Способ стабилизации бензина


 


Владельцы патента RU 2513908:

Курочкин Андрей Владиславович (RU)

Изобретение относится к способам стабилизации бензиновых фракций и может найти применение в нефтегазовой, нефтеперерабатывающей и нефтехимической промышленности для снижения давления насыщенных паров до нормативного значения. Способ стабилизации бензина осуществляют путем подачи нестабильного бензина в зону питания стабилизационной колонны, вывода паров стабилизации с верха стабилизационной колонны и вывода жидкости с низа стабилизационной колонны. Стабилизацию проводят в вертикальном фракционирующем аппарате с падающей пленкой и тремя тепло-массообменными секциями, одна из которых - верхняя расположена выше зоны питания, а две других - средняя и нижняя расположены ниже зоны питания. Верхнюю тепло-массообменную секцию фракционирующего аппарата охлаждают, подавая хладоагент в верхнюю часть и выводя его из нижней части верхней тепло-массообменной секции. Среднюю и нижнюю тепло-массообменные секции фракционирующего аппарата нагревают, подавая теплоноситель в нижнюю часть и выводя его из верхней части нижней тепло-массообменной секции, а также подавая стабильный бензин из низа фракционирующего аппарата в нижнюю часть и выводя его из верхней части средней тепло-массообменной секции. Технический результат: упрощение способа, повышение выхода стабильного продукта и снижение энергозатрат. 1 ил., 3 пр.

 

Изобретение относится к способам стабилизации бензиновых фракций и может найти применение в нефтегазовой, нефтеперерабатывающей и нефтехимической промышленности для снижения давления насыщенных паров до нормативного значения.

Известна установка стабилизации углеводородных смесей [Патент РФ №2194739, МПК C10G 7/02, C10G 49/00, опубл. 20.12.2001 г.], при использовании которой стабилизацию осуществляют путем подачи нестабильного сырья в трехфазный сепаратор, вывода отделившегося газа и воды для дальнейшей переработки, разделения выделенного нестабильного сырья на два потока, большая часть которого проходит через рекуперативный теплообменник, где обменивается теплом с отходящим из колонны стабильным продуктом, и поступает в зону питания, расположенную в средней части стабилизационной колонны. Остальную часть нестабильного потока смешивают с парами стабилизации, выводимыми с верха стабилизационