Способ разработки нефтяных залежей

Изобретение относится к области нефтяной промышленности, а именно к разработке нефтяных залежей, и может использоваться при проведении геолого-технических мероприятий по увеличению добычи нефти. Техническим результатом является повышение надежности и эффективности разработки нефтяных залежей. Способ включает бурение скважин, проведение геолого-промысловых и геофизических исследований скважин (ГИС), лабораторные исследования свойств пород, интерпретацию ГИС, расчленение залежи на участки с характерными геологическими и фильтрационными характеристиками и построение карты, с выделением зон пород-коллекторов с повышенной проницаемостью. Из поисково-разведочных и эксплуатационных скважин извлекают образцы керна, по которым дополнительно измеряют водородосодержание твердой фазы керна, определяют относительную амплитуду естественных электрических потенциалов, определяют значения отношения водородосодержания твердой фазы к относительной амплитуде естественных электрических потенциалов, то есть лито- фациальный параметр. Затем строят карту изменения лито-фациального параметра в пределах территории распространения залежи углеводородов. На карте проводят изолинии граничных значений лито- фациального параметра, по которым выделяют зоны пород с высоким и низким фильтрационным потенциалом. Причем в зонах пород с высоким фильтрационным потенциалом осуществляют горизонтальное бурение скважин с последующим созданием равномерного фронта вытеснения нефти, а в зонах пород с низким фильтрационным потенциалом осуществляют углубленную кумулятивную перфорацию, ориентированную в соответствии с направлением вектора напряженности породы с последующим гидроразрывом пласта, обеспечивающим разветвленную систему трещин заданной длины. 7 з.п.ф-лы, 2 ил.

 

Предлагаемое изобретение относится к области нефтяной промышленности, а именно к разработке нефтяных залежей, и может использоваться при проведении геолого-технических мероприятий по увеличению добычи нефти.

Известен способ контроля за разработкой нефтяных залежей с помощью построения карт остаточных нефтяных толщин, включающий проведение геолого-промысловых исследований скважин и лабораторных исследований свойств пластовых флюидов и пористых сред, проведения текущих исследований добывающих и нагнетательных скважин с последующим построением карт начальных нефтенасыщенных толщин [1].

Недостатком данного данного способа является отсутствие учета особенностей в породах-коллекторах глинистого цемента. При одной и той же пористости, как указано в известном способе, проницаемость может быть резко дифференцирована в зависимости от соотношения содержания глинистых минералов, а также способ не учитывает распределение фильтрационных характеристик пород-коллекторов.

Наиболее близким техническим решением к заявляемому изобретению является способ контроля за разработкой нефтяных залежей, включающий проведение геолого-промысловых, геофизических исследований свойств пластовых флюидов и пористых сред, интерпретацию материалов геофизических исследований скважин (ГИС), расчленение нефтяной залежи на участки с характерными геологическими и фильтрационными характеристиками, включая контрольные исследования скважин, построение карты, по которой выделяют зоны с повышенной проницаемостью [2].

Недостатком данного способа является низкая достоверность и эффективность вследствие того, что в данном способе не учитываются особенности геологического строения, распределение фильтрационных характеристик пластов-коллекторов в связи с минералогическим составом их глинистостого цемента.

Предлагаемое изобретение устраняет указанные недостатки и повышает эффективность разработки нефтяных залежей посредством обоснованного выбора проведения геолого-технических мероприятий.

