Способ получения особо чистой воды и устройство для его осуществления



Способ получения особо чистой воды и устройство для его осуществления
Способ получения особо чистой воды и устройство для его осуществления
Способ получения особо чистой воды и устройство для его осуществления
Способ получения особо чистой воды и устройство для его осуществления
Способ получения особо чистой воды и устройство для его осуществления

 


Владельцы патента RU 2513904:

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ ПРОИЗВОДСТВЕННАЯ ФИРМА "ЛИВАМ" (ООО ПФ "ЛИВАМ") (RU)

Изобретение относится к способам и устройствам получения особо чистой воды для аналитического, лабораторного анализа и может быть использовано в научных учреждениях, на предприятиях медицинской, радиотехнической, электронной, фармацевтической промышленности. Способ заключается в последовательной многостадийной очистке путем предварительной механической фильтрации, сорбции, обработке обратным осмосом, дистилляции, электродеионизации. Устройство включает последовательно соединенные механический префильтр, сорбционный угольный фильтр, повышающий насос, обратноосмотическую мембрану, дистиллятор с устройством управления и накопительную емкость с устройством управления, второй насос, последовательно соединенный с накопительной емкостью и электродеионизатором, который соединен выходным штуцером с атмосферной емкостью. После второго насоса перед электродеионизатором расположен манометр с электромагнитным клапаном. Техническим результатом изобретения является повышение качества фильтрации воды, обеспечивающей получение очищенной воды степени I. 2 н. и 1 з.п. ф-лы, 5 ил.

 

Изобретение относится к способам и устройствам получения особо чистой воды для аналитического, лабораторного анализа и может быть использовано в научных учреждениях, на предприятиях: медицинской, радиотехнической, электронной, фармацевтической промышленности.

Известный способ очистки воды по патенту США №4808287 от 21.12.87 реализуется по схеме, приведенной на рисунке 1. Способ получения особо чистой воды по авторскому свидетельству СССР №1542920 реализуется по схеме, представленной на рисунке 2.

Известен способ получения чистой воды по патенту США №4876014, по которому перед обработкой воды предварительно создают ее устойчивый поток с помощью насосов, а затем последовательно обрабатывают сорбцией на гранулированном активированном угле, что составляет 5-10% времени очистки, затем 40-80% времени осуществляется анионирование, а 20-60% катионирование. При этом производят очистку фильтра путем создания реверсивного турбулентного потока воды. Далее воду обрабатывают бактериями, выполняющими функции биосорбции и уничтожения микроорганизмов, вирусов и возбудителей заболеваний и ультрафиолетовым излучением. Схема обработки воды по данному способу приведена на рисунке 3.

Существует другой способ и устройство для получения особо чистой воды - патент 2073359 RU. К сожалению, сложный по технологической цепочке, он не нашел широкого применения.

Наиболее распространенные устройства по очистке воды III и II степеней.

Рассматривать мы будем лишь способ и устройство получения чистой воды степени I, исходной водой для которого является вода степени II. Наиболее близким по технической сущности является способ по патенту США №4808287, по которому питьевую воду вначале фильтруют на 1-5-микронном фильтре, затем активированным углем, потом на защитном фильтре с активированным углем, далее снова фильтруют на 1-5-микронном защитном фильтре. Осуществляют первичную, а затем вторичную обработку воды под давлением обратным осмосом, обрабатывают воду электродиализом на платиновых аноде и катоде или деионизируют воду на ионитах, стерилизуют ультрафиолетовым облучением. Однако полученная таким способом вода обладает невысоким удельным электрическим сопротивлением, составляющим 16 мОм·см, что характеризует наличие в ней значительного количества солей. Электропроводность ее 0,0625 мкСм/см.

Особо чистая вода степени I по ГОСТ Р 52501-2005 и по Евростандарту ISO 3696-1987 допускает наличие в воде солей, ее электрическое сопротивление достигает порядка 18 мОм/см, что по электропроводности составляет 0.055 мкСм·см.

Предлагается способ получения очищенной воды по схеме на рисунке 4.

