с центральным форсуночным блоком, имеющим дополнительные форсунки горючего, а турбина установлена между первой и второй зонами камеры сгорания. Выход из насоса окислителя соединен трубопроводом, содержащим клапан окислителя с камерой сгорания. Выход из насоса горючего соединен трубопроводами с главным и верхним коллекторами горючего. Турбина выполнена состоящей из соплового аппарата, рабочего колеса и спрямляющего аппарата с полостью внутри него, центральный форсуночный блок выполнен пустотелым и его полость соединена осевыми отверстиями через полость внутри спрямляющего аппарата с зазором регенеративного охлаждения сопла и второй зоной камеры сгорания. Изобретение обеспечивает повышение удельных характеристик двигателя, а также повышение его надежности. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области турбомашиностроения, а именно к высокооборотным высоконапорным центробежным насосам, и может быть использовано в области ракетостроения, в турбонасосных агрегатах (ТНА) жидкостных ракетных двигателей (ЖРД). В турбонасосном агрегате окислителя жидкостного ракетного двигателя безгенераторной схемы, содержащем насос окислителя, турбину, работающую на газообразном горючем, подшипник турбины, систему уплотнений, отделяющих насос окислителя от турбины, между системой уплотнений и турбиной выполнен дренаж газа с уплотнением со стороны турбины, а подшипник турбины расположен в полости между этим уплотнением и полостью турбины. Изобретение обеспечивает снижение потерь разделительного газа, протекающего через тракт дренажа окислителя, и улучшает динамические характеристики ротора. 3 з.п. ф-лы, 4 ил.

Изобретение относится к ракетной технике, конкретно к жидкостным ракетным двигателям. Турбонасосный агрегат жидкостного ракетного двигателя содержит турбину и насосы окислителя и горючего с рабочими колесами, согласно изобретению турбина выполнена биротативной и содержит два рабочих колеса, выполненных без сопловых аппаратов с возможностью вращения в противоположные стороны, каждое из которых соединено соответственно с рабочим колесом насоса окислителя и насоса горючего. Турбонасосный агрегат жидкостного ракетного двигателя может содержать дополнительный насос горючего, при этом рабочие колеса дополнительного насоса горючего и насоса горючего установлены на одном валу. Изобретение обеспечивает уменьшение центробежных нагрузок на ротор турбины. 1 з.п. ф-лы, 2 ил.

Изобретение относится к ракетному двигателестроению и может быть использовано при проектировании жидкостных ракетных двигателей (ЖРД). ЖРД, содержащий камеру, газогенератор, топливные насосы и двухступенчатую турбину, питаемую генераторным газом, выход из первой ступени которой соединен с форсуночной головкой камеры, согласно изобретению, выход из второй ступени турбины соединен с входом в корпус турбины бустерного насоса одного из компонентов топлива, выход из которого соединен со входом в двигатель или с окружающей средой. Изобретение обеспечивает повышение энергетических характеристик за счет более полного использования энергетических возможностей газа, сбрасываемого после второй ступени турбины. 1 з.п. ф-лы, 3 ил.

Изобретение относится к ракетно-космической технике. В жидкостном ракетном двигателе, содержащем систему управления с бортовым компьютером, камеру, турбонасосный агрегат и газогенератор, соединенный газоводом с камерой, и запальные устройства на камере сгорания и газогенераторе, на камере сгорания и газогенераторе установлены свечи электрического зажигания, на валу турбонасосного агрегата установлен электрогенератор, а внутри газовода активатор газогенераторной смеси, а к пусковой турбине присоединен бортовой баллон сжатого воздуха. Активатор газогенераторной смеси может содержать два электрода, соединенных высоковольтными проводами с блоком высокого напряжения, который соединен с электрогенератором. Жидкостно-ракетный двигатель может содержать центральный шарнир, выполненный на газоводе на оси камеры. Центральный шарнир может быть выполнен цилиндрическим. Центральный шарнир может быть выполнен сферическим. Жидкостно-ракетный двигатель может содержать датчик числа оборотов вала ТНА, соединенный электрической связью с бортовым компьютером. Изобретение обеспечивает повышение удельной тяги и многоразовое включение. 10 з.п. ф-лы, 17 ил.
Наверх