Поставленный технический результат достигается тем, что в способе разработки нефтяных залежей включающем проведение геолого-промысловых и геофизических исследований скважин (ГИС), лабораторных исследований свойств пород, интерпретацию ГИС, расчленение залежи на участки с характерными геологическими и фильтрационными характеристиками и построение карты с выделением зон пород-коллекторов с повышенной проницаемостью, из поисково-разведочных и эксплуатационных скважин извлекают образцы керна, определяют относительную амплитуду естественных электрических потенциалов, определяют значения отношения водородосодержания твердой фазы к относительной амплитуде естественных электрических потенциалов, то есть лито-фациальный параметр, строят карту изменения лито-фациального параметра в пределах территории распространения залежи углеводородов, на карте проводят изолинии граничных значений лито-фациального параметра, по которым выделяют зоны пород с высоким и низким фильтрационным потенциалом, при этом в зонах пород с высоким фильтрационным потенциалом осуществляют горизонтальное бурение скважин с последующим созданием равномерного фронта вытеснения нефти, а в зонах пород с низким фильтрационным потенциалом осуществляют углубленную кумулятивную перфорацию, ориентированную в соответствии с направлением вектора напряженности пород с последующим гидроразрывом пласта, обеспечивающим разветвленную систему трещин заданной длины, при значениях лито-фациального параметра Wтвпс от 0,1-0,25 выделяют зоны пород с высоким фильтрационным потенциалом, при значениях лито-фациального параметра Wтвпс от 0,25-0,35 выделяют зоны пород с низким фильтрационным потенциалом, равномерный фронт вытеснения нефти осуществляют закачкой лигнокауста, закачкой взаимных растворителей в составе кислотных композиций, закачку взаимных растворителей в составе кислотных композиций осуществляют в динамическом режиме, углубленную кумулятивную перфорацию осуществляют кумулятивным зарядом с использованием реактивного эффекта плазменной струи, например зарядом DPEX (GH), углубленную кумулятивную перфорацию осуществляют зарядом с большим диаметром пробития эксплуатационной колонны, например зарядом BIG HOLE.

Сопоставительный анализ существенных признаков предлагаемого решения и прототипа позволяет сделать вывод о соответствии заявляемого изобретения критерию "новизна".

Заявляемое изобретение отвечает критерию "изобретательский уровень", так как явно не вытекает из известного уровня техники.

Предлагаемый способ характеризуется чертежами, где на фиг.1 представлена карта изменения лито-фациального параметра Wтвпс, на которой 1 - обозначены (двойным штрихом) зоны пород-коллекторов с высоким фильтрационным потенциалом, 2 - обозначены (одинарным штрихом) зоны пород-коллекторов с низким фильтрационным потенциалом;

на фиг.2 представлена схема обоснования геолого-технических мероприятий по выбору способа разработки нефтяных залежей; в таблице представлены результаты применения углубленной ориентированной перфорации с последующим гидроразрывом пласта.

При разработке нефтяных залежей необходимо использовать показатели качества породы-коллектора, определяемые его фильтрационно-емкостными характеристиками, неоднордностью строения и слоистостью, гидравлической связью скажины-пласта, напряжением в пласте и многими другими факторами. Таким образом, существенным являются как петрофизические оценки, так и понимание характеристик потока флюидов и геохимических свойств породы. При разработке нефтяных залежей необходимо учитывать фильтрационно-емкостные характеристики пород.

Предложен способ разработки нефтяных залежей, при котором по данным методов нейтронного, гамма-гамма плотностного и метода естественных электрических потенциалов (ПС) по образцам керна для конкретного геологического пласта определяют лито-фациальный параметр - отношение водородосодержания твердой фазы к относительной амплитуде естественных электрических потенциалов (Wтвпс), для чего измеряют водородосодержание твердой фазы и определяют относительную амплитуду естественных электрических потенциалов, определяют значения отношения водородосодержания твердой фазы к относительной амплитуде естественных электрических потенциалов. По известным программам картопостроения строят карту изменения лито-фациального параметра (Wtb /апс), на которой выделяют зоны распространения зон пород-коллекторов. На карте проводят изолинии указанного параметра, соответствующие его граничным значениям при разделении пород - коллекторов на зоны распространения коллекторов с высоким фильтрационным потенциалом (ВФП) и низким фильтрационным потенциалом (НФП). В зонах развития пород-коллекторов с высоким фильтрационным потенциалом осуществляют бурение горизонтальных скважин, в которых применяют методы повышения нефтеотдачи пластов и интенсификации притоков жидкости из скважин, направленных на создание равномерного фронта вытеснения нефти, например, закачка ПАВ, обеспечивающего максимальный коэффициент охвата выработкой продуктивных пластов. В зонах с низким фильтрационным потенциалом производят перфорацию и гидроразрыв пласта.

