Система и способ трехмерной визуализации яркостной радиолокационной карты местности

Изобретение относится к радиолокационным системам отображения данных, а именно к системам и способам трехмерной визуализации яркостной радиолокационной карты местности, и может применяться в охранных радиолокационных системах. Достигаемый технический результат - улучшение визуализации, а именно увеличение степени детализации радиолокационной информации. Указанный результат достигается за счет визуального трехмерного отображения уровня мощности радиолокационного сигнала, отраженного как подстилающей поверхностью, так и объектами, расположенными на ней, и расширение динамического диапазона за счет дополнительного использования псевдоцвета для визуального цветного отображения уровня мощности радиолокационного сигнала. 2 н. и 8 з.п. ф-лы, 5 ил.

 

Изобретение относится к радиолокационным системам отображения данных, а именно к системам и способам трехмерной визуализации яркостной радиолокационной карты местности, и может применяться в охранных радиолокационных системах для повышения детализации и, как следствие, информативности представления данных в охранных системах.

Широко известны системы двумерной визуализации радиолокационной информации, к которым относятся системы, отображающие двумерную яркостную радиолокационную карту с наложенной на нее целевой обстановкой. Визуализацию с разным уровнем детализации радиолокационной информации применяют в разных по назначению системах (системы обзора воздушного пространства или земной поверхности, бортовые системы). Основная функцией подобных систем - это отображение динамики целевой/яркостной обстановки окружающей среды.

Известен (патент РФ №2290663) способ трехмерной визуализации яркостной радиолокационной карты местности, заключающийся в создании режима повышенного разрешения, позволяющего сформировать матрицу A(i, j) двумерного радиолокационного изображения в виде совокупности амплитуд отраженного сигнала, зафиксированных в i-x пикселях по дальности и j-x синтезированных пикселях по азимуту (доплеровской частоте), отличающийся тем, что для каждого i, j-го элемента матрицы изображения поверхности, создающего радиолокационную тень, дополнительно с амплитудой сигнала отражения A(i, j) по длине тени измеряют высоту Н, значение которой присваивают другим элементам матрицы и тем самым формируют матрицу высот H(i, j).

В патентной заявке США №2009167595 описывают систему трехмерной визуализации яркостной радиолокационной карты местности, в которой строят радиолокационную карту рельефа местности по отраженному сигналу РЛС (радиолокационной станции), содержащему данные об азимуте, угле места и дальности относительно положения самолета, на котором установлена РЛС.

Недостатки описанных выше аналогов предложенного изобретения заключаются в том, что в них не используют уровень мощности отраженного радиолокационного сигнала и псевдоцвет для трехмерной цветной визуализации яркостной радиолокационной карты местности, вследствие чего степень визуализации, а именно детализации радиолокационной информации, не достаточно высока.

Наиболее близкими к предложенному изобретению являются система и способ трехмерной визуализации яркостной радиолокационной карты местности, изложенные в патенте США №6212132, в которых определяют азимут, дальность и мощность отраженного радиолокационного сигнала в двумерной полярной системе координат, после чего формируют трехмерную яркостную радиолокационную карту местности на основе полигонов. Данные система и способ выбраны в качестве прототипов предложенного изобретения.

Недостаток системы и способа прототипов заключается в том, что в них термин «трехмерное» используют условно для обозначения двумерного изображения, построенного на основе горизонтальных координат (X, Y) и яркостной координаты В без определения вертикальной координаты Н («высотной» компоненты) на основе уровня мощности радиолокационного сигнала, вследствие чего степень визуализации, а именно детализации радиолокационной информации, не достаточно высока.

Задачей заявленного изобретения является создание системы и способа трехмерной визуализации яркостной радиолокационной карты местности с улучшенной визуализацией, а именно, с увеличенной степенью детализации радиолокационной информации за счет визуального трехмерного отображения уровня мощности радиолокационного сигнала, отраженного как подстилающей поверхностью, так и объектами, расположенными на ней, и с расширенным динамическим диапазоном за счет дополнительного использования псевдоцвета для визуального цветного отображения уровня мощности радиолокационного сигнала.

Таким образом, решение задачи трехмерной визуализации яркостной радиолокационной карты местности основано на использовании энергетической характеристики (мощности) радиолокационных эхо-сигналов, отраженных от земной поверхности, для преобразования данных об азимуте, дальности и мощности A, R, P в трехмерную ортогональную систему координат (X, Y, Z), при этом энергетическая характеристика (мощность) отраженной поверхности Р преобразуют в вертикальную координату ("высотную" компоненту) трехмерной системы координат. Кроме того, для отображения радиолокационной информации вводят псевдоцвет. Формируемое в итоге трехмерное изображение яркостной радиолокационной карты местности отображает энергетические характеристики земной поверхности и не соответствует рельефу местности.