Исходная водопроводная вода последовательно проходит фильтрацию механической очистки, сорбции, обратным осмосом, дистилляцией уменьшается количество солей, термооброботкой уничтожаются микробы, вирусы. После дистиллятора через накопительную емкость насосом подается вода в электродеионизатор, откуда выходит особо чистая вода степени I.

Цель настоящего изобретения - повышение качества фильтрации воды, путем освоения нового способа и установки, обеспечивающей получение очищенной воды степени I. Для достижения поставленной цели используется, как и в Евростандарте ISO 3696-1987, исходная вода степени II.

За основу взята полезная модель №102610 с приоритетом 22.09.2010 г., в которой содержится механическая фильтрация, сорбция, обработка обратным осмосом и дистилляция.

Техническое решение обеспечивается тем, что полученная вода степени II после дистилляции (рисунок 4) поступает в накопительную емкость, затем насосом подается на электродеионизатор, после чего особо чистая вода (степень I) поступает в специальную атмосферную емкость с дыхательным клапаном, защищающим воду от внешней среды.

На рисунке 5 показано устройство, реализующее способ получения особо чистой воды.

Работа устройства получения особо чистой воды осуществляется следующим образом. Вода из водопроводной магистрали через датчик низкого давления 1, электромагнитный клапан 2, вентиль регулировки подачи воды 3, где давление воды контролируется манометром 4, проходит последовательно механический префильтр 5, сорбционный угольный фильтр 6, механический угольный фильтр 7, через повышающий насос 8 поступает в обратноосмотическую мембрану 9, следующее движение воды через датчик высокого давления 11, где давление контролируется манометром 10, вентиль 12, поступает в уравнитель 13 дистиллятора 15. В дистилляторе предусмотрен кран слива воды 14. Далее вода, охлаждаясь в охладителе 16, через систему управления 17, 18 поступает в емкость 19, где накапливается вода типа II (степень II), затем насосом 20, где давление контролируется манометром 21, поступает через клапан 22 в электродеионизатор 23 и потом в атмосферную емкость 25. Степень чистоты воды контролируется датчиком 24.

Предложенным способом с помощью описанного выше способа получена очищенная вода с электрическим сопротивлением 18 мОм/см или удельной проводимостью 0.054 мкСм/см. Степень очистки фильтрата согласно протокола испытаний 99.99988% веса.

Пояснения к рисунку 5:

1 - датчик низкого давления; 2 - электромагнитный клапан, 3 - вентиль регулировки подачи воды, 4 - манометр, 5 - механический префильтр, 6 - угольный префильтр, 7 - механический угольный префильтр, 8 - повышающий насос, 9 - обратноосматическая мембрана, 10 - манометр, 11 - датчик высокого давления, 12 - вентиль регулировки подачи воды в испаритель; 13 - уравнитель с датчиком уровня, 14 - кран слива воды из испарителя, 15 - дистиллятор, 16 - охладитель, 17 - датчик сопротивления, 18 - трехходовой кран, 19 - емкость для воды типа II, 20 - насос, 21 - манометр, 22 - электромагнитный клапан, 23 - электродеионизатор, 24 - датчик сопротивления, 25 - атмосферная емкость с водой 1-й степени очистки.

Источники информации

1. Патент США №4808287 от 21.12.87.

2. Авторское свидетельство СССР №1542920.

3. Патент 2073359 RU от 10.02.1997.

4. Патент США №4876014.

5. Полезная модель, патент №102610 от 22.09.2010.

6. Рисунки 1, 2, 3, 4, 5.

1. Способ получения особо чистой воды, заключающийся в последовательной многостадийной очистке путем предварительной механической фильтрации, сорбции, обработке обратным осмосом, дистилляции, электродеионизации.

2. Устройство для осуществления способа получения особо чистой воды, включающее последовательно соединенные механический префильтр, сорбционный угольный фильтр, повышающий насос, обратноосмотическую мембрану, дистиллятор с устройством управления и накопительную емкость с устройством управления, отличающееся наличием последовательно соединенного с накопительной емкостью второго насоса, а второй насос последовательно соединен с электродеионизатором, который соединен выходным штуцером с атмосферной емкостью.