Для зон преимущественного распространения пород-коллекторов с преобладанием классов пород с высоким фильтрационным потенциалом, для которых характерно фронтальное вытеснение нефти, создают условия для формирования зон стягивания. Формируют блочно-замкнутые или рядные системы разработки, избегают перекомпенсации отбора закачкой, поддерживают давление нагнетания на оптимальном уровне, не допускающем неконтролируемого оттока нефти в заводненные зоны, за контур пласта или создания техногенных трещин в интервалах превышения давления нагнетания над давлением раскрытия трещин. В зонах распространения такого класса коллекторов необходимо бурение горизонтальных скважин, применение методов повышения нефтеотдачи пластов и интенсификации притоков жидкости из скважин, то есть методов, направленных на создание равномерного фронта вытеснения, обеспечивающего максимальный коэффициент охвата выработкой продуктивных пластов (фиг.2).

Равномерный фронт вытеснения нефти создают с использованием взаимных растворителей. Взаимные растворители могут быть введены непосредственно в состав кислотных композиций в качестве буферных жидкостей при закачке кислоты в пласт. Использование взаимных растворителей придает кислотной композиции комплекс положительных свойств, а именно удаляет водные барьеры и рыхлосвязанную воду и облегчает вынос продуктов реакции из пласта.

Фильтрационные исследования на естественных кернах показали, что использование обычных кислотных композиций с высоким содержанием соляной и плавиковой кислот, включающее их выдержку на реакцию с породой, сопровождается снижением фазовой проницаемости пористой среды по нефти. В то же время закачка в динамическом режиме предложенных высокотемпературных кислотных составов, а также буферных жидкостей на основе взаимных растворителей оказывает положительное воздействие и приводит к увеличению проницаемости моделей пласта.

Для коллекторов с высоким фильтрационным потенциалом особенно важно уже на начальных стадиях разработки применение методов, обеспечивающих выравнивание фронта вытеснения нефти и способствующих повышению коэффициента охвата вытеснения, что в конечном итоге обеспечивает рост конечного коэффициента нефтеотдачи пластов.

Одним из методов, позволяющих решить задачу выравнивания фронта вытеснения нефти и повышения коэффициента охвата, является закачка лигнокауста.

Принципиально иной механизм вытеснения нефти, обеспечивающий эффективное извлечение углеводородов из коллекторов, представленных преимущественно породами с низким фильтрационным потенциалом.

Исследования лито-фациальных, фильтрационно-емкостных и физико- динамических характеристик свидетельствует о том, что коллекторы с низким фильтрационным потенциалом характеризуются низким объемом эффективной и динамической пористости и предполагают необходимость внедрения методов, позволяющих искусственно увеличить эти параметры пласта, создать разветвленную сеть высокопроницаемых каналов, которые станут питающей средой для притоков нефти, поступающей в трещины из поровой матрицы за счет капиллярной пропитки.

В коллекторах такого типа, при проведении больше объемных гидроразрывов, зачастую возникают проблемы геолого-технического характера, которые не позволяют достичь необходимого объема закачки проппанта в пласт и соответственно достижения требуемых продуктивных характеристик скважин. Связано это с резким увеличением давления закачки проппанта вследствие значительных фильтрационных сопротивлений в призабойной зоне пласта.

Такая проблема требует повышения качества управления гидроразрывом пласта, что может заключаться в проведении перед гидроразрывом специальных видов перфорации, позволяющих соблюдать расчетные параметры закачки проппанта, необходимые для создания в пласте трещин необходимых геометрических размеров.

Такими видами перфорации, обеспечивающей проведение управляемого гидроразрыва пласта, являются:

- проведение перфорации зарядами BIG HOL для получения отверстий большого диаметра в эксплуатационной колонне, что позволяет снизить фильтрационное сопротивление при закачке проппанта в пласт;

- проведение перфорации, ориентированной в соответствии с направлением вектора напряженности пород, что позволяет улучшить геометрию движения проппанта в призабойной зоне пласта и, тем самым, снизить фильтрационные сопротивления и обеспечить управляемость гидроразрыва пласта (фиг.2).

