Способ обработки оптического изображения сферических частиц топливной загрузки керметного стержня



Способ обработки оптического изображения сферических частиц топливной загрузки керметного стержня
Способ обработки оптического изображения сферических частиц топливной загрузки керметного стержня
Способ обработки оптического изображения сферических частиц топливной загрузки керметного стержня

 


Владельцы патента RU 2513663:

Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") (RU)

Изобретение относится к области ядерной энергетики и может быть использовано при изготовлении тепловыделяющих элементов для ядерных реакторов. Согласно способу производят сканирование изображения сферических частиц круговым оптическим пятном и определяют площадь их проекций. Диаметр пятна выбирают меньше нижней границы диапазона диаметров изображения частиц. Выделяют из изображения области, в которых площадь пересечения сканирующего пятна с изображениями частиц равна площади сканирующего пятна. Площадь проекции каждой частицы определяют как площадь круга, диаметр которого равен сумме диаметра сканирующего пятна и диаметра выделенной в этой частице области. Технический результат - исключение оператора и автоматизация обработки изображений. 3 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к области ядерной энергетики, в частности к технологии керметных тепловыделяющих элементов активных зон ядерных реакторов малой мощности, и может найти применение в автоматизированных и автоматических линиях на предприятиях изготовления твэлов.

Уровень техники

Одним из направлений в ядерной энергетики является использование твэлов, в которых тепловыделяющие сердечники набраны из топливных элементов в виде керметных стержней (см., например, Гаврилин С.С., Денискин В.П. и др. Новое поколение твэлов на основе микротоплива для ВВЭР. Атомная энергия. - 2004. - №96, вып.4. - с.280; Патент РФ №2313142 Керметный тепловыделяющий элемент водоводяного ядерного реактора / Гаврилин С.С., Денискин В.П. и др. Опубл. 20.12.2007. Бюл. №35.)

В отличие от твэлов, в которых сердечники набираются из топливных элементов в виде спрессованных таблеток относительно небольшой длины, керметные стержни представляют собой цилиндрическую циркониевую капсулу длиной около 50 мм с заключенным в ней ядерным топливом и матричным материалом (см., например, Патент РФ №2371789 Способ изготовления керметного стержня топливного сердечника тепловыделяющего элемента ядерного реактора / Гаврилин С.С., Денискин В.П. и др. Опубл. 27.10.2009. Бюл. №30.). Топливная загрузка такого стержня реализуется объемно-весовым дозированием и представляет собой совокупность сферических частиц размером 0,4-0,6 мм при среднем количестве порядка 104.

Поскольку керметный стержень является своеобразным тепловыделяющим элементом, то возникает задача его всесторонней паспортизации, в том числе по гранулометрическому составу частиц, составляющих генеральную совокупность топливной загрузки стержня.

Применяемые для этой цели оптические способы, основанные на обработке изображений проекций частиц, предполагают их физическую дезагломерацию, например, помещением загрузки топливных частиц между двумя плоскими полупрозрачными проводящими электродами и приложением электрического поля напряженностью 30-50 кВ/см. При этом кулоновские силы полностью компенсируют силы сцепления частиц друг с другом и в этих условиях возникновение вторичных (слипшихся) частиц становится маловероятным (см., например, О.А.Мяздриков. Дифференциальные методы гранулометрии. М., Металлургия, с.39). Такой способ может быть применен для выборочного анализа, однако весьма сложен в аппаратном отношении, особенно с учетом требований автоматизации производства.

Известен способ обработки оптического изображения сферических частиц, в котором на изображение направляют круглое световое пятно изменяемого диаметра и сканируют им изображение, последовательно останавливаясь на каждой частице и меняя диаметр пятна, регистрируют его размер при совпадении пятна с изображением частицы (см., например, справочник под ред. П.Профоса «Измерения в промышленности», кн.3, Способы измерения и аппаратура, п.1.9.3.2 Микроскопический анализ. М., 1990).

Недостатком такого способа является необходимость присутствия оператора при решении задачи дезагломерации находящихся в поле зрения соприкасающихся и проекционно агломерированных частиц, что исключает возможность автоматизации производства.

С предлагаемым способом обработки оптического изображения сферических частиц топливной загрузки керметного стержня последний способ совпадает по операциям сканирования изображения круговым оптическим пятном, совмещения пятна с изображением каждой частицы и определения площадей их проекций.

По совокупности существенных признаков последний способ наиболее близок к предлагаемому и выбран в качестве прототипа.

Раскрытие изобретения

Решаемая задача - автоматизация обработки изображений сферических частиц топливной загрузки керметного стержня и паспортизация результатов обработки.

Данную задачу решает предлагаемый способ обработки оптического изображения сферических частиц топливной загрузки керметного стержня, который заключается в сканировании изображения круговым оптическим пятном, совмещении пятна с изображением каждой частицы и определении площадей их проекций.

В соответствии с настоящим изобретением диаметр пятна выбирают меньше нижней границы диапазона диаметров изображения частиц при условии перекрытия пятном областей соприкосновения частиц, выделяют из изображения области, в которых площадь пересечения сканирующего пятна с изображениями частиц равна площади сканирующего пятна, определяют площади выделенных областей, а площадь проекции каждой частицы определяют из соотношения S=(D+d)2π/4, где S - площадь проекции частицы, D - диаметр выделенной области в изображении частицы, d - диаметр сканирующего пятна.

Сущность предлагаемого изобретения заключается в следующем. Пусть сканирующее пятно коснулось изображения некоторой частицы. Значение площади их пересечения, отнесенное к центру сканирующего пятна, равно нулю. По мере продвижения сканирующего пятна к центру изображения частицы значение площади пересечения растет, достигая значения площади сканирующего пятна при нахождении его внутри изображения частицы. Выделяемая таким образом область характеризуется диаметром, равным разности диаметров частицы и сканирующего пятна, причем все частицы загрузки имеют выделенные области в силу выбора диаметра сканирующего пятна. Дезагломерация касающихся частиц при этом обеспечена тем, что площадь пересечения сканирующего пятна при его пересечении с проекциями двух или более частиц меньше его площади. Поскольку выделенные области изолированы друг от друга, то расчет их площадей является стандартной задачей любой программы гранулометрического анализа и не представляет затруднений (см., например, автоматизированную систему анализа изображений SIAMS 700, ООО «СИАМС», 630002, Екатеринбург, а/я 50). Окончательно для определения площади изображения частицы вычисляется площадь круга, диаметр которого равен сумме диаметра сканирующего пятна и диаметра выделенной в этой частице области.

Ограничение на диаметр сканирующего пятна снизу обеспечивает разделение проекционных агломератов, образованных касающимися частицами различных диаметров при отношении максимального диаметра к минимальному менее 1,5.

В силу своих отличий от известных предлагаемый способ обработки не требует присутствия оператора при анализе оптического изображения сферических топливных частиц, позволяет разделять изображения касающихся частиц и проекционных агломератов, что обеспечивает возможность автоматизации производства твэлов с сердечниками из керметных стержней с повышением достоверности анализа параметров топливной загрузки.

Краткое описание чертежей

На фиг.1 показан фрагмент негативного изображения оптической проекции сферических частиц.

На фиг.2 приведен результат сканирования изображения фиг.1 с разделенными образами частиц.

Фиг.3 показывает гистограмму распределения частиц фиг.1 по площадям экваториального сечения, рассчитанным в пиксельной мере.

Осуществление изобретения

Сферические частицы в количестве около 1500 шт. помещались на рабочем стекле сканера типа HP SCANJET 3670 и оцифровывались на поле размером 1024×4096 пикселей при диапазоне оцифровки размеров отдельных частиц 40-50 пикселей. Негативное изображение оцифрованной проекции приведено на фиг.1.

Изображение, показанное на фиг.2, получено при сканировании изображения фиг.1 кругом диаметром 30 пикселей. Образы отдельных частиц уменьшены, поскольку выделяются только области, в которых сканирующее пятно целиком размещается внутри изображения частицы. Этот результат получен применением операции свертки изображения фиг.1 с изображением сканирующего круга и выделением из сверточного образа областей, где значение свертки равно площади сканирующего круга. Указанные операции математически реализуют операции заявляемого способа.

На фиг.3 приведена гистограмма распределения частиц по площадям их проекций. Как указывалось, для этого вычисляется площадь круга, диаметр которого равен сумме диаметра сканирующего пятна и диаметра выделенной в этой частице области. Погрешность в определении площадей отдельных частиц 1,5-3%.

Таким образом, обработка оптического изображения сферических частиц не требует присутствия оператора при анализе изображения загрузки с соприкасающимися или проекционно агломерированными частицами, что обеспечивает возможность автоматического и достоверного анализа и паспортизации загрузок, насчитывающих тысячи частиц.

Способ обработки оптического изображения сферических частиц топливной загрузки керметного стержня, заключающийся в сканировании изображения круговым оптическим пятном, совмещении пятна с изображением каждой частицы и определении площадей их проекций, отличающийся тем, что диаметр пятна выбирают меньше нижней границы диапазона диаметров изображения частиц при условии перекрытия пятном областей соприкосновения частиц, выделяют из изображения области, в которых площадь пересечения сканирующего пятна с изображениями частиц равна площади сканирующего пятна, определяют площади выделенных областей, а площадь проекции каждой частицы определяют из соотношения:
S=(D+d)2π/4,
где S - площадь проекции частицы,
D - диаметр выделенной области в изображении частицы,
d - диаметр сканирующего пятна.



 

Похожие патенты:

Группа изобретений относится к системе и к способу охарактеризовывания частиц в потоке продуктов помола зерна в установке для его помола, где охарактеризовывание включает в себя охарактеризовывание частиц зерна по размеру.

Способ включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком. Используют измерительный канал, содержащий исследуемую среду, зондируемую световым пучком, и дополнительный канал, который заполнен очищенной от пыли газовой смесью.

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом является повышение точности измерения.

Изобретение относится к контрольно-измерительной технике, в частности к оптическим устройствам контроля параметров дисперсных сред, и может найти применение при контроле запыленности газов и загрязнения жидкостей.

Изобретение относится к измерительной технике, а более конкретно - к фотоэлектрическим устройствам, предназначенным для исследования дисперсных систем. Устройство предназначено для калибровки оптической аппаратуры, измеряющей средний диаметр дисперсных частиц, и содержит кювету с прозрачной жидкостью, измерительный канал, состоящий из микроскопа и фоторегистратора, и осветительный канал, содержащий два источника света с различными длинами волн.

Изобретение относится к контрольно-измерительной технике, в частности к оптическим методам контроля параметров дисперсных сред, и может найти применение при контроле запыленности газов и загрязнения жидкостей.

Изобретение относится к технике измерений, может использоваться в электронной промышленности, медицине, биологии, экологии, химической промышленности, порошковой металлургии и других областях науки и техники, связанных с анализом взвешенных частиц.

Заявляемый способ может найти применение при создании и производстве наноструктурированных пленок из пленкообразующих золей для газочувствительных сенсоров. Способ заключается в том, что изготавливают эталонные образцы с заданной начальной концентрацией наночастиц.

Использование: для калибровки оптической измерительной аппаратуры при оценке среднего диаметра дисперсных частиц. Сущность: заключается в том, что проводят измерения характеристик дисперсной системы калибруемой аппаратурой и фоторегистрирующим прибором с последующим определением зависимости сигнала калибруемой аппаратуры от среднего диаметра частиц, определенного визуально, при этом воздействуют ультразвуком на жидкость, создавая дисперсную систему, освещают ее периодическими импульсами света длительностью Ти≤0,1Туз (где Туз - период ультразвуковых колебаний), синхронизованными с ультразвуковыми колебаниями, во время импульсов света измеряют калибруемой аппаратурой и определяют по результатам фоторегистрации средний диаметр дисперсных частиц (dср.а и dср.ф соответственно), изменяют сдвиг фаз между световыми импульсами и ультразвуковыми колебаниями, а также мощность ультразвука, после чего измерения и фоторегистрацию повторяют до получения требуемого количества калибровочных уровней, определяют калибровочную характеристику как зависимость величины dср.а от dср.ф.

Изобретение относится к технике измерений, может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла.

Изобретение относится к измерительной технике, а точнее к оптическим методам регистрации агрегации частиц при проведении иммунохимических реакций, например, с применением частиц микронного размера с иммобилизованными на них реагентами. При протекании реакции такие частицы агрегируют, образование агрегатов регистрируется турбидиметрическим или нефелометрическим методом. Из-за больших размеров исходных частиц их взаимное сближение за счет броуновского движения происходит медленно, а образование агрегатов происходит неоднородно по реакционному объему, поэтому для увеличения скорости агрегации и точности ее наблюдения суспензию реагентов необходимо перемешивать. Перемешивание осуществляют или за счет циклического движения магнитных частиц, помещаемых в смесь, или потоком смеси в режиме затопленной струи, или путем возвратно-поступательного перемещения смеси вдоль кюветы, что значительно ускоряет реакцию и увеличивает точность измеряемой кинетики. 3 н. и 2 з.п. ф-лы, 6 ил.

Изобретение относится к технике измерений, может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла. Устройство анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами включает лазер в качестве источника зондирующего излучения, светоделитель (полупрозрачное зеркало), объектив, фотоприемник, аналого-цифровой преобразователь, электронно-вычислительную машину, ультразвуковой генератор и излучатель ультразвуковых колебаний. Также устройство содержит канал контроля металлических частиц, располагающийся внизу масляного поддона картера двигателя, и канал контроля угарных частиц, располагающийся па высоте минимального уровня масла в картере. При этом каждый из каналов содержит фотоприемник, усилитель, аналого-цифровой преобразователь и излучатель ультразвуковых колебаний. Также устройство содержит цифроаналоговый преобразователь и коммутатор для возможности последовательного переключения излучателей ультразвуковых колебаний в каналах контроля. При этом все ультразвуковые излучатели управляются через цифроаналоговый преобразователь электронно-вычислительной машиной, в соответствии с математической моделью колебаний поверхности частицы от воздействия облучений и с параметрами температуры, получаемой при помощи датчика температуры, усилителя и аналого-цифрового преобразователя. Техническим результатом является повышение точности измерения угарных и металлических частиц, повышение информативности данных для оценки концентрации взвешенных металлических и угарных дисперсных частиц, находящихся в масле, в частности дает возможность контролировать качество работы двигателя, оставшийся ресурс работы масла до его замены. 1 ил.

Изобретение относится к контрольно-измерительной технике, а именно к оптико-электронным способам контроля и регулирования параметров дисперсных сред. По зарегистрированному импульсному световому изображению рассеченной плоской с малой толщиной части факела распыла определяют параметры распыла капель в данной части факела с помощью системы единиц дисперсности на основе формулы объема шара (сферы) капли, для чего в указанном изображении производят сортировку и подсчет количества капель стандартных классов диапазонов микроскопических размеров в их смежной последовательности. Для реализации способа разработана двухлазерная установка с цифровыми устройствами обработки сигналов изображений и ЭВМ. Изобретение позволяет расширить функциональные возможности способа и установки за счет измерения скоростей диспергированных капель и получения результатов оценки параметров факела распыла посредством анализа величин приведенных интегральных объемов капель на единицу площади с сортировкой по последовательности смежных диапазонов размеров капель. 2 н. и 2 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к способам автоматического контроля крупности частиц в потоке пульпы в процессе измельчения материала и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности. Способ автоматического контроля крупности частиц в потоке пульпы включает периодическое ощупывание частиц материала микрометрическим щупом с преобразованием величины частиц, зафиксированных механизмом ощупывания, в электрический сигнал, пропорциональный их абсолютному размеру. Для чего отбирают пробу пульпы, фильтруют, направляют в кондиционирующую емкость. Затем измеряют плотность пробы в кондиционирующей емкости. При этом разбавляют пробу пульпы водой до состояния, обеспечивающего получение монослоя частичек материала при фиксировании их микрометрическим щупом. Затем производят прокачку разбавленной пробы в режиме циркуляции по контуру, включающему кондиционирующую емкость и камеру измерения. После чего осуществляют измерение крупности частичек материала в циркулирующем потоке, проходящем через камеру измерения, в течение периода времени, длительность которого задается по результатам предварительной калибровки, и производят вычисление содержания контролируемого класса по результатам измерения содержаний промежуточных классов крупности. Техническим результатом является повышение надежности и точности измерений гранулометрического состава материала в потоке пульпы. 4 ил.

Изобретение относится к области измерения характеристик аэрозольных частиц оптическими методами. Способ заключается в измерении ослабления оптического излучения в видимой и ближней инфракрасной областях спектра. Максимальный размер и концентрацию аэрозольных частиц определяют по формулам , , где Dmax - максимальный диаметр частиц, мкм; Cm - массовая концентрация частиц, кг/м3; ρ - плотность материала частиц, кг/м3; l - оптическая длина пути, м; λ∗, - координаты точки выхода на асимптоту функции , мкм; τ(λ) - измеренная спектральная оптическая плотность; α*(λ) - зависимость от длины волны значения параметра дифракции α=νπD/λ, соответствующего абсциссе точки начала отклонения функции Q(α) от функции Qp(α); Q(α) - фактор эффективности ослабления, рассчитанный по точным формулам теории Ми для заданных зависимостей показателя преломления n(λ) и показателя поглощения æ(λ) материала аэрозольных частиц; - фактор эффективности ослабления для релеевского рассеяния. Техническим результатом является повышение точности определения характеристик субмикронных частиц. 4 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения параметров мелкодисперсной водогазовой смеси перед закачкой в пласт. Техническим результатом является обеспечение проведения измерения дисперсности водогазовой смеси как для прозрачной, так и для непрозрачной дисперсионной среды. Способ включает получение водогазовой смеси под повышенным давлением, отбор пробы водогазовой смеси и перевод ее в измерительную емкость при том же давлении. Перед проведением измерения определяется объем измерительной емкости, а в процессе измерения непрерывно регистрируется изменение давления свободного газа внутри измерительной емкости и объем свободного газа, соответствующее ему приращение объема свободного газа, определятся общее количество газа, содержащегося в отобранной пробе, затем определяется зависимость ΔР от объема свободного газа в емкости, которая затем пересчитывается в зависимость изменения давления (ΔР) от относительной доли текущего значения массы свободного газа miг/mг, где mг - общее количество газа mг, содержащегося в отобранной пробе, miг - текущее значение массы свободного газа, далее определятся радиус газовых пузырьков, содержащихся в доле текущего значения массы свободного газа по формуле: r i = 2 σ Δ P i ,  где σ - межфазное натяжение, и вычисляется функция распределения радиуса пузырьков. 3 з.п. ф-лы, 1 пр., 1 табл.

Изобретение относится к океанологическим исследованиям. Устройство включает в себя средство для генерации параллельного потока импульсов оптического излучения, средство для формирования оптическим путем реперного объема прямоугольного сечения, средство для перемещения реперного объема, средство для приема и преобразования оптического излучения в электрические сигналы и средство для регистрации изменения амплитуды электрических импульсов, снабженное средством для определения разности между сигналом в отсутствие импульсов и сигналом, полученным во время действия импульсов, и средством, формирующим временной интервал на время регистрации частиц. При этом отношение размеров сторон прямоугольного сечения реперного объема равно отношению максимальной и минимальной границ размерного диапазона регистрируемых частиц. В устройство введен гидроакустический канал оценки, состоящий из многолучевого эхолота, антенны накачки параметрического профилографа, низкочастотной приемной антенны параметрического профилографа, генератора зондирующих импульсов, приемника эхосигналов, блока обработки акустических сигналов, пульта управления и индикации с интерфейсным блоком и сетевым концентратором, двух гидролокаторов бокового обзора, антенны которых установлены соответственно по правому и левому бортам. Технический результат - расширение функционалных возможностей. 1 ил.