3. Устройство по п.2, отличающееся тем, что после второго насоса перед электродеионизатором расположен манометр с электромагнитным клапаном.



 

Похожие патенты:
Способ очистки водного потока, поступающего после реакции Фишера-Тропша, включает дистилляцию и/или обработку отпаркой, обработку по меньшей мере одним неорганическим основанием и обработку по меньшей мере одним органическим основанием.

Изобретение относится к области многоступенчатой очистки воды с автоматизированной системой управления, а именно к автомату для розничной продажи очищенной воды.

Изобретение относится к технологии переработки нефтеносных песков, в частности к области увеличения потока воды из отстойного резервуара процесса переработки нефтеносных песков через мембранную систему разделения и улучшения очистки воды, содержащейся в этом потоке.

Изобретение относится к способу очистки побочного продукта-воды, который образуется в процессе синтеза жидких углеводородов из газообразного оксида углерода и газообразного водорода по реакции Фишера-Тропша и т.д.

Изобретение относится к области автоматизации систем водоочистки и может быть использовано при разработке установок для очистки промышленных сточных вод, хозяйственно-бытовых сточных вод, дренажных вод с орошаемых земель, организованных и неорганизованных стоков с территорий населенных пунктов и промышленных площадок, сельскохозяйственных полей и крупных животноводческих комплексов, а также для водоподготовки и организации питьевого водоснабжения.
Изобретение относится к сельскому хозяйству, а именно к растениеводству и животноводству, и может быть использовано для повышения урожайности сельскохозяйственных культур, а за счет сокращения вегетативного периода растений обеспечить защиту от засухи, получения чистой экологической продукции, увеличения привесов животных и птицы, а также для решения вопросов продовольственной безопасности.

Изобретение относится к области очистки сернисто-щелочных стоков от сульфидов, образующихся при нефтедобыче, нефтепереработке и других химических производствах. .

Изобретение относится к областям экологии и энергетики, в частности комплексной переработки сточных вод и органического мусора посредством генерации биогаза, и очистки нефтесодержащих вод с последующим их сжиганием для использования полученной при сгорании теплоты в целях энергоснабжения.

Изобретение относится к водоснабжению коксохимических предприятий и может быть использовано в коксохимическом производстве. .

Переносная система обработки воды включает по меньшей мере одну подсистему для обработки воды, включающую систему флокуляции, систему хлорирования и систему биопесочной фильтрации. Система обработки воды может включать множественные подсистемы для обработки воды, питающие друг друга. Система фильтра может включать биопесочный мини-фильтр или прессованный блочный фильтр. Система флокуляции может включать нижнюю часть резервуара, которая принуждает частицы к осаждению в отстойнике, и черпак, который удаляет осевшие частицы. В систему обработки воды может быть включен ручной насос или сифон. Изобретение обеспечивает систему обработки воды, которая проста в применении, не требует электроэнергии или других энергетических источников, может быть применена в соединении с существующим устройством обработки воды или отдельно и является удобной в обслуживании. 3 н. и 17 з.п. ф-лы, 49 ил.

Изобретения относятся к биотехнологии. Предложены подпитываемые способы продуцирования высокомолекулярных полигидроксиалканоатов (PHA) в биомассе (варианты). Направляют биомассу в реактор, имеющий по крайней мере одну зону стимуляции с высокой средней концентрацией субстрата и по крайней мере одну зону сохранения с меньшей средней концентрацией субстрата. Периодически и неоднократно подают органический углеродсодержащий субстрат в биомассу в по крайней мере одной зоне стимуляции. Причем концентрация субстрата в зоне стимуляции находится между 10 и 1000 мг-COD/л. Осуществляют слежение за интенсивностью дыхания биомассы и определение концентрации субстрата в зоне сохранения. Циркулируют биомассу туда и обратно между зоной стимуляции и зоной сохранения так, чтобы интенсивность дыхания биомассы в зоне сохранения не уменьшалась на более чем 70% от достижимой максимальной интенсивности сохранившегося дыхания биомассы. После аккумуляции биомассой требуемого уровня РНА или достижения уровня насыщения PHA собирают биомассу из реактора. В другом варианте способа используют иловую смесь, содержащую биомассу. Способы позволяют получать РНА со средней молекулярной массой по меньшей мере 400000 г/моль. 2 н. и 16 з.п. ф-лы, 11 ил.