Сравнительные результаты применения перед гидроразрывом пласта указанных методов перфорации дают возможность эффективного управления с их помощью процессов гидроразрыва пласта (таблица).

Главным показателем эффективности при этом являются даже не достигнутые показатели массы закачиваемого реагента и дебита жидкости скважин после проведения гидроразрыва пласта, а низкий уровень давления в конце продавки проппанта (буфера), что свидетельствует о потенциальной возможности обеспечить дальнейшую закачку проппанта в случае технологической необходимости.

Принцип действия таких зарядов основан на использовании в лайнере кумулятивного заряда вместо ряда металлических компонентов, применявшихся традиционно, специального состава, который при взаимодействии с частицами, образующими в перфорационном стволе несгораемые остатки лайнера ("пест"), провоцируют бурную химическую реакцию с большим выделением газовой смеси высокого давления. В результате этого образующаяся плазменная струя приводит к разрушению породы вокруг перфорационного канала, образованию обширной зоны трещиноватости. Помимо этого специальная технология, применяемая при производстве заряда, позволяет достигать стабилизации диаметра перфорационного канала на всем его протяжении, что позволяет существенно увеличить площадь соприкосновения очищенного перфорационного канала с неповрежденным коллектором.

Кроме того, в результате реактивного эффекта, вызванного образованием газовой смеси высокого давления при перфорации зарядами класса good hole (GH) DPEX, происходит интенсивная очистка перфорационного канала от продуктов сгорания. В результате площадь удельной открытой поверхности перфорационного канала в 1,5-2 раза превышает аналогичное значение, достигаемое при обычной перфорации. Перфорация типа DPEX (GH) не только создает практически идеальные условия для гидроразрыва пласта, но и заменяет собой перфорацию на депрессии.

Таким образом, основной задачей разработки продуктивных пластов с преобладающим содержанием пород-коллекторов класса с низким фильтрационным потенциалом является создание с использованием гидроразрыва пласта, разветвленной системы трещин оптимальной длины. Для проведения управляемого гидроразрыва пласта необходимо осуществить перфорацию эксплуатационной колонны кумулятивными зарядами BIG HOLE с большим диаметром пробития эксплуатационной колонны, ориентированную перфорацию в соответствии с направлениями основных напряжений горной породы, с применением зарядов с реактивным эффектом, позволяющими получить новое качество перфорационных каналов, обеспечивающих значительное увеличение площади контакта перфорационного канала с породами продуктивного пласта.

Способ осуществляют следующим образом. Бурят поисково-разведочные и эксплуатационные скважины. Проводят в указанных скважинах комплекс ГИС, предусмотренный геолого-технологическим нарядом. Осуществляют комплексную обработку и интерпретацию данных ГИС, измеряют Wтв, определяют αпс, для чего используют (петрофизический) лито-фациальный параметр - отношение водородосодержания твердой фазы (Wтв) породы к относительной амплитуде метода естественных электрических потенциалов (αпс). По результатам обработки и интерпретации по известной методике перед воздействием на пласты дополнительно выделяют классы пород - коллекторов по содержанию каолинита в глинистом цементе. Содержание каолинита и указанный параметр связаны с проницаемостью терригенных пород-коллекторов, что позволяет разделить породы-коллекторы по фильтрационно-емкостным характеристикам. Выделяют группы пород-коллекторов с высоким и низким фильтрационным потенциалом. Выделяют породы - коллекторы с высоким фильтрационным потенциалом при содержании в породе каолинита от 45 до 100% и при Wтвпс от 0,1-0,25 и породы-коллекторы с низкими фильтрационным потенциалом при содержании каолинита менее 45% и при Wтвпс от 0,25-0,35. По данным методов нейтронного, гамма-гамма плотностного и метода естественных электрических потенциалов (ПС) в выборочных скважинах для конкретного геологического пласта рассчитывается параметр Wтвпс.

