Способ получения дисперсноупрочненной высокоазотистой аустенитной порошковой стали с нанокристаллической структурой


 


Владельцы патента RU 2513058:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет (ФГБОУ ВПО "СПбГПУ") (RU)

Изобретение относится к порошковой металлургии, в частности к получению дисперсноупрочненной высокоазотистой аустенитной стали с нанокристаллической структурой. Смесь из порошков хрома, никеля, марганца и железа помещают в реактор, снабженный проточной системой газов, и добавляют мелющие шары в количестве от 30% до 50% объема реактора. После чего осуществляют герметизацию реактора, проводят предварительную продувку смеси азотосодержащим газом со скоростью 2-16 л/час в течение 10-20 минут и уменьшают скорость потока газа до 0,2-0,3 л/час. Смесь подвергают механическому легированию с параметром дозы энергии от 150 до 720 кДж/г, затем в реактор добавляют порошковую композицию металл - неметалл в количестве, не превышающем 50% от массы стали, и проводят дополнительное механическое легирование в течение 10-60 минут. Обеспечивается улучшение механических свойств стали и уменьшение времени легирования. 1 ил., 1 табл.

 

Изобретение относится к порошковой металлургии, в частности к способу получения дисперсноупрочненной высокоазотистой аустенитной порошковой стали с нанокристаллической структурой.

Известен способ получения механически легированной азотсодержащей стали [Патент РФ №2425166]. Смесь порошков металлов подвергают механическому легированию в атмосфере азота. Соотношение масс смеси металлических порошков и мелющих шаров составляет 1:30. После механического легирования смесь порошков металлов отжигают в защитной или восстановительной атмосферах, в отожженную смесь добавляют наноразмерный порошок никеля и производят перемешивание. Затем готовую шихту прессуют в пресс-форме и спекают в азотсодержащей атмосфере при определенных температурах.

Недостаток: легирование азотом требует дополнительных термических и механических обработок материала и, следовательно, удорожает технологию. При этом проводимые высокотехнологичные операции требуют повышенного контроля качества, что увеличивает вероятность высокого процента брака.

Известен способ получения азотированного феррохрома [Заявка на изобретение №94042483]. Способ позволяет получить азотированный феррохром с высоким содержанием азота и с минимальными затратами электроэнергии. Порошок феррохрома с определенным размером частиц зажигают и азотируют в режиме горения при повышенном давлении азота, причем порошок феррохрома предварительно нагревают.

Недостаток: способ предлагает изготовление полуфабриката для последующего изготовления азотистых аустенитных сталей и контроль качества, и описанные результаты соответствуют полуфабрикату, а не конечному продукту.

Известен нанокристаллический материал со структурой аустенитной стали, обладающий высокой твердостью, прочностью и коррозионной стойкостью, и способ его изготовления, выбранный за прототип [RU Патент РФ №2324757]. Способ изготовления нанокристаллического материала со структурой аустенитной стали включает смешивание мелкозернистых порошков, которые являются компонентами для получения определенной разновидности аустенитной стали, таких как железо и хром, никель, марганец, углерод, с веществом, которое является источником азота, механическое легирование смеси с использованием шаровой мельницы с получением мелкозернистых порошков нанокристаллической аустенитной стали с высоким содержанием азота. Формование спеканием порошков нанокристаллической аустенитной стали одним или другими методами, в которые входят: прокатка, электроразрядное спекание, экструзия, горячее изостатическое прессование (ТИП), холодное изостатическое прессование (ХИЛ), холодное прессование, горячее прессование, ковка, штампование или штампование взрывом, с получением в результате материала со структурой аустенитной стали, обладающего высокой твердостью, прочностью и коррозионной стойкостью, в виде агрегата из нанокристаллических зерен, который содержит 0,1-2,0 мас.% азота в твердом растворе. Полученный продукт отжигают при температуре 800-1250°С в течение 60 мин или меньше и затем быстро охлаждают. В качестве среды для механического легирования используют инертный газ, например аргон, газообразный азот, аммиак или смесь, содержащую два или более из этих газов. Композиция для изготовления аустенитной стали содержит 12-30 мас.% хрома, 0-20 мас.% никеля, 0-30 мас.% марганца, 0,1-5,0 мас.% азота, 0,02-1,0 мас.% углерода, железо - остальное, а процесс формования спеканием осуществляют при температуре 600-1250°С. Недостатком прототипа является дорогая технология изготовления аустенитной стали за счет длительного процесса механического легирования (более 200 часов), а также высокое содержание кислорода в полученной порошковой стали, что ухудшает основные механические свойства.

