Цифровой функциональный преобразователь



Цифровой функциональный преобразователь

 


Владельцы патента RU 2513683:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") (RU)

Изобретение относится к цифровой вычислительной и информационной технике и может быть использовано для первичной обработки данных в автоматизированных системах научных исследований. Технический результат заключается в реализации логарифмической зависимости при цифровом преобразовании экспериментальных данных и снижении вдвое абсолютной погрешности преобразования. Цифровой функциональный преобразователь состоит из накапливающего сумматора-вычитателя, первого и второго регистров, блока управления. В него дополнительно введены двоичный счетчик, два блока элементов И, блок элементов ИЛИ и блок формирования параллельного кода функции из унитарного кода, чтобы реализовать разностно-итерационный принцип слежения за оценочной функцией, значение которой определяется в накапливающем сумматоре-вычислителе и корректируется на каждом такте интерполяции логарифмической кривой путем подсуммирования (или вычитания) содержимого двоичного счетчика (или регистра) в зависимости от знака сумматора-вычислителя. При этом значение двоичного счетчика увеличивается на два в каждом такте. Подсчитывается число единичных приращений ординаты, и в конце преобразования оно выдается в качестве выходного значения логарифмической функции. 2 з.п. ф-лы, 1ил.

 

Изобретение относится к цифровой и информационной технике и может быть использовано для предварительной обработки экспериментальной входной информации в автоматизированных системах научных исследований.

Известны цифровые функциональные преобразователи [А.с. 444187А1 SU G06F 15/20, А.с. 744595Al SU G06F 17/10] на базе разностно-итерационных принципов их функционирования. Недостатком таких функциональных преобразователей является их невозможность функционального преобразования входных данных по закону логарифма.

Наиболее близким по технической сущности является цифровой функциональный преобразователь [А.с. 1188750 А1, SU, G06F 17/10]. Он состоит из накапливающего сумматора-вычислителя, первого и второго регистров, блока управления, причем выходы блока управления соединены с синхровходом занесения данных в накапливающий сумматор-вычитатель, а входы накапливающего сумматора-вычитателя связаны с выходами регистров. Недостатками этого цифрового функционального преобразователя являются невозможность реализации им логарифмической зависимости и большая абсолютная погрешность (единица младшего разряда).

Задачей настоящего изобретения является расширение функциональных возможностей цифрового функционального преобразователя в части возможности функционального преобразования экспериментальных данных по закону логарифмической функции и понижение в два раза максимальной абсолютной погрешности.

Технический результат - заявленный цифровой функциональный преобразователь позволяет реализовать логарифмическую зависимость при цифровом преобразовании экспериментальных данных и вдвое снизить абсолютную погрешность преобразования.

Технический результат достигается предложенным цифровым преобразователем, содержащим накапливающий сумматор-вычитатель, первый и второй регистры, блок управления, причем выходы блока управления соединены с синхровходами занесения данных в сумматор-вычитатель, а входы накапливающего сумматора-вычитателя связаны с выходами регистров. Также в него дополнительно введены двоичный счетчик, первый и второй блоки элементов И, блок элементов ИЛИ и блок формирования параллельного кода функции из унитарного кода, причем выходы двоичного счетчика через первый блок элементов И и блок элементов ИЛИ связаны со входами накапливающего сумматора-вычитателя, а выходы первого регистра - через второй блок элементов И и блок элементов ИЛИ также связаны со входами накапливающего сумматора-вычитателя, знаковый разряд которого связан с блоком управления, выходы которого связаны с синхровходами первого и второго блоков элементов И, а входы и выход блока формирования параллельного кода функции связаны с блоком управления, выход которого связан со вторым младшим разрядом двоичного счетчика. Блок формирования параллельного кода функции из унитарного кода содержит второй счетчик аргумента, третий счетчик функции, третий блок логических элементов И и второй регистр функции, причем счетные входы счетчика аргумента и счетчика функции связаны с блоком управления, синхровходы третьего блока логических элементов И связаны с выходом второго счетчика аргумента и с блоком управления, с которым также связаны входы сброса в "0" второго регистра функции и третьего счетчика функции. Блок управления содержит триггер, первую и вторую линии задержки, первый, второй и третий элемент И, первый и второй элемент НЕ, причем инверсный выход триггера соединен с выходом блока управления "окончание преобразования" и через второй элемент НЕ - со входом третьего элемента И, другой вход которого связан со входом / тактовых импульсов, а выход третьего элемента И связан со входами первого и второго элементов И, другие входы которых соединены с прямым выходом триггера, причем выход третьего элемента И связан со счетным входом второго счетчика аргумента и со входом второго младшего разряда двоичного счетчика, кроме того, вход первого элемента НЕ и вход второго элемента И связаны со знаковым разрядом накапливающего сумматор-вычитателя, а выход первого элемента НЕ связан со входом первого элемента И, выход которого через первую линию задержки связан с синхровходами второго блока элементов И, а выход второго элемента И через вторую линию задержки связан с синхровходами первого блока элементов И и со счетным входом третьего счетчика функции, вход сброса в "0" которого, как и второго регистра функции, связан со входом предварительной установки ПУ, который связан еще и со входом сброса в "0" триггера, вход установки в "1" которого связан со входом "Пуск" и, наконец, вход сброса в "0" триггера связан с выходом второго счетчика аргумента.