По известным программам картопостроения, строят карту изменения лито-фациального параметра Wтвпс, на которой выделяют зоны распространения групп пород-коллекторов. На карте проводят изолинии указанного параметра, соответствующие его граничным значениям при разделении пород-коллекторов на группы. Выделяют зоны развития пород - коллекторов с высоким и низким фильтрационным потенциалом (фиг.3). В зонах развития коллекторов с высоким фильтрационным потенциалом осуществляют бурение горизонтальных скважин и создание равномерного фронта вытеснения нефти, например, закачкой ПАВ, обеспечивающего максимальный коэффициент охвата выработкой продуктивных пластов.

Такие составы на основе взаимных растворителей испытаны на четырех скважинах Лас-Еганского и Покамасовского месторождений при обработке призабойной зоны пластов ЮВ1, а также девяти добывающих из пятнадцати скважин Пермяковской группы месторождений. Результаты свидетельствуют о 2,2-3,5-кратном увеличении коэффициентов продуктивности обработанных скважин и значительных приростах дебетов в добывающих и приемистости в нагнетательных скважинах в юрских коллекторах.

В рамках исследований была проведена закачка лигнокауста в нагнетательные скважины пласта ЮВ1 Кошильского месторождения с целью выравнивания профиля приемистости.

В результате проведенных работ дополнительная добыча нефти составила 14,4 тыс. тонн. На одну тонну использованных химических реагентов приходится 348 тонн дополнительно добытой нефти, средний прирост дебита нефти по всему фонду скважин составил 1, 7 тонн/сутки.

В зонах развития коллекторов с низким фильтрационным потенциалом бурят эксплуатационные скважины, в которых проводят управляемый гидроразрыв пласта с предварительной углубленной перфорацией. Перед гидроразрывом пласта проводят специальные виды перфорации, позволяющие соблюдать расчетные параметры закачки проппанта, с целью создания в пласте трещин необходимых геометрических размеров, а именно:

- проведение перфорации зарядами BIG HOLE для получения отверстий большого диаметра в эксплуатационной колонне, что позволяет снизить фильтрационное сопротивление при закачке проппанта в пласт;

- проведение перфорации, ориентированной в соответствии с направлением вектора напряженности пород, что позволяет улучшить геометрию движения проппанта в призабойной зоне пласта и, тем самым, снизить фильтрационное сопротивление и обеспечить управляемость гидроразрыва пласта.

Пример конкретного выполнения предлагаемого способа демонстрируется углубленной и ориентированной перфорацией с последующим гидроразрывом пласта в коллекторах преимущественно пластов АВ Самотлорского месторождения. В таблице приведены усредненные результаты по более чем пятидесяти скважинам. Как видно из таблицы, средний дебит последовательно увеличивается: обычный гидроразрыв пласта - 71,7 м/сут, гидроразрыв пласта с предварительной углубленной перфорацией - 82,8 м/сут, гидроразрыв пласта с предварительной углубленной и ориентированной перфорацией - 115 м/сут. Работы проводились преимущественно в коллекторах с низким фильтрационным потенциалом.

Предлагаемый способ позволяет повысить надежность и эффективность разработки нефтяных залежей вследствие учета геологического строения и распределения фильтрационных характеристик пород-коллекторов.

Источники информации

1. Патент РФ №2122107, кл. E21B 43/20, опубл. в 1998 г.

2. Патент РФ №2119583, кл. E21B 49/00, опубл. в 1998 г. - прототип.