Задачей является удешевление технологии получения высокоазотистой аустенитной порошковой стали с нанокристаллической структурой за счет уменьшения времени механического легирования и улучшение механических свойств.

Для решения поставленной задачи предложен способ получения дисперсноупрочненной высокоазотистой аустенитной стали с нанокристаллической структурой. Способ заключается в том что, составляют смесь из порошков хрома, никеля, марганца и железа, помещают ее в объем, например в металлический проточный реактор высоконапряженной вибромельницы, снабженный проточной системой газов. Добавляют мелющие шары, например, из шарикоподшипниковой стали от 30% до 50% объема реактора. После чего осуществляют герметизацию реактора и проводят предварительную продувку смеси азотосодержащим газом, например аммиаком со скоростью 2-16 л/час в течение 10-20 минут. Затем скорость потока газа уменьшают до 0,2-0,3 л/час и смесь подвергают механическому легированию, например, при помощи высоконапряженной вибромельницы. Механическое легирование проводиться с параметром дозы энергии, необходимой для осуществления механического легирования, от 150 до 720 кДж/г. После чего в реактор добавляют порошковую композицию металл-неметалл в соотношении, необходимом для образования тугоплавкого соединения [Самсонов Г.В., Виницкий И.М. Тугоплавкие соединения. Справочник. 2-е изд. М., «Металлургия», 1976. 560 с.]. В качестве металла были выбраны Ti, Nb, Zr, в качестве неметалла - C, В, Si. Количество порошковой композиции не превышало 50% от количества стали. И далее проводят дополнительное легирование в течение 10-60 минут.

Загрузка мелющих шаров в определенном объеме обусловлена получением определенной дисперсности порошка высокоазотистой аустенитной стали, а также наиболее продуктивным ходом механического легирования. В ходе механического легирования в проточном реакторе при диссоциации аммиака не происходит повышения давления выше критической нормы, что, соответственно, предотвращает повышение парциального давления азота и водорода, при которых происходит сдвиг равновесия в сторону исходного газа и торможение реакции взаимодействия азота с порошком. Это позволяет на протяжении всего времени механического легирования осуществлять непрерывное насыщение порошка азотом. Следовательно, насыщение азотом проходит значительно быстрее и, соответственно, требует меньших затрат на производство стали. Использование аммиака в качестве азотосодержащей атмосферы в значительной степени улучшает технологию получения высокоазотистых аустенитных сталей. Аммиак выполняет две функции: восстановление смеси порошка, тем самым улучшая его качество и подготавливая его к дальнейшему взаимодействию, а также насыщает порошок азотом.

Цель предварительной продувки заключается в замещении кислорода в реакторе на азотосодержащий газ, а дальнейшая продувка в ходе механического легирования направлена лишь на поддержание азотосодержащей атмосферы, позволяющей осуществлять постоянное насыщение порошка азотом, что, в конечном счете, приводит к сокращению времени механического легирования высокоазотистой порошковой стали. Уменьшение скорости продувки при механическом легировании направлено на экономию расхода аммиака.

Композиция металл-неметалл и дополнительное механическое легирование позволяют улучшить механические свойства - твердость, прочность и т.д. Реакция протекает со значительным выделением тепла и происходит мгновенно, индикатором образования тугоплавкого соединения в процессе механолегирования является скачок температуры на термограмме (фиг.1), где по оси ординат - температура механореактора, а по оси абсцисс - время механоактивации. В результате образуется дисперсноупрочненная высокоазотистая порошковая аустенитная сталь, упрочненная тугоплавким соединением.