Поставленная задача решена путем создания системы трехмерной визуализации яркостной радиолокационной карты местности, содержащей радиолокационную антенну, соединенную с блоком формирования исходной яркостной радиолокационной карты местности, отличающейся тем, что дополнительно содержит блок преобразования в ортогональную систему координат, вход которого соединен с выходом блока формирования исходной радиолокационной карты местности, а выход которого соединен со входом блока преобразования цветовой модели и со входом блока вычисления яркостной вертикальной координаты ("высотной" компоненты), выходы которых соединены со входом блока формирования итоговой трехмерной яркостной радиолокационной карты местности, выход которого связан со входом устройства отображения, при этом для каждого пикселя исходной двумерной яркостной радиолокационной карты местности:

- блок формирования исходной двумерной яркостной радиолокационной карты местности выполнен с возможностью определения азимута, дальности и мощности отраженного радиолокационного сигнала в двумерной полярной системе координат, при этом формирования исходной двумерной яркостной радиолокационной карты местности;

- блок преобразования в ортогональную систему координат выполнен с возможностью преобразования данных текущего пикселя на исходной яркостной радиолокационной карте местности из двумерной полярной системы координат (A, R, P) в двумерную ортогональную систему координат (x, y, Y, U, V), где где A - азимут, R - дальность, P - мощность отраженного сигнала текущего пикселя на исходной двумерной яркостной радиолокационной карте местности, а (x, y) - горизонтальные координаты текущего пикселя на итоговой трехмерной радиолокационной карте местности с однозначным преобразованием (A, R) в (x, y), YUV-цветовая модель текущего пикселя, где цвет представлен в виде трех компонент (Y - ярость, U и V - две разностные компоненты цветопередачи);

- блок преобразования цветовой модели выполнен с возможностью преобразования цветовой модели текущего пикселя из YUV-цветовой модели в RGB-цветовую модель за счет наложения псевдоцвета с использованием заранее сформированной цветовой палитры, использующей RGB-цветовую модель, где R, G, B - интенсивности соответственно красного, зеленого и синего цветов;

- блок вычисления яркостной вертикальной координаты выполнен с возможностью вычисления яркостной вертикальной координаты Н текущего пикселя на итоговой трехмерной радиолокационной карте местности за счет использования Y-компоненты YUV-цветовой модели;

- блок формирования итоговой трехмерной яркостной радиолокационной карты местности выполнен с возможностью вывода текущего пикселя, в соответствии с его данными в ортогональной трехмерной системе координат (x, y, H, R, G, B), на устройство отображения, при этом формирования итоговой трехмерной радиолокационной карты местности.

В предпочтительном варианте осуществления системы трехмерной визуализации яркостной радиолокационной карты местности блок преобразования в ортогональную систему координат выполнен с возможностью преобразования данных текущего пикселя на исходной яркостной радиолокационной карте местности из двумерной полярной системы координат (A, R, P) в двумерную ортогональную систему координат (x, y, Y, U, V), при этом:

нормирования мощности отраженного сигнала на секторе сканирования радиолокационной станции путем однозначного преобразования [0, Pmax]->[0,1]: Pн=P/Pmax, где Pmax - максимальное значение радиолокационного сигнала на секторе сканирования;

- приведения нормированной мощности к динамическому диапазону цветовой модели YUV: С-kPн, где k=224-1;

- формирования компоненты YUV: Y=(C>>16), U=(C>>8), V=C.

В предпочтительном варианте осуществления системы трехмерной визуализации яркостной радиолокационной карты местности блок преобразования цветовой модели выполнен с возможностью преобразования цветовой модели текущего пикселя из YUV-цветовой модели в RGB-цветовую модель, при этом: R=Y+1.13983V; G=Y-0.39465U-0.58060V; B=Y+2.03211U.

В предпочтительном варианте осуществления система трехмерной визуализации яркостной радиолокационной карты местности дополнительно содержит блок совмещения, вход которого связан с выходом блока формирования итоговой трехмерной яркостной радиолокационной карты местности, а выход которого связан со входом устройства отображения, выполненный с возможностью вывода на устройство отображения топографической карты местности, соответствующей итоговой трехмерной радиолокационной карте местности.

В предпочтительном варианте осуществления система трехмерной визуализации яркостной радиолокационной карты местности выполнена с возможностью вывода на устройство отображения топографической карты местности, полупрозрачной по сравнению с итоговой трехмерной радиолокационной картой местности.

Поставленная задача решена также путем создания способа трехмерной визуализации яркостной радиолокационной карты местности, в котором

определяют с помощью блока формирования исходной двумерной яркостной радиолокационной карты местности азимут, дальность и мощность отраженного радиолокационного сигнала в двумерной полярной системе координат, при этом формируют исходную двумерную яркостную радиолокационную карту местности; отличающегося тем, что для каждого пикселя исходной двумерной яркостной радиолокационной карты местности выполняют следующие операции:

а) преобразовывают с помощью блока преобразования в ортогональную систему координат данные текущего пикселя на исходной яркостной радиолокационной карте местности из двумерной полярной системы координат (A, R, P) в двумерную ортогональную систему координат (x, y, Y, U, V), где где A - азимут, R - дальность, P - мощность отраженного сигнала текущего пикселя на исходной двумерной яркостной радиолокационной карте местности, а (x, y) - горизонтальные координаты текущего пикселя на итоговой трехмерной яркостной радиолокационной карте местности с однозначным преобразованием (А, R) в (x, y), YUV-цветовая модель текущего пикселя, где цвет представлен в виде трех компонент (Y - ярость, U и V - две разностные компоненты цветопередачи);

b) преобразовывают с помощью блока преобразования цветовой модели цветовую модель текущего пикселя из YUV-цветовой модели в RGB-цветовую модель за счет наложения псевдоцвета с использованием заранее сформированной цветовой палитры, использующей RGB-цветовую модель, где R, G, В - интенсивности соответственно красного, зеленого и синего цветов;

c) вычисляют с помощью блока вычисления яркостной вертикальной координаты яркостную вертикальную координату Н текущего пикселя на итоговой трехмерной яркостной радиолокационной карте местности за счет использования Y-компоненты YUV-цветовой модели;

d) выводят с помощью блока формирования итоговой трехмерной яркостной радиолокационной карты местности текущий пиксель, в соответствии с его данными в ортогональной трехмерной системе координат (x, y, H, R, G, B), на устройство отображения, при этом формируют итоговую трехмерную яркостную радиолокационную карту местности.

В предпочтительном варианте осуществления способа трехмерной визуализации яркостной радиолокационной карты местности выполняют операцию а), при этом:

нормируют мощность отраженного сигнала на секторе сканирования радиолокационной станции путем однозначного преобразования [0, Pmax]->[0,1]: Pн=P/Pmax, где Pmax - максимальное значение радиолокационного сигнала на секторе сканирования;

- приводят нормированную мощность к динамическому диапазону цветовой модели YUV: C=kPн, где k=224-1;

- формируют компоненты YUV: Y=(C>>16), U=(C>>8), V=C.

В предпочтительном варианте осуществления способа трехмерной визуализации яркостной радиолокационной карты местности выполняют операцию а), при этом полагают: R=Y+1.13983V; G=Y-0.39465U-0.58060V; B=Y+2.03211U.

В предпочтительном варианте осуществления способа трехмерной визуализации яркостной радиолокационной карты местности дополнительно выводят с помощью блока совмещения на устройство отображения топографическую карту местности, соответствующую итоговой трехмерной яркостной радиолокационной карте местности.

В предпочтительном варианте осуществления способа трехмерной визуализации яркостной радиолокационной карты местности выводят на устройство отображения топографическую карту местности, полупрозрачную по сравнению с итоговой трехмерной яркостной радиолокационной картой местности.

Для лучшего понимания предложенной полезной модели далее приводится его подробное описание с соответствующими чертежами.

Фиг.1. Общая функциональная схема системы трехмерной визуализации яркостной радиолокационной карты местности согласно изобретению.

Фиг.2. Блок-схема способа трехмерной визуализации яркостной радиолокационной карты местности согласно изобретению.

Фиг.3. Схема преобразования цветовой модели в системе и способе трехмерной визуализации яркостной радиолокационной карты местности согласно изобретению.

Фиг.4. Схема представления пикселя в итоговой трехмерной яркостной радиолокационной карте местности согласно изобретению.

Фиг.5. Пример итоговой трехмерной яркостной радиолокационной карты местности, сформированной на устройстве отображения одновременно с топографической картой местности согласно изобретению.

Рассмотрим вариант выполнения предложенных системы и способа трехмерной визуализации яркостной радиолокационной карты местности (Фиг.1-5). Сначала определяют с помощью блока 1 формирования исходной двумерной яркостной радиолокационной карты местности азимут, дальность и мощность отраженного радиолокационного сигнала в двумерной полярной системе координат, при этом формируют исходную двумерную яркостную радиолокационную карту местности (шаг 1).