Отличительные признаки позволили реализовать функциональное преобразование по закону логарифма, а связь блока управления со знаковым разрядом накапливающего сумматора-вычитателя и со вторым младшим разрядом двоичного счетчика обеспечили снижение абсолютной погрешности в два раза (менее 0,5 единицы младшего разряда). Это является новым техническим решением в технике цифрового функционального преобразования, поскольку результаты проведенного заявителем анализа аналогов и прототипа не позволили выявить признаки, тождественные всем существенным признакам данного изобретения.

Предложенное устройство имеет изобретательский уровень, так как из опубликованных научных данных и существующих технических решений явным образом не следует, что заявленная совокупность блоков, узлов и элементов, а также их связей позволяет произвести цифровое функциональное преобразование по логарифмическому закону.

Предложенный цифровой функциональный преобразователь промышленно применим, поскольку его техническая реализация возможна с использованием типовых элементов микроэлектронной техники (интегральные логические микросхемы).

На фиг.1 приведена функциональная схема цифрового функционального преобразователя.

Заявленное устройство содержит (фиг.1) накапливающий сумматор-вычитатель 1 со входом 2 предварительной установки его значения, первый регистр 3 со входом 4 предварительной установки его значения, блок элементов "ИЛИ" 5, два блока элементов "И" 6, 7, три счетчика 8, 9, 10, два последних 9, 10 из которых находятся в блоке 11 формирования параллельного кода функции Y из унитарного кода, имеющего вход 12 ввода аргумента X. В этот же блок 11 формирования параллельного кода функции Y из унитарного кода входит третий блок элементов И 22 и второй регистр 23. Кроме того, заявленное устройство содержит блок управления 31, в который входят триггер 13, первая 14 и вторая 15 линии задержки, первый 16, второй 17 и третий 19 элементы И, первый 20 и второй 21 элементы НЕ.