Совокупность отличительных признаков является необходимой и достаточной для решения поставленной задачи.

Объем мелющих шаров в реакторе менее 30% является недостаточным для полноценного осуществления механического легирования, что увеличивает время процесса. Избыточное количество мелющих шаров более 50% приводит к их заклиниванию в процессе механического легирования.

Предварительная продувка азотосодержащим газом менее 2 л/час и/или менее 10 минут не позволяет в полной мере осуществить замещение кислорода азотосодержащим газом, а превышение значения 16 л/час и/или более 20 минут нецелесообразно с экономической точки зрения. Скорость продувки газа в процессе механического легирования менее 0,2 л/час является недостаточной для осуществления непрерывной реакции взаимодействия азота со смесью порошков. Превышение значения скорости продувки более 0,3 л/час не позволяет осуществить полное разложение аммиака и не оправдано с экономической точки зрения. При понижении дозы энергии, необходимой для осуществления механического легирования, ниже 150 кДж/г механическое легирование с получением высокоазотистой аустенитной порошковой стали с нанокристаллической структурой и низким содержанием кислорода осуществить невозможно. В этом случае происходит неравномерное перемешивание элементов, и полученное содержание азота не превышает 0,02% из-за низкой скорости разложения аммиака. Повышение дозы энергии более 720 кДж/г способствует потере получаемого продукта - порошок сгорает из-за высокой удельной поверхностной энергии.

После чего в реактор добавляли порошковую композицию металл-неметалл в соотношении, необходимом для образования тугоплавкого соединения. В качестве металла были выбраны Ti, Nb, Zr, в качестве неметалла - C, В, Si. Количество порошковой смеси не превышает 50% от количества стали. Если количество порошковой смеси будет 60%, то реакция образования тугоплавкого соединения не произойдет либо значительно увеличится время образования.

Дополнительное механическое легирование проводят в течение 10-60 минут. В данном интервале происходит скачек температур, что видно на термограмме механореактора. После появления скачка температур процесс механолегирования прекращается.

Составляли смесь из порошков хрома, никеля, марганца и железа и помещали в проточный металлический реактор высоконапряженной вибромельницы. Затем к полученной смеси порошков добавляли мелющие шары из шарикоподшипниковой стали в количестве 30%, 40% и 50% объема реактора. Герметизировали реактор и проводили предварительную продувку смеси аммиаком или азотом со скоростью 2, 6, 10 или 16 л/час в течение 10, 15 или 20 минут. Затем скорость потока газа уменьшали до 0,2, 0,25 или 0,3 л/час и смесь подвергали механическому легированию при помощи высоконапряженной вибромельницы с параметрами дозы энергии 150, 400, 600 и 720 кДж/г. Далее добавляли порошковую композицию металл-неметалл (металл: Ti, Nb, Zr и неметалл: С, В, Si), в количестве 40 или 50% от количества стали и проводили дополнительное механическое легирование в течение 10, 35 или 60 минут.