Для каждого пикселя исходной двумерной яркостной радиолокационной карты местности выполняют следующие операции. Преобразовывают с помощью блока 2 преобразования в ортогональную систему координат данные текущего пикселя на исходной яркостной радиолокационной карте местности из двумерной полярной системы координат (A, R, P) в двумерную ортогональную систему координат (x, y, Y, U, V) (шаг 2), где A - азимут, R - дальность, P - мощность отраженного сигнала текущего пикселя на исходной двумерной радиолокационной карте местности, а (x, y) - горизонтальные координаты текущего пикселя на итоговой трехмерной яркостной радиолокационной карте местности с однозначным преобразованием (A, R) в (x, y), YUV -цветовая модель текущего пикселя, где цвет представлен в виде трех компонент (Y - ярость, U и V - две разностные компоненты цветопередачи). При этом на шаге 2: нормируют мощность отраженного сигнала на секторе сканирования радиолокационной станции путем однозначного преобразования [0, Pmax]->[0,1]: Pн=P/Pmax, где Pmax - максимальное значение радиолокационного сигнала на секторе сканирования; приводят нормированную мощность к динамическому диапазону цветовой модели YUV: C=kPн, где k=224-1; формируют компоненты YUV: Y=(C>>16), U=(C>>8), V=C.

Преобразовывают с помощью блока 3 преобразования цветовой модели цветовую модель текущего пикселя из YUV-цветовой модели в RGB-цветовую модель за счет наложения псевдоцвета с использованием заранее сформированной искусственной цветовой палитры (Фиг.3), использующей RGB-цветовую модель, где R, G, B - интенсивности соответственно красного, зеленого и синего цветов (шаг 3), при этом полагают: R=Y+1.13983V; G=Y-0.39465U-0.58060V; B=Y+2.03211U. Причем, чем меньше мощность отраженного радиолокационного сигнала, тем цвет пикселя радиолокационной карты будет стремиться к черному RGB черный = {0,0,0}. Самые яркие радиолокационные объекты будут отображаться красным цветом RGB красный = {1,0,0}.

Вычисляют с помощью блока 4 вычисления яркостной вертикальной координаты яркостную вертикальную координату Н текущего пикселя на итоговой трехмерной яркостной радиолокационной карте местности за счет использования Y-компоненты YUV-цветовой модели (шаг 4). Выводят с помощью блока 5 формирования итоговой трехмерной яркостной радиолокационной карты местности текущий пиксель, в соответствии с его данными в ортогональной трехмерной системе координат (x, y, H, R, G, B) (Фиг.4), на устройство отображения 6 одновременно с топографической картой местности, при этом формируют итоговую трехмерную яркостную радиолокационную карту местности (шаг 5) (Фиг.5).

Предпочтительно, чтобы предложенные система и способ трехмерной визуализации яркостной радиолокационной карты местности были реализованы на программируемом графическом процессоре, который может производить дополнительную обработку графических данных, включая рендеринг графического конвейера технологии OpenGL и DirectX на аппаратном уровне.

Хотя описанный выше вариант выполнения предложенного изобретения был изложен с целью иллюстрации предложенного изобретения, специалистам ясно, что возможны разные модификации, добавления и замены, не выходящие из объема и смысла предложенного изобретения, раскрытого в прилагаемой формуле изобретения.

1. Система трехмерной визуализации яркостной радиолокационной карты местности, содержащая радиолокационную антенну, соединенную с блоком формирования исходной яркостной радиолокационной карты местности, отличающаяся тем, что дополнительно содержит блок преобразования в ортогональную систему координат, вход которого соединен с выходом блока формирования исходной радиолокационной карты местности, а выход которого соединен со входом блока преобразования цветовой модели и со входом блока вычисления яркостной вертикальной координаты ("высотной" компоненты), выходы которых соединены со входом блока формирования итоговой трехмерной яркостной радиолокационной карты местности, выход которого связан со входом устройства отображения, при этом для каждого пикселя исходной двумерной яркостной радиолокационной карты местности:
- блок формирования исходной двумерной яркостной радиолокационной карты местности выполнен с возможностью определения азимута, дальности и мощности отраженного радиолокационного сигнала в двумерной полярной системе координат, при этом формирования исходной двумерной яркостной радиолокационной карты местности;
- блок преобразования в ортогональную систему координат выполнен с возможностью преобразования данных текущего пикселя на исходной яркостной радиолокационной карте местности из двумерной полярной системы координат (A, R, P) в двумерную ортогональную систему координат (x, y, Y, U, V), где где A - азимут, R - дальность, P - мощность отраженного сигнала текущего пикселя на исходной двумерной радиолокационной карте местности, а (x, y) - горизонтальные координаты текущего пикселя на итоговой трехмерной яркостной радиолокационной карте местности с однозначным преобразованием (A, R) в (x, y), YUV - цветовая модель текущего пикселя, где цвет представлен в виде трех компонент (Y - ярость, U и V - две разностные компоненты цветопередачи);
- блок преобразования цветовой модели выполнен с возможностью преобразования цветовой модели текущего пикселя из YUV-цветовой модели в RGB-цветовую модель за счет наложения псевдоцвета с использованием заранее сформированной цветовой палитры, использующей RGB-цветовую модель, где R, G, B - интенсивности соответственно красного, зеленого и синего цветов;
- блок вычисления яркостной вертикальной координаты выполнен с возможностью вычисления яркостной вертикальной координаты Н текущего пикселя на итоговой трехмерной яркостной радиолокационной карте местности за счет использования Y-компоненты YUV-цветовой модели;
- блок формирования итоговой трехмерной яркостной радиолокационной карты местности выполнен с возможностью вывода текущего пикселя, в соответствии с его данными в ортогональной трехмерной системе координат (x, y, H, R, G, B), на устройство отображения, при этом формирования итоговой трехмерной яркостной радиолокационной карты местности.