Таблица
Показатели ГРП ГРП с BIG ГРП с BIG HOLE и
п/п HOLE ориентированной перфорацией
1 Масса закачанного с поверхности проппанта (кг) 34,0 35,3 35,6
2 Полудлина созданной трещины (м) 48,7 52,0
3 Давление в конце буфера 238 161 84
4 Дебит жидкости, м3/сут 71,7 82,8 115

1. Способ разработки нефтяных залежей, включающий бурение скважин, проведение геолого-промысловых и геофизических исследований скважин (ГИС), лабораторные исследования свойств пород, интерпретацию ГИС, расчленение залежи на участки с характерными геологическими и фильтрационными характеристиками и построение карты, с выделением зон пород-коллекторов с повышенной проницаемостью, отличающийся тем, что из поисково-разведочных и эксплуатационных скважин извлекают образцы керна, по которым дополнительно измеряют водородосодержание твердой фазы керна, определяют относительную амплитуду естественных электрических потенциалов, определяют значения отношения водородосодержания твердой фазы к относительной амплитуде естественных электрических потенциалов, то есть лито-фациальный параметр, строят карту изменения лито-фациального параметра в пределах территории распространения залежи углеводородов, на карте проводят изолинии граничных значений лито-фациального параметра, по которым выделяют зоны пород с высоким и низким фильтрационным потенциалом, при этом в зонах пород с высоким фильтрационным потенциалом осуществляют горизонтальное бурение скважин с последующим созданием равномерного фронта вытеснения нефти, а в зонах пород с низким фильтрационным потенциалом осуществляют углубленную кумулятивную перфорацию, ориентированную в соответствии с направлением вектора напряженности породы с последующим гидроразрывом пласта, обеспечивающим разветвленную систему трещин заданной длины.

2. Способ разработки нефтяных залежей по п.1, отличающийся тем, что при значениях лито-фациального параметра Wтвпс от 0,1-0,25 выделяют зоны пород с высоким фильтрационным потенциалом.

3. Способ разработки нефтяных залежей по п.1, отличающийся тем, что при значениях лито-фациального параметра Wтвпс от 0,25-0,35 выделяют зоны пород с низким фильтрационным потенциалом.

4. Способ разработки нефтяных залежей по п.1, отличающийся тем, что равномерный фронт вытеснения нефти осуществляют закачкой лигнокауста.

5. Способ разработки нефтяных залежей по п.1, отличающийся тем, что равномерный фронт вытеснения нефти осуществляют закачкой взаимных растворителей в составе кислотных композиций.

6. Способ разработки нефтяных залежей по п.5, отличающийся тем, что закачку взаимных растворителей в составе кислотных композиций осуществляют в динамическом режиме.

7. Способ разработки нефтяных залежей по п.1, отличающийся тем, что углубленную кумулятивную перфорацию осуществляют кумулятивным зарядом с использованием реактивного эффекта плазменной струи, например зарядом DPEX (GH).

8. Способ разработки нефтяных залежей по п.1, отличающийся тем, что углубленную кумулятивную перфорацию осуществляют зарядом с большим диаметром пробития эксплуатационной колонны, например BIG HOL.



 

Похожие патенты:

Изобретение относится к области нефтяной промышленности и, более конкретно, к поиску и добыче нефти. Обеспечивает возможность создания системы разработки, обеспечивающей добычу нефти непосредственно из нефтеподводящего канала, соединяющего глубинный резервуар с нефтяной залежью.

Изобретение относится к области геофизики и может быть использовано для определения насыщения флюидом порового пространства пород исследуемых пластов. Способ определения насыщения водой в подземном пласте включает в себя определение глубины проникновения в пласт на основании множества измерений, выполняемых в стволе скважины, пробуренном сквозь пласт.

Изобретение относится к области геофизики и может быть использовано для построения структурных планов на акваториях: от фундамента до границы М. Для реализации способа используют магнитные, гравитационные поля и рельеф дна моря.
Изобретение относится к области геофизики и может быть использовано для поиска месторождений нефти и газа. Сущность: проводят геологическую и сейсмическую съемки, а также дистанционный оптический газовый анализ с помощью дистанционного лидара.
Изобретение относится к геофизике и может быть использовано с целью поиска и разведки нефтяных и газовых подводных месторождений. Согласно заявленному способу регистрации сейсмических сигналов при поиске подводных залежей углеводородов осуществляют регистрацию сейсмических колебаний поверхности Земли с использованием приемников сейсмических колебаний, способных регистрировать сейсмические колебания в диапазоне от 0,1 до 20 Гц.