Накапливающий сумматор-вычитатель 1, все регистры, все счетчики, блок элементов ИЛИ 5, блоки элементов И 6, 7 содержат m двоичных разрядов, где m - максимальная разрядность входных и выходных данных, включая знак. Причем, первый регистр 3 через блок элементов И 7, как и двоичный счетчик 8 через блок элементов И 6, связаны с блоком элементов ИЛИ 5, который связан с накапливающим сумматором-вычитателем 1. Кроме того, разрешающие входы блоков элементов И 7 и 6 связаны с выходами первой 14 и второй 15 линий задержки, находящихся в блоке управления 31. В блоке 31 управления триггер 13 имеет прямой и инверсный выходы а также входы установки "1" и сброса в "0". Элемент И 19 имеет два входа, а два элемента И 16, 17 имеют по три входа. Далее, в блоке 11 счетчик 9 имеет вход 12 для ввода аргумента X, счетчик 10 через блок "И" 22 соединен с регистром 23 выходного значения функции Y. Кроме того, счетчик 10 имеет счетный вход 24 и вход 25 сброса в "0". Блок "И" 22 имеет синхровход 26, а регистр 23 имеет вход 27 сброса в "0". Вход 28 - сигнал предварительной установки - обозначен "ПУ". Вход 29 - тактовых импульсов - обозначен "f". Вход 30 обозначен "Пуск". Выход 31 обозначен "окончание преобразования". Вход "ПУ" 28 связан со входом сброса в "0" триггера 13 и со входом 25 сброса счетчика 10 а также со входом 27 сброса в "0" второго регистра функции Y 23. Инверсный выход триггера 13 связан с выходом 31 "окончание отработки". В блоке управления 31 инверсный выход триггера 13 через второй элемент НЕ 21 соединен со входом третьего элемента И 19, на другой вход которого поступает тактовые импульсы f 29, а выход которого связан со входами первого 16 и второго 17 элементов И. Их выходы через первую 14 и вторую 15 линии задержки связаны с разрешающими входами блоков элементов И 7 и 6, соответственно. Прямой выход триггера 13 связан со входами первого 16 и второго 17 элементов И. Вход первого элемента 16 И через элемент НЕ 20 связан со знаковым разрядом Зн накапливающего сумматора-вычитателя 1. Этот же разряд Зн связан также со входом второго элемента И 17. Выход третьего элемента 19 И связан также со вторым младшим разрядом двоичного счетчика 8 и со входом 18 блока 11. А выход второго элемента 17 И связан также со входом 24 блока 11. Вход 28 ПУ блока управления 31 связан со входами 25 и 27 блока 11. Выход счетчика 9 в блоке 11 связан со входом установки сброса в "0" триггера 13 в блоке 31 и входом 26 блока 11.

Достоверность достижения цели изобретения - реализация функционального преобразования по логарифмическому закону - подтверждается математическим обоснованием, изложенным в журнале "Известия вузов. Северо-Кавказский регион, Технические науки, 2011, №2, с.16-18)"]. Логарифмическая функция имеет вид y = M log a ( 1 + x B ) , где М и В - масштабы по осям Y и X, соответственно, A = M ln a , B≥A,а>1, Параметры А и В должны быть округлены до m - разрядных двоичных чисел.

В исходном состоянии цифрового преобразователя подачей импульса на вход 28 ПУ триггер 13 устанавливается в "0". Кроме того, по входу 2 в накапливающий сумматор-вычитатель 1 заносится константа (В-2А), по входу 4 в первый регистр 3 заносится константа (2А1-1) в дополнительном коде, по входу 10 в двоичный счетчик 8 заносится константа (2В-2А), и по входу 12 в счетчик 9 аргумента X заносится аргумент X со знаком "-" все величины в дополнительном коде. Счетчик 10 функции Y и второй регистр сброшены в "0". Цифровой функциональный преобразователь готов к работе. Спустя некоторое время может поступить сигнал "Пуск" (вход 30) на начало преобразования. Он установит триггер 13 в "1".

Сигнал "0" с инверсного выхода триггера 13 проходит через элементы 21 "НЕ" и открывает элемент 19 "И". А очередной положительный импульс с частотой f (вход 29) проследует на вход первого и второго элементов "И" 16 и 17 а также на второй младший разряд двоичного счетчика 8, увеличив его содержимое на "+2", и на вход 18 счетчика 9 аргумента X, увеличив его содержимое на "+1". (Счетчик 9 практически работает как вычитающий). Одновременно положительный импульс с выхода второго элемента 17 "И" поступит на вход 24 счетчика 10 функции Y, если знак накапливающего сумматора-вычитателя 1 будет "-" (единица в знаковом разряде Зн).