2. Система трехмерной визуализации яркостной радиолокационной карты местности по п.1, отличающаяся тем, что блок преобразования в ортогональную систему координат выполнен с возможностью преобразования данных текущего пикселя на исходной яркостной радиолокационной карте местности из двумерной полярной системы координат (A, R, P) в двумерную ортогональную систему координат (x, y, Y, U, V), при этом:
- нормирования мощности отраженного сигнала на секторе сканирования радиолокационной станции путем однозначного преобразования [0, Pmax]->[0,1]: Pн=P/Pmax, где Pmax - максимальное значение радиолокационного сигнала на секторе сканирования;
- приведения нормированной мощности к динамическому диапазону цветовой модели YUV:
C=kPн, где k=224-1;
- формирования компоненты YUV: Y=(C>>16), U=(C>>8), V=C.

3. Система трехмерной визуализации яркостной радиолокационной карты местности по п.1, отличающаяся тем, что блок преобразования цветовой модели выполнен с возможностью преобразования цветовой модели текущего пикселя из YUV-цветовой модели в RGB-цветовую модель, при этом: R=Y+1.13983V; G=Y-0.39465U-0.58060V; B=Y+2.03211U.

4. Система трехмерной визуализации яркостной радиолокационной карты местности по п.1, отличающаяся тем, что дополнительно содержит блок совмещения, вход которого связан с выходом блока формирования итоговой трехмерной яркостной радиолокационной карты местности, а выход которого связан со входом устройства отображения, выполненный с возможностью вывода на устройство отображения топографической карты местности, соответствующей итоговой трехмерной яркостной радиолокационной карте местности.

5. Система трехмерной визуализации яркостной радиолокационной карты местности по п.4, отличающаяся тем, что выполнена с возможностью вывода на устройство отображения топографической карты местности, полупрозрачной по сравнению с итоговой трехмерной яркостной радиолокационной картой местности.

6. Способ трехмерной визуализации яркостной радиолокационной карты местности, в котором определяют с помощью блока формирования исходной двумерной яркостной радиолокационной карты местности азимут, дальность и мощность отраженного радиолокационного сигнала в двумерной полярной системе координат, при этом формируют исходную двумерную яркостную радиолокационную карту местности; отличающийся тем, что для каждого пикселя исходной двумерной яркостной радиолокационной карты местности выполняют следующие операции:
а) преобразовывают с помощью блока преобразования в ортогональную систему координат данные текущего пикселя на исходной яркостной радиолокационной карте местности из двумерной полярной системы координат (A, R, P) в двумерную ортогональную систему координат (x, y, Y, U, V), где где A - азимут, R - дальность, P - мощность отраженного сигнала текущего пикселя на исходной двумерной радиолокационной карте местности, а (x, y) - горизонтальные координаты текущего пикселя на итоговой трехмерной яркостной радиолокационной карте местности с однозначным преобразованием (A, R) в (x, y), YUV - цветовая модель текущего пикселя, где цвет представлен в виде трех компонент (Y - ярость, U и V - две разностные компоненты цветопередачи);
b) преобразовывают с помощью блока преобразования цветовой модели цветовую модель текущего пикселя из YUV-цветовой модели в RGB-цветовую модель за счет наложения псевдоцвета с использованием заранее сформированной цветовой палитры, использующей RGB-цветовую модель, где R, G, B - интенсивности соответственно красного, зеленого и синего цветов;
c) вычисляют с помощью блока вычисления яркостной вертикальной координаты яркостную вертикальную координату Н текущего пикселя на итоговой трехмерной яркостной радиолокационной карте местности за счет использования Y-компоненты YUV-цветовой модели;
d) выводят с помощью блока формирования итоговой трехмерной яркостной радиолокационной карты местности текущий пиксель, в соответствии с его данными в ортогональной трехмерной системе координат (x, y, H, R, G, B), на устройство отображения, при этом формируют итоговую трехмерную яркостную радиолокационную карту местности.

7. Способ трехмерной визуализации яркостной радиолокационной карты местности по п.6, отличающийся тем, что выполняют операцию а), при этом:
- нормируют мощность отраженного сигнала на секторе сканирования радиолокационной станции путем однозначного преобразования [0, Pmax]->[0,1]: Pн=P/Pmax; где Pmax - максимальное значение радиолокационного сигнала на секторе сканирования;
- приводят нормированную мощность к динамическому диапазону цветовой модели YUV:
С=kPн, где k=224-1;
- формируют компоненты YUV: Y=(C>>16), U=(C>>8), V=C.

8. Способ трехмерной визуализации яркостной радиолокационной карты местности по п.6, отличающийся тем, что выполняют операцию а), при этом полагают: R=Y+1.13983V; G=Y-0.39465U-0.58060V; B=Y+2.03211U.

9. Способ трехмерной визуализации яркостной радиолокационной карты местности по п.6, отличающийся тем, что дополнительно выводят с помощью блока совмещения на устройство отображения топографическую карту местности, соответствующую итоговой трехмерной яркостной радиолокационной карте местности.

10. Способ трехмерной визуализации яркостной радиолокационной карты местности по п.8, отличающийся тем, что выводят на устройство отображения топографическую карту местности, полупрозрачную по сравнению с итоговой трехмерной яркостной радиолокационной картой местности.



 

Похожие патенты:

Изобретение относится к радиолокационной технике, в частности к бортовым радиолокационным станциям (РЛС) воздушных судов, применяющим метод синтезирования апертуры антенны.

Изобретение относится к радиолокации и может быть использовано в радиолокационных станциях для улучшения обнаружения радиолокационных сигналов на фоне пассивных помех.

Заявляемые изобретения могут быть использованы в навигационных, пеленгационных, локационных средствах для определения местоположения источников радиоизлучений (ИРИ) с летно-подъемного средства (ЛПС), в частности беспилотного летательного аппарата (БЛА).

Изобретение относится к области радиовидения и может быть применено: для обнаружения предметов в миллиметровом диапазоне волн под одеждой человека, в таможенном контроле грузов, в радиоастрономии для картографирования области неба и протяженных небесных объектов, в дистанционном зондировании земной поверхности, в охранных системах, работающих в условиях плохой видимости.

Изобретение относится к области локации и может быть использовано в радиолокации, в акустической локации, в гидролокации, в оптической локации, включая лазерную локацию, для обнаружения различных объектов, измерения их координат и параметров движения, а также для контроля состояния водной среды, земной и водной поверхности, воздушного пространства.

Изобретение относится к области сельского хозяйства, а именно к технологиям точного земледелия. .

Изобретение относится к устройству радара формирования подповерхностного изображения, содержащему узел передачи и узел приема, узел передачи является выполненным с обеспечением возможности передавать первый радиоволновый сигнал в лепестке на выбранный участок земли под выбранным углом места к участку земли.

Изобретение относится к летательным аппаратам с радиолокационной аппаратурой для дистанционного зондирования земной (морской) поверхности. .

Изобретение относится к области космонавтики, а именно к обработке изображения Земной поверхности и передаче полученной информации на Землю, и предназначено для приема данных от бортовой информационной аппаратуры космического аппарата (КА), предварительной обработки этой информации и передачи преобразованной информации на пункты приема информации.

Изобретение относится к бортовым радиолокационным станциям (БРЛС) летательных аппаратов, применяющим синтезирование апертуры антенны, и может использоваться в гражданской и военной авиации. Достигаемый технический результат - повышение азимутального разрешения и контрастности парциального кадра радиолокационного изображения (РЛИ) участка поверхности, близкого к направлению полета летательного аппарата. Указанный результат достигается за счет того, что заявленный способ состоит в объединении парциальных кадров РЛИ, каждый из которых получен посредством излучения когерентного импульсного зондирующего сигнала, облучения суммарной диаграммой направленности (ДН) антенны БРЛС соответствующего парциального участка картографируемой поверхности, приема отраженных сигналов, аналого-цифрового преобразования принятых сигналов и цифровой обработки полученных данных. При этом для устранения неоднозначности доплеровской частоты сигналов, отраженных от областей поверхности, расположенных слева и справа от вектора путевой скорости носителя БРЛС, в заявляемом способе дополнительно применяются прием отраженных сигналов разностной азимутальной диаграммой направленности антенны и двухканальная моноимпульсная обработка отраженных сигналов. 6 ил.