Изобретение относится к области геофизики и может быть использовано при разведке месторождений углеводородов (УВ) с использованием измерений параметров геофизических полей различной природы при обработке данных для определения детальных (тонкослоистых) фильтрационно-емкостных свойств коллекторов и типа их насыщения в межскважинном и околоскважинном пространстве.

Изобретение относится к области геофизики и может быть использовано при разведке месторождений газовых гидратов. .

Изобретение относится к области геофизики и может быть использовано для прогнозирования землетрясений. .

Изобретение относится к методам поисков и разведки месторождений алмазов и может быть использовано при проведении поиска площадей алмазоносных туффизитов. .

Изобретение относится к области геофизики, а также к области физики космических лучей и может быть использовано при контроле объемно-напряженного состояния среды (ОНС) в сейсмоопасной области и прогнозе сильных землетрясений.

Изобретение относится к области отбора проб жидкости и может быть использовано на нефтегазодобывающих комплексах, системах, транспортирующих нефть и газ, нефтегазоперерабатывающих заводах и других предприятиях, на которых существует необходимость отбора проб из трубопроводов и технологических аппаратов.

Изобретения относятся к нефтегазовой промышленности и могут быть использованы для определения местонахождения углеводородного сырья при бурении скважин. Техническим результатом является упрощение и повышение достоверности способа и устройства определения пластов, содержащих углеводороды.

Изобретение относится к горному делу и может быть использовано в области геофизики. Техническим результатом является повышение качества и надежности интерпретации данных каротажа.

Изобретение относится к мониторингу свойств углеводородных пластов и свойств добываемых флюидов во время добычи, особенно в ходе механизированной добычи. Техническим результатом является определение характеристик параметров призабойной зоны и получение более качественных характеристик пласта на границе раздела пласта и скважины.

Изобретение относится к разработке углеводородных залежей сложного геологического строения с неоднородными, в том числе низко проницаемыми коллекторами. Техническим результатом является повышение точности, надежности и значительное уменьшение времени определения значения коэффициента извлечения нефти (КИН).
Изобретение относится к нефтяной и газовой промышленности в области контроля за разработкой нефтегазовых месторождений. Техническим результатом является получение достоверной информации о пространственном распределении переменной эффективной проницаемости, имеющей характер пропускной способности флюидов пласта под воздействием стационарного давления по площади.

Изобретение относится к получению характеристик пластового флюида, имеющегося в подземном пласте, во время бурения. Техническим результатом является коррекция измеренных концентраций компонентов газа в буровом растворе.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при разведке и управлении разработкой месторождений углеводородного сырья. Техническим результатом является получение объективных данных о физико-химических свойствах добываемой нефти, а именно оптических свойствах для расчета остаточных извлекаемых запасов нефти и определения текущих свойств коллекторов разрабатываемого месторождения, а также данных по обводненности продукции скважин в промысловых условиях.

Изобретение может быть использовано при разработке месторождений углеводородов. Устройство для оценки динамики процесса прямоточной капиллярной пропитки образцов пород относится к области петрофизических исследований.

Изобретение относится к способу оценки вероятности добычи на буровой площадке. .

Изобретение относится к нефтяной промышленности, а именно к исследованию геомеханический свойств пластов. Техническим результатом являются повышение точности определения и результативности стимуляции хрупких зон коллекторов, а также повышение экономичности исследования вновь бурящихся скважин. Способ включает геофизические исследования скважин, лабораторные исследования кернов, выявление по совокупности данных лабораторных исследований кернов и геофизических исследований скважин взаимозависимости геомеханических характеристик пласта и каротажных диаграмм, выявление по совокупности данных геофизических исследований скважин геомеханических характеристик пласта на основе распространенных каротажных диаграмм и выявленной взаимозависимости геомеханических характеристик пласта и каротажных диаграмм. При этом геомеханические характеристики пласта определяются посредством многофакторной регрессии изменения каротажных диаграмм, которые учитывают содержание глин и пористость породы по математической формуле. 1 пр., 1 ил.
Наверх