Если же знак накапливающего сумматор-вычитателя 1 будет "+" (ноль в знаковом разряде), то на вход 24 счетчика 10 функции Y ничего не поступит (элемент 17 И будет закрыт). А сигнал "1" появится на выходе первого элемента НЕ 20. Он проследует на вход первого элемента 16 И. Спустя некоторое время (менее четверти периода f) возникает положительный импульс на выходе первой линии задержки Зд 14 или второй линии задержки Зд 15 (только одной), каждый из которых подсуммирует либо содержимое регистра Рг 3 (через второй блок элементов "И" 7 и блок элементов "ИЛИ" 5) к накапливающему сумматору-вычитателю 1, либо содержимое двоичного счетчика 8 (через первый блок элементов "И" 6 и блок элементов "ИЛИ" 5) -к накапливающему сумматору-вычитателю 1. На этом один такт входных импульсов f закончится. Новое значение знака Зн накапливающего сумматора-вычитателя 1 будеть управлять работой функционального преобразователя в следующем такте. Каждый отработанный такт входных импульсов f (вход 29) подсчитывается по входу 18 счетчиком аргумента X 9 (он вычитающий).

При поступлении ровно X (аргумент) импульсов счетчик аргумента X 9 выдаст сигнал на сброс в "0" триггера 13. Сигнал "1" с его инверсного выхода пройдет на выход "окончание преобразования", а также через второй элемент НЕ 21 и закроет третий элемент И 19, прервав тем самым поступление импульсов со входа f 29. Одновременно положительный ("1") сигнал с выхода счетчика аргумента X 9 поступит на синхровходы 26 третьего блока элементов И 22, и содержимое счетчика функции Y 10 занесется во второй регистр функции Y 23, являющийся выходным для цифрового функционального преобразователя. Работа цифрового функционального преобразователя закончена.

В результате преобразования аргумента X будет получена логарифмическая функция Y = M log a ( x B ) .

Достоверность функционирования для аргумента Х=12 подтвердим на простом примере М=А=7 и В=11 (а=е, где е - основание натуральных алгоритмов (см. таблицу 1)). Малые значения А и В взяты по соображениям сокращения размеров таблицы 1.

Таблица 1
Результаты работы цифрового функционального преобразователя: (при А=7, В=11, а=е, Х=12)
i См 1 Сч 8 Рг3 Сч9 Сч 10 7 ln ( 1 + x 11 )
0 -3 10 -13 -12 0 0
1 7 12 -13 -11 1 0,609
2 -6 14 -13 -10 1 1,169
3 8 16 -13 -9 2 1,688
4 -5 18 -13 -8 2 2,171
5 13 20 -13 -7 3 2,623
6 0 22 -13 -6 3 3,047
7 -13 24 -13 -5 3 3,447
8 11 26 -13 -4 4 3,826
9 -2 28 -13 -3 4 4,185
10 26 30 -13 -2 5 4,526
11 13 32 -13 -1 5 4,852
12 0 34 -13 0 5 5,163
X Y Yточное

1. Цифровой функциональный преобразователь, содержащий накапливающий сумматор-вычитатель, первый и второй регистры, блок управления, причем выходы блока управления соединены с синхро-входами занесения данных в сумматор-вычитатель, а входы накапливающего сумматора-вычитателя связаны с выходами регистров, отличающийся тем, что в него дополнительно введены двоичный счетчик, первый и второй блоки элементов И, блок элементов ИЛИ и блок формирования параллельного кода функции из унитарного кода, причем выходы двоичного счетчика через первый блок элементов И и блок элементов ИЛИ связаны со входами накапливающего сумматора-вычитателя, а выходы первого регистра - через второй блок элементов И и блок элементов ИЛИ также связаны со входами накапливающего сумматора-вычитателя, знаковый разряд которого связан с блоком управления, выходы которого связаны с синхровходами первого и второго блоков элементов И, а входы и выход блока формирования параллельного кода функции связаны с блоком управления, выход которого связан со вторым младшим разрядом двоичного счетчика.

2. Устройство по п.1, отличающееся тем, что блок формирования параллельного кода функции из унитарного кода содержит второй счетчик аргумента, третий счетчик функции, третий блок логических элементов И и второй регистр функции, причем счетные входы счетчика аргумента и счетчика функции связаны с блоком управления, синхровходы третьего блока логических элементов И связаны с выходом второго счетчика аргумента и с блоком управления, с которым также связаны входы сброса в "0" второго регистра функции и третьего счетчика функции.

3. Устройство по п.1, отличающееся тем, что блок управления содержит триггер, первая и вторая линии задержки, первый, второй и третий элемент И, первый и второй элемент НЕ, причем инверсный выход триггера соединен с выходом блока управления "окончание преобразования" и через второй элемент НЕ - со входом третьего элемента И, другой вход которого связан со входом f тактовых импульсов, а выход третьего элемента И связан со входами первого и второго элементов И, другие входы которых соединены с прямым выходом триггера, причем выход третьего элемента И связан со счетным входом второго счетчика аргумента и со входом второго младшего разряда двоичного счетчика, кроме того, вход первого элемента НЕ и вход второго элемента И связаны со знаковым разрядом накапливающего сумматор-вычитателя, а выход первого элемента НЕ связан со входом первого элемента И, выход которого через первую линию задержки связан с синхровходами второго блока элементов И, а выход второго элемента И через вторую линию задержки связан с синхровходами первого блока элементов И и со счетным входом третьего счетчика функции, вход сброса в "0" которого, как и второго регистра функции связан со входом предварительной установки ПУ, который связан еще и со входом сброса в "0" триггера, вход установки в "1" которого связан со входом "Пуск" и, наконец, вход сброса в "0" триггера связан с выходом второго счетчика аргумента.



 

Похожие патенты:

Изобретение относится к средствам моделирования сетей связи. .

Изобретение относится к средствам определения траекторий движения транспортного средства в динамической среде. .

Изобретение относится к цифровой технике и может быть использовано для генерации случайных чисел и преобразования данных, обработки шумоподобных сигналов, идентификации, аутентификации и авторизации, в стохастических системах и устройствах, системах представления и отображения информации, информационно-коммуникационных и сенсорных устройствах и системах.

Изобретение относится к способам аппроксимации, используемым в обработке аппаратным обеспечением и программным обеспечением. .

Изобретение относится к области радиотехники и может быть использовано для прогнозирования данных в системах различного назначения. .

Изобретение относится к цифровой технике и может быть использовано для генерации случайных чисел и преобразования данных, обработки шумоподобных сигналов, идентификации, аутентификации и авторизации, в стохастических системах и устройствах, системах представления и отображения информации, информационно-коммуникационных и сенсорных устройствах и системах.

Изобретение относится к вычислительной технике. .

Изобретение относится к области цифровой вычислительной техники и предназначено для моделирования комбинаторных задач при проектировании вычислительных систем (ВС).

Изобретение относится к железнодорожному транспорту. .

Изобретение относится к вычислительной технике и может быть использовано для вычисления функций при задании аргумента в широтно-импульсной форме. .

Изобретение относится к способам, устройствам и машиночитаемым носителям для вычисления физического значения и численного анализа. Технический результат заключается в снижении рабочей нагрузки при формировании модели расчетных данных и снижении вычислительной нагрузки в решающем процессе без ухудшения точности анализа. Способ вычисления физического значения, выполняемый компьютером, содержит этап вычисления физических значений, на котором посредством центрального процессорного модуля вычисляют физические значения в области анализа, разделенной на множество разделенных областей, с использованием дискретизированного основного уравнения, которое использует значения, не требующие координат вершин (Вершина) разделенных областей и информации о связности вершин (Связность), и которое выводят на основе метода взвешенных невязок и модели расчетных данных, в которой объемы разделенных областей и характеристические значения граничной поверхности, указывающие характеристики граничных поверхностей соседних из разделенных областей, предоставляют в виде значений, не требующих координат вершин (Вершина) разделенных областей и информации о связности вершин (Связность), и дискретизированное основное уравнение и модель расчетных данных сохраняют в запоминающем устройстве. 6 н. и 7 з.п. ф-лы, 24 ил.

Изобретение относится к способу и устройству выполнения криптографического преобразования в электронном компоненте. Технический результат заключается в повышении безопасности установки соединений с аутентификацией пароля за счет повышения эффективности выполнения криптографического преобразования. В способе выполняют получение точки P(X,Y) исходя из параметра t на эллиптической кривой, удовлетворяющей выражению Y2=f(X), и исходя из многочленов X1(t), X2(t), Х3(t) и U(t), удовлетворяющих равенству f(X1(t)).f(X2(t)).f(X3(t))=U(t)2 в Fq, при этом q=3 mod 4, далее получают значение параметра t и определяют точку Р путем выполнения подэтапов, на которых (i) вычисляют Х1=X1(t), X2=X2(t), Х3=Х3(t) и U=U(t), (ii) если элемент f(X1).f(X2) является квадратом, то проверяют, является ли элемент f(X3) квадратом в Fq, и если является, то вычисляют квадратный корень из элемента f(X3), чтобы получить точку Р(Х3), (iii) иначе проверяют, является ли элемент f(X1) квадратом, и если является, вычисляют квадратный корень из f(X1), чтобы получить точку P(X1), (iv) иначе вычисляют квадратный корень элемента f(X2), чтобы получить точку P(X2), и далее эту точку Р используют в криптографическом приложении. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к способу моделирования сетей связи. Технический результат заключается в повышении достоверности моделирования сетей связи, а также в возможности моделирования фрагментов сетей связи, инвариантных имеющимся, с учетом физико-географических условий местности и топологических неоднородностей, возникших в процессе развития сети. Способ заключается в том, что задают исходные данные, формируют в каждом из статистических экспериментов граф вероятностной сети, имитируют перемещение абонентов, генерируют начальную топологию и структуру разнородных сетей, при этом исходные данные для моделирования формируют исходя из топологической структуры реальной сети и затем моделируют расположение неоднородностей в заданном фрагменте и расположение элементов в каждой неоднородности. 6 ил.

Изобретение относится к использованию цифровой вычислительной техники при моделировании боевых действий разнородных группировок. Техническим результатом является повышение уровня достоверности компьютерного моделирования боевых действий. Коммутируется информация о показателях всех боевых средств каждой из группировок сторон и записывается в первый блок памяти, вводится информация о ложных боевых средствах в необходимые группировки, пересылается вся исходная информация о боевых средствах группировок, включая и о ложных боевых средствах в арифметический блок определения результатов боевых действий согласно выбранной стратегии, по команде из блока управления выходные результаты из арифметического блока записываются во второй блок памяти, затем передаются в блок визуализации, на котором отображаются результаты (исход) боевых действий, рациональная стратегия, остатки боевых средств сторон и ложных боевых средств сторон. 2 н.п. ф-лы, 3 ил., 4 табл.

Изобретение относится к области цифровых вычислений и может быть использовано в криптографии. Техническим результатом является повышение достоверности и производительности. Способ содержит этапы, на которых: подают тестируемое число n на вход вычислительной системы, вычисляют Nn=(n2-n)/2. Передают данные в блок деления и вычисляют величину Nn/n. Затем подают численный результат на вход блока проверки числа на целость-дробность. Если число является дробным, то делают вывод, что тестируемое число является составным. В противном случае вычисляют Nn+1. В блоке деления вычисляют Nn+1/n и Nn+1/5. После чего проверяют Nn+1 и Nn+1/5 в блоке проверки числа на целость-дробность. Nn+1 проверяют в блоке проверки числа на четность-нечетность. Если Nn+1/n является целым числом, а Nn+1 является четным или Nn+1/5 является целым числом, то делают вывод, что тестируемое число является простым. 1 з.п. ф-лы, 2 ил, 1 табл.