Изобретение может быть использовано для определения замеров параметров отработавших газов (ОГ) ДВС. Способ заключается в отборе газов в пробоотборник и последующем анализе материала пробы. Пробоотборник изолируют от окружающей среды и размещают в нем порцию дистиллированной воды, при этом формируют суспензию твердых частиц ОГ, для чего их выпускают в названную порцию воды. Формирование суспензии начинают после удаления из выхлопной трубы посторонних частиц пыли и сажи, осевших туда за время простоя ДВС. В процессе отбора пробы суспензию перемешивают и стерильным шприцем отбирают объем жидкости около 40 мл, который исследуют на лазерном анализаторе частиц для определения распределения в нем частиц по размерам и по форме. Проводят также вещественный анализ взвесей на световом микроскопе и электронном микроскопе с энергодисперсионным спектрометром для определения вещественного состава твердых частиц и распределения этих частиц по размерам и по форме. Технический результат заключается в выявлении содержания нанодисперсных и микродисперсных твердых частиц в ОГ. 3 ил.

Изобретение относится к области оптической диагностики физических сред и может быть использовано в приборах, предназначенных для измерения распределения концентрации и размеров микро- и наночастиц в жидкостях и газах. Способ включает измерение флуктуации мощности излучения, рассеянного на исследуемых частицах под относительно большими углами, измерение распределения интенсивности рассеянного излучения под малыми углами рассеяния и математическую обработку полученных данных путем решения интегрального уравнения обратной задачи рассеяния. Устройство содержит зондирующий лазер, рабочую кювету с исследуемой средой, помещенные в плоскости рассеяния лазерного луча одноэлементные фотоприемники, расположенные к нему под относительно большими углами для регистрации флуктуации мощности рассеянного на частицах излучения, матричный фотоприемник для регистрации малоугловой диаграммы рассеянного излучения и объектив, собирающий прошедший через рабочую кювету световой пучок, причем указанный матричный фотоприемник расположен в фокальной плоскости указанного объектива. Изобретение обеспечивает повышение точности измерений. 2 н.п. ф-лы, 2 ил.

Изобретение относится к способам автоматического контроля крупности дробленой руды в потоке и может быть использовано в области обогащения руд полезных ископаемых, в горно-металлургической, строительной и других областях промышленности. Способ автоматического контроля крупности дробленой руды в потоке включает определение гранулометрического состава в потоке материала на основе показаний датчика, выходной сигнал которого подают на анализатор спектра и затем преобразуют в сигнал, пропорциональный содержанию отдельных фракций крупности материала. В качестве датчика применяют уровнемер 3. Лучом уровнемера 3 осуществляют сканирование поверхностного слоя потока материала 6, определяют линию, огибающую поверхностный слой материала, вычисляют скользящее среднее значение сигнала уровнемера, вычисляют абсолютные значения площадей фигур, образованных пересечением линии, огибающей поверхностный слой материала, с линией скользящего среднего значения сигнала уровнемера. Вычисляют статистическое распределение относительных частот наблюдения равных по величине вычисленных абсолютных значений площадей фигур на интервале измерения и по полученной заранее градуировочной зависимости крупности отдельных фракций от величины абсолютных значений площадей фигур, образованных пересечением линии, огибающей поверхностный слой материала, с линией скользящего среднего значения сигнала уровнемера, вычисляют распределение фракций крупности дробленой руды в потоке, также измеряют скорость движения потока материала и абсолютные значения площадей фигур, образованных пересечением линии, огибающей поверхностный слой материала, с линией скользящего среднего значения сигнала уровнемера, умножают на коэффициент, равный отношению измеренной скорости к скорости, соответствовавшей условиям градуировки. Технический результат - повышение надежности и точности контроля крупности дробленой руды в потоке за счет устранения влияния на результаты измерения колебаний величины и скорости движения потока материала. 1 з.п. ф-лы, 5 ил.
Наверх