Изобретение относится к области радиолокации. Достигаемый технический результат изобретения - получение повышенного разрешения за счет обработки сигнала. Указанный результат достигается за счет того, что заявленный способ основан на излучении сигналов, приеме антенной отраженных от земной поверхности сигналов и их накоплении при перемещении луча антенны в переднем секторе углов по азимуту, синтезировании апертуры антенны и формировании радиолокационного изображения, при этом излучение и прием отраженного сигнала во всем секторе обзора осуществляется когерентно при сканировании луча вблизи нулевого ракурса, когда реальный луч, плавно перемещаясь, охватывает весь передний сектор, при этом создавая за счет сканирования дополнительное расширение спектра принимаемого сигнала. Затем осуществляют определение фазового набега за период повторения принятого когерентного радиолокационного сигнала, компенсацию фазового набега, формирование двух сигналов из скомпенсированного по фазе сигнала с разными знаками крутизны частотной модуляции, выделение сигнала с положительной и отрицательной крутизнами, соответствующим сигналам, принятым справа и слева относительно направления движения летательного аппарата, пропорциональными азимутальному направлению сигнала, спектральный анализ полученных сигналов, объединение полученных изображений из двух сигналов в одно радиолокационное изображение. 2 ил.

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью (радиовидению) на базе четырехканальной доплеровской радиолокационной станции с четырехэлементной антенной решеткой. Достигаемый технический результат - измерение координат элементов земной поверхности при формировании трехмерного изображения поверхности в зоне видимости РЛС. Сущность заявленного способа заключается в формировании на заданном промежутке времени синтезирования радиолокационного изображения участка земной поверхности в виде совокупности комплексных амплитуд сигналов отражения в элементах разрешения дальности на доплеровских частотах одновременно в четырех измерительных каналах, способ отличается тем, что для каждой четверки амплитуд соответствующих элементов изображений, полученных на одной и той же частоте, моноимпульсным методом измеряют угловые координаты соответствующего элемента поверхности и пересчитывают их в прямоугольные координаты антенной системы.

Изобретение относится к бортовым радиолокационным системам наблюдения за земной поверхностью и воздушной обстановкой, работающим в режиме реального луча на базе плоской антенной решетки. Достигаемый технический результат - формирование трехмерного изображения объектов отражения в зоне обзора с применением экономичной двухэтапной процедуры повышения разрешающей способности антенной решетки по угловым координатам. Указанный результат достигается за счет того, что способ формирования трехмерного изображения земной поверхности и воздушной обстановки с помощью антенной решетки заключается в последовательном сканировании зоны обзора со смещением луча антенны на ширину диаграммы направленности и формировании при каждом положении луча трехмерного изображения объектов отражения за счет двухэтапной обработки матрицы комплексных измерений, принятых в каналах антенной решетки, позволяющей оценить амплитуды поля отражения в угловых элементах дискретизации зоны видимости антенны во всех элементах разрешения дальности и получить пространственные координаты всех отражающих элементов в зоне обзора. 1 ил.
Изобретение относится к области радиовидения и может быть применено для обнаружения в миллиметровом диапазоне волн неоднородностей линейной формы в оптически непрозрачных средах. Достигаемый технический результат изобретения - определение точной формы линейных неоднородностей и повышение надежности их обнаружения при наличии мешающих факторов. Указанный результат достигается за счет того, что исследуемый объект освещается плоскополяризованной радиоволной и для каждой элементарной площадки на поверхности объекта исследования проводятся измерения, при которых угол поворота плоскости поляризации падающей волны к оси X принимает значения φ=180°·i/n, где i=0,…, n-1, n - число измерений. Если на рассмотренном участке расположена неоднородность линейной формы, то параметры отраженной волны зависят от угла φ, что позволяет обнаружить наличие неоднородности в области, соответствующей данной площадке. Способ может быть реализован аппаратурой, в состав которой входит генератор линейно поляризованного СВЧ излучения, поляризационная отражающая решетка, антенный блок с системой сканирования, приемник СВЧ излучения, аналого-цифровой преобразователь, блок управления и обработки результатов измерений. 2 ил.

Изобретение относится к радиолокации и может использоваться для определения состояния морской поверхности, а также для решения задач экологического контроля и раннего предупреждения о развитии чрезвычайных ситуаций, связанных с разливами нефти. Достигаемый технический результат - обеспечение экологического контроля и раннего предупреждения о развитии чрезвычайных ситуаций, связанных с разливами нефти. Указанный результат достигается за счет того, что информационно-аналитическая система содержит антенный пост, расположенный на берегу и соединенный по цифровым коммуникационным каналам с программно-аналитическим центром (ПАЦ), выполняющим цифровую обработку, при этом антенный пост выполнен в виде навигационной радиолокационной станции (НРЛС) с возможностью работы в двух режимах: в режиме импульсной модуляции с помощью магнетронного или твердотельного передатчика, в зависимости от дальности наблюдаемой зоны, и режиме фазоманипулированной модуляции с помощью твердотельного передатчика, при этом НРЛС выполнена с возможностью осуществления непрерывного кругового или секторного обзора надводной обстановки, автоматического захвата и сопровождения обнаруженных целей, выходы «первичной локационной информации» и входы «управления» НРЛС являются портами цифровых коммуникационных каналов, программно-аналитический центр соединен с диспетчерским пунктом и потребителями локационной информации. 14 з.п. ф-лы, 2 ил.