Изобретение относится к информационно-измерительной и вычислительной технике и может быть использовано в системах и устройствах для обработки результатов векторной регистрации параметров, получаемых регистраторами параметров электрического режима на отдельных объектах (узлах) энергосистемы. Техническим результатом является расширение функциональных возможностей за счет обеспечения оценки уровня колебаний напряжения в произвольных узлах электроэнергетической системы. Система содержит блок памяти данных от цифровых регистраторов, блок памяти координат цифровых регистраторов, блок памяти границ энергосистемы, блок формирования графа электрической сети энергосистемы, блок построения координатной сетки, блок формирования триангуляции конечного множества маркированных узлов графа, блок присвоения значений данных маркированным узлам, блок расчета интерполированных данных, блок пересчета данных в относительные величины и фильтрации верхних частот, блок памяти значений напряжения и блок оценки параметров колебания напряжения. 2 ил.

Изобретение относится к области геофизики и может быть использовано при обработке сейсмических данных при поиске месторождений углеводородов. Заявленный способ идентификации геологических особенностей из геофизических или атрибутивных данных предполагает использование выполняемого в окне анализа главных компонент или анализа независимых компонент, либо диффузионного картирования. Едва уловимые особенности становятся идентифицируемыми в частичных или остаточных массивах данных. Остаточные массивы данных создаются путем исключения данных, не захваченных самыми заметными главными компонентами. Частичные массивы данных создаются путем проецирования данных на выбранные главные компоненты. Геологические особенности также можно идентифицировать из анализа образов или массивов аномалий, сформированных с помощью матрицы подобия данных с переменным масштабом . Технический результат - повышение точности данных прогноза нефтегазоносности исследуемого участка. 4 н. и 27 з.п. ф-лы, 11 ил.

Изобретение относится к области геофизики и может быть использовано при обработке данных сейсмических исследований. Заявлен способ перестроения моделей (110) Q геологической среды на основании сейсмических данных (10) путем осуществления лучевой Q томографии сдвига центроидных частот. Амплитудный спектр волнового сигнала сейсмического источника аппроксимируют (40) частотно-взвешенной экспоненциальной функцией частоты, имеющей два подбираемых параметра для приведения в соответствие данным о сдвиге частот. В результате чего обеспечивают лучшее соответствие различным асимметричным амплитудным спектрам источника. Боксовые ограничения могут использоваться при выполнении процедуры оптимизации, а многоиндексный способ активных множеств, используемый при томографии скорости, является предпочтительным способом для реализации (100) боксовых ограничений. Технический результат - повышение точности данных сейсмических исследований. 2 н. и 18 з.п. ф-лы, 12 ил.

Изобретение относится к области сейсмической разведки и может быть использовано при поиске нефтяных и газовых месторождений со сложно построенными кавернозно-трещиновато-пористыми коллекторами. Заявлен способ реконструкции тонкой структуры геологического объекта и прогноза его флюидонасыщения на основе выделения и специализированной обработки рассеянной компоненты сейсмического волнового поля с привлечением метода декомпозиции эмпирических мод и полномасштабного численного моделирования в целях формирования высокоточных и достоверных поисковых признаков флюидонасыщения карбонатного коллектора. Технический результат - повышение точности и достоверности получаемых данных. 7 ил.

Изобретение относится к области геофизики и может быть использовано в процессе обработки геофизических данных. Заявлен способ для одновременной инверсии полного волнового поля сейсмограмм кодированных из источников (или приемников) геофизических данных, чтобы определять модель физических свойств для области геологической среды. Во-первых, околоповерхностное временное окно данных (202), в котором удовлетворяется условие стационарных приемников, инвертируется посредством инверсии (205) одновременных кодированных (203) источников. Затем, более глубокое временное окно данных (208) инвертируется посредством разреженной инверсии (209) последовательных источников с использованием модели физических свойств от околоповерхностного временного окна (206) в качестве начальной модели (207). Альтернативно, модель околоповерхностных временных окон используется для того, чтобы моделировать отсутствующие данные (211) максимальных выносов, формирующие набор данных, удовлетворяющий предположению о стационарных приемниках, после чего этот набор данных кодируется из источников (212) и инвертируется посредством инверсии (214) одновременных источников. Технический результат - повышение точности получаемых данных. 5 н. и 16 з.п. ф-лы, 17 ил., 1 пр.
Наверх