Изобретение относится к области очистки природной воды для хозяйственно-питьевого и производственного водоснабжения, в том числе маломутной цветной низкотемпературной воды. Способ включает реагентную обработку воды коагулянтом и флокулянтом, проведение объемной коагуляции в условиях механического перемешивания, осветление в горизонтальных отстойниках, оборудованных на выходе флотационными камерами, фильтрование, обеззараживание очищенной воды, сбор промывной воды в резервуар-усреднитель с последующим смешением ее с исходной водой. Техническим результатом изобретения является обеспечение качества питьевой воды независимо от сезонных колебаний качества исходной воды и температурных условий, повышение степени осветления коагулируемой воды до фильтрования, снижение расхода промывных вод. 1 табл., 1 ил.

Изобретение может быть использовано для очистки хозяйственно-бытовых сточных вод и близких к ним по составу сточных вод средних и малых населенных пунктов и отдельно стоящих домов. Способ глубокой биохимической очистки сточных вод включает грубую механическую очистку в песколовках, подачу стока в усреднитель-преаэратор с переменным уровнем (1) и обработку кислородом воздуха с максимальным активным перемешиванием, после чего проводят первичную и повторную аэрацию в аэротенке с аэраторами и нитри- денитрифицирующими зонами (2, 3, 4, 5). Очищенную воду отстаивают во вторичном отстойнике (6) и подают на блок доочистки на фильтрах и далее для дополнительной очистки воду пропускают через электростатическое поле, а рециркулируемый ил через магнитное поле. Далее вода проходит через установку обеззараживания на ультрафиолете. Изобретение позволяет уменьшить габариты и металлоемкость установки, а также энергозатраты. 2 н. и 2 з.п. ф-лы, 1 ил.

Группа изобретений относится к пищевой промышленности и может быть использована для получения питьевой воды. Для этого проводят забор воды из природного источника, отстаивание воды с доступом кислорода воздуха в емкости объемом 20-40 м3 в течение 10-15 часов, обработку воды, путем пропускания через устройство, имеющее внешний и внутренний цилиндр. При этом через центральную полость устройства проходит вода из подающей трубы, закручивается встречными потоками по спирали и в магнитной трубе. Далее обработка фуллеренами, путем пропускания воды через цилиндрическое устройство, содержащее внутренний цилиндр с отверстиями, в который периодически добавляют предварительно подготовленную исходную воду с гидратированными фуллеренами C60HyFn, которая получена следующим образом: в 2-х литровую колбу наливают 2 л исходной воды и в нее добавляют гидратированный фуллерен в концентрации 14,4 мг/л, колбу вращают в течение 1 минуты против часовой стрелки со скоростью, способствующей образованию воронки. Затем воду отстаивают в течение 2-х минут, повторно вращают в течение 30 секунд, снова отстаивают 2 минуты, из полученного раствора берут 1 мл и вливают в 1 литр исходной воды, процедуру повторяют до получения раствора фуллеренов C60HyFn с концентрацией 10-20 моль/л. Розлив полученной питьевой воды. Также предложено устройство для получения питьевой воды. Группа изобретений обеспечивает получение воды пригодной для постоянного употребления человеком с улучшенными вкусовыми и органолептическими свойствами. 2 н.п. ф-лы, 1 ил., 1 табл., 2 пр.