Таблица.
Химический состав полученной смеси Вид газа Скорость предваритель-
ной продувки л/час
Время предвари-
тельной продувки, мин
Скорость продувки при мех. лег., л/час Доза энергии, кДж/г Порош-
ковая компози-
ция
Количество порошковой композиции, % Время дополни-
тельного механичес-
кого легирования, мин.
Пример №1 Fe - 17,4% Cr - 8,2% Ni - 12,55% Mn - 0,05% O2 - 0,55% N2+TiC Аммиак 2 20 0,2 400 Ti+C 50 10
Пример №2 Fe - 18,2% Cr - 8,1% Ni - 11,6% Mn - 0,09% O2 -0,99% N2+TiB2 Аммиак 2 20 0,25 720 Ti+B 50 60
Пример №3 Fe - 18% Cr - 8,1% Ni - 11,85% Mn - 0,05% O2 - 0,65% N2+Ti5Si3 Аммиак 6 20 0,3 400 Ti+Si 40 35
Пример №4 Fe - 18% Cr - 8,4% Ni - 11,56% Mn - 0,04% O2 - 0,75% N2+NbC Аммиак 10 15 0,3 600 Nb+C 50 10
Пример №5 Fe - 17,8% Cr - 8,1% Ni - 12,07% Mn - 0,03% O2 - 0,05% N2+NbB2 Азот 6 20 0,3 400 Nb+B 40 60
Пример №6 Fe - 18,05% Cr - 8,1% Ni - 11,81% Mn - 0,04% O2 - 0,1% N2+Nb5Si3 Азот 10 20 0,2 600 Nb+Si 50 35
Пример №7 Fe - 17,85% Cr - 8,05% Ni - 12,07% Mn - 0,03% O2 - 0,2% N2+ZrC Азот 16 15 0,2 720 Zr+C 50 10
Пример №8 Fe - 18% Cr - 7,86% Ni - 12,1% Mn - 0,04% O2 - 0,5% N2+ZrB2 Аммиак 16 10 0,3 150 Zr+B 50 60
Пример №9 Fe - 18,4% Cr - 7,6% Ni - 11,91% Mn - 0,09% O2 - 0,73% N2+Zr5Si3 Аммиак 16 10 0,25 400 Zr+Si 40 35

Удешевление способа получения высокоазотистой аустенитной порошковой стали осуществлено за счет сокращения времени процесса механического легирования.

Полученные высокоазотистые аустенитные порошковые стали обладают сверхравновесным содержанием азота стали с нанокристаллической структурой и высокими механическими свойствами за счет низкого содержания кислорода (менее 0,1%). Размеры нанокристаллов составляют от 4 до 10 нм. Содержание азота после механического легирования в среде аммиака с параметром дозы энергии 720 кДж/г составляет 0,922%, при этом доля аустенита достигает 90%. Химический анализ полученной высокоазотистой аустенитной порошковой стали показывает содержание кислорода менее 0,1%, что влияет на механические свойства: величина твердости по Виккерсу достигает 850 HV, предел текучести при растяжении 1900 МПа, предел прочности при растяжении 3200 МПа, величина относительного удлинения 10%.

Способ получения дисперсноупрочненной высокоазотистой аустенитной порошковой стали с нанокристаллической структурой, включающий получение смеси из порошков хрома, никеля, марганца и железа, которую подвергают механическому легированию с добавлением азотосодержащего газа, после чего помещают в трубку из нержавеющей стали и проводят формование путем горячей прокатки с последующим отжигом и быстрым охлаждением, отличающийся тем, что смесь загружают в объем реактора с проточной системой газов вместе с мелющими шарами в количестве 30-50% объема, осуществляют продувку азотосодержащим газом со скоростью 2-16 л/час в течение 10-20 минут, после чего скорость потока газа уменьшают до 0,2-0,3 л/час, механическое легирование порошковой стали проводят с параметром дозы активации энергии 150-720 кДж/г, далее в реактор добавляют порошковую композицию металл-неметалл в количестве ≤50% от массы легированной стали, образующую тугоплавкое соединение, после чего проводят дополнительное механическое легирование в течение 10-60 минут.



 

Похожие патенты:

Изобретение относится к металлургии, в частности к получению карбидочугуна с отсутствием пор в объеме сплава, и может быть использовано для изготовления рабочих частей выглаживателей.

Изобретение относится к порошковой металлургии, в частности к порошковой композиции на основе железа и используемой в ней композитной смазке. Порошковая композиция содержит железный порошок или порошок на основе железа и частицы композитной смазки.
Изобретение относится к порошковой металлургии, в частности к порошковым антифрикционным материалам для сильноточных скользящих контактов. Может использоваться для изготовления токосъемных щеток, например, униполярных генераторов или токосъемных башмаков, контактирующих с рельсом туннельной железной дороги.

Изобретение относится к порошковой металлургии, а именно к способу получения стали, содержащей наноразмерные частицы боридов, оксидов, нитридов. Может использоваться для изготовления элементов деталей для хранения отработавшего ядерного топлива, чехлов тепловыделяющих сборок (ТВС) ядерных реакторов, чехлов гильз системы управления и защиты нейтронных источников (СУЗ), оболочек твэлов.
Изобретение относится к порошковой металлургии, в частности к получению спеченных изделий на основе железа из порошковой композиции, содержащей распыленный водой предварительно легированный стальной порошок.
Изобретение относится к порошковой металлургии, в частности к получению спеченных деталей из порошковой композиции на основе распыленного водой порошка на основе железа.

Изобретение относится к порошковой металлургии, а именно к получению порошка на основе железа, содержащего небольшое количество углерода. .

Изобретение относится к порошковой металлургии, а именно к обработке металлических порошков, предназначенных для изготовления композитных изделий и покрытий, работающих в высокочастотных (ВЧ) и сверхвысокочастотных (СВЧ) диапазонах.

Изобретение относится к порошковой металлургии, в частности к получению высокоазотистой аустенитной порошковой стали с нанокристаллической структурой. .
Изобретение относится к порошковой металлургии, в частности к получению спеченных изделий из распыленного водой предварительно легированного стального порошка. .

Система обнаружения зонда (74) для использования со сканирующим зондовым микроскопом содержит систему обнаружения высоты (88) и систему обнаружения отклонения (28). Когда сканируется поверхность образца, свет, отраженный от зонда (16) микроскопа, разделяется на две составляющие.
Изобретение относится к медицине, в частности к способу получения реагента для приготовления меченного технецием-99m наноколлоида на основе гамма-оксида алюминия А12O3, который может быть использован для радионуклидной диагностики.

Изобретение относится к измерительной технике, в частности к датчикам давления на основе тонкопленочных нано- и микроэлектрических систем (НиМЭМС), предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования.

Изобретение относится к нанотехнологии и предназначено для использования при создании современных тонкопленочных полупроводниковых приборов и структур наноэлектроники.

Группа изобретений относится к изготовлению электродов для электролитического получения водорода из водных щелочных и кислотных растворов. Способ получения нанокристаллического композиционного материала катода включает проведение механоактивации смеси порошков железа и графита в атомном отношении 75:25 в среде аргона в течение 15÷20 ч с получением порошковой смеси из наноразмерных зерен цементита Fe3C и α-Fe при их соотношении в мас.%: (90÷95):(10÷5).

Изобретение относится к нефтехимической промышленности и плазмохимии и может быть использовано для плазменной обработки и утилизации отходов нефтепереработки. Жидкое углеводородное сырьёе 5 разлагают электрическим разрядом в разрядном устройстве, расположенном в вакуумной камере 6.

Изобретение относится к порошковой металлургии, в частности к получению наночастиц металлов. Предварительно подготовленную суспензию зародышевых наночастиц металла вводят в ростовую среду, содержащую водный раствор соединения металла концентрацией 10-5-10-3 М, восстанавливающий агент концентрацией 10-5-10-2 М, стабилизирующий агент концентрацией 10-3-1,0 М и термочувствительный агент концентрацией 0,1-10 мас.
Изобретение относится к электронному графеновому устройству. Гибкое и поддающееся растяжению, пропускающее свет электронное устройство содержит первый графеновый электрод, второй графеновый электрод, графеновый полупроводник и управляющий графеновый электрод, расположенный между первым и вторым графеновыми электродами и находящийся в контакте с графеновым полупроводником.

Тестовая структура состоит из основания, содержащего приповерхностный слой. Приповерхностный слой имеет рельефную ячеистую структуру с плотной упаковкой.

Изобретение относится к средствам для определения подлинности ценных бумаг и иной защищенной полиграфической продукции в различных спектральных диапазонах видимого, инфракрасного и ультрафиолетового света, отраженного, косо падающего и проходящего.

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности.
Наверх