Изобретение относится к областям радиолокации и дистанционного зондирования и может быть использовано для обнаружения протяженных неоднородностей в оптически непрозрачных средах. Достигаемый технический результат - уменьшение влияния помех, возникающих из-за интерференции отраженных объектом волн, и увеличение отношения сигнал-шум. Указанный результат достигается за счет того, что зондируемый объект освещается электромагнитным излучением, в котором плоскость колебаний электрической компоненты периодически поворачивается на девяносто градусов. При взаимодействии с объектом освещающее излучение рассеивается и частично деполяризуется из-за причин, связанных со структурной неоднородностью, расположенной в объекте, и особенностью ее ориентации по отношению к полю. Из деполяризованного излучения последовательно выделяются компоненты, поляризованные ортогонально по отношению к поляризации освещающего объект излучения. Эти компоненты преобразуются в электрические сигналы, между которыми определяется разность. Ее величина является индикатором наличия или отсутствия неоднородности в объекте. 2 ил.

Изобретение относится к области радиолокации, в частности к радиолокационным станциям, устанавливаемым на летательных аппаратах. Достигаемый технический результат - стабилизация положения зоны картографирования по курсу летательного аппарата. Способ картографирования земной поверхности бортовой радиолокационной станцией основан на излучении и приеме антенной отраженных от земной поверхности сигналов при перемещении луча антенны в заданном секторе углов по азимуту, синтезировании апертуры антенны и формировании покадрового радиолокационного изображения поверхности Земли, причем перемещение луча антенны от границы заданного сектора углов по азимуту осуществляется при изменении курса летательного аппарата, а граница, с которой начинает формироваться каждый последующий кадр, меняется на противоположную. Способ может быть реализован радиолокационной станцией, состоящей из бортовой цифровой вычислительной машины, блока управления лучом, антенны, передатчика, приемника, блока формирования радиолокационного изображения земной поверхности, индикатора. 4 ил.

Группа изобретений относится к области радиовидения и может быть использована при проектировании радиотехнических систем. Достигаемый технический результат - снижение уровня помех на выходе отдельного канала формирования радиоголограммы без качественного увеличения его стоимости. Указанный результат достигается за счет разноса частот электромагнитной волны W1, которой облучают объект, и электромагнитной волны W2, которой облучают пространственную плоскость или некоторую криволинейную поверхность, на величину Δf, формирования радиоголограммы объекта в виде амплитудно-фазового распределения сигнала биений с разностной частотой Δf амплитуды суммы отраженной от объекта электромагнитной волны W3 и электромагнитной волны W2 по области регистрации радиоголограммы, зафиксированного относительно сигнала с частотой f0=Δf. При этом на выходе отдельного канала регистрации радиоголограммы отсутствуют фликкер-шум и постоянная составляющая, обусловленная мощностью электромагнитной волны W2, что позволяет повысить чувствительность регистрирующей матрицы без качественного увеличения ее стоимости. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области радиолокации и может быть использовано для мониторинга протяженных сред и объектов. Достигаемый технический результат - повышение скорости мониторинга протяженных сред и объектов, а также уменьшение габаритов фокусирующей системы. Способ основан на излучении зондирующих сигналов и последующем приеме отраженных сигналов с помощью зонной пластинки, сфокусированной на точку объекта, положение которой в продольном направлении зависит от частоты, при этом для излучения зондирующих сигналов используют передающую антенну, размещенную на оси системы в пределах непрозрачной для радиоволн первой зоны Френеля осесимметричной зонной пластинки; ширина луча передающей антенны соответствует угловому сектору зоны мониторинга, а ширина спектра излучаемого ею сигнала соответствует глубине этой зоны, причем для одновременного приема сигналов, отраженных от точек протяженного объекта, расположенных на одинаковой дальности, применяют матрицу приемных элементов, помещенную на фокальной поверхности осесимметричной зонной пластинки, после чего используют принятые элементами матрицы приемных элементов сигналы определенной частоты для построения картины сцены, соответствующей конкретному по дальности сечению. 5 ил., 1 табл.
Наверх