Изобретение относится к сельскому хозяйству и пищевой промышленности и может быть использовано при круглогодичной утилизации отходов консервных комбинатов для орошения и повышения плодородия почвы. Отходы предварительно барботируют воздушной струей под давлением до 0,6 МПа. Затем взмученную массу отходов нейтрализуют раствором гашеной извести дозой от 0,3 до 1 т/сут на 1000 м2 до значения рН 6,5-7,5. Разделяют отходы на твердую массу и жидкость. Твердую массу нейтрализуют до pH 6,5-7,5, а жидкость направляют в один из прудов накопителей для нейтрализации до pH 6,5-7,5, барботируют воздушной струей под давлением до 0,6 МПа, минерализуют кальциевым мелиорантом с дозой от 0,3 до 1 т/сут на 1000 м2 и направляют в другой пруд-накопитель для подачи на земледельческие поля орошения. Система для осуществления способа включает насосные установки, транспортирующий трубопровод, усреднитель, накопители для твердой массы и жидкости, пруды-накопители, распределительные трубопроводы, подающие жидкие стоки на земледельческие поля орошения. Усреднитель имеет на дне конусные насадки, компрессор и дозатор известкового раствора. С усреднителем и с накопителями твердой массы и жидкости соединены ротационные и виброситные установки. Технический результат: повышение эффективности утилизации отходов пищевого производства. 2 н.п. ф-лы, 2 табл., 4 ил.

Изобретение относится к области водоснабжения коллективных пользователей и может быть использовано для получения питьевой воды из поверхностных или подземных источников. Способ получения воды питьевого качества включает выделение из нее механических примесей и загрязнений с помощью фильтра механической очистки и обратноосмотического блока, работающих с остановкой между рабочими циклами для гидравлической очистки мембранного элемента обратноосмотического блока и удаления концентрата. На время технологического перерыва напорную емкость обратноосмотического блока заполняют пермеатом. Вначале из обрабатываемой воды с помощью фильтра выделяют механические примеси с размером частиц более 5 мкм. После чего ее подают в напорную емкость обратноосмотического блока, при этом осуществляют периодическую гидравлическую промывку мембранного элемента в течение рабочего цикла без остановки оборудования с интервалом, определяемым формулой: где a - эмпирическая константа, равная 3,5 мг/ дм3 час; C - концентрация растворенных ионов, приводящих к образованию коллоидных частиц, мг/дм3. Изобретение позволяет упростить способ очистки и повысить его производительность до 250-60000 дм3/час в течение 8-20 час/сутки. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области водоснабжения, а именно к установкам водоподготовки подземных вод, в частности для источников высокоцветной и высокомутной воды, и может быть использовано в системах водоснабжения баз отдыха, коттеджных поселков, садоводческих товариществ и иных потребителей воды питьевого качества. Блочно-модульная станция очистки воды для систем водоснабжения позволяет обеспечить потребителей чистой питьевой водой при одновременном сокращении расхода реагентов на очистку и объема образующихся в результате очистки загрязненных технологических стоков, сбрасываемых в канализацию, за счет того, что содержит размещенные в транспортируемом контейнере блок механической очистки, состоящий из водозаборного узла с системой автоматического управления расходом и давлением воды и механического фильтра, соединенный с блоком аэрации, содержащим компрессор и аэрационную колонну. Блок аэрации последовательно соединен с блоком фильтра-осветлителя, содержащим напорный фильтр обезжелезивания, блоком ионообменного фильтра с узлом регенерации, блоком дозирования реагентов, резервуарами чистой воды, насосной станцией второго подъема с блоком обеззараживания, в качестве которого используют установки ультрафиолетового обеззараживания, и баком-аккумулятором. Узел регенерации блока ионообменного фильтра снабжен двумя баками регенерационного солевого раствора, насосом подачи регенерационного солевого раствора в ионообменный фильтр, на напорной линии которого установлен сетчатый фильтр, и соединен с узлом механического обезвоживания осадка. Технический результат заключается в обеспечении степени очистки воды до нормативов СанПин при одновременном сокращении расхода реагентов на очистку и объема образующихся в результате очистки загрязненных технологических стоков, сбрасываемых в канализацию. 2 з.п. ф-лы, 1 ил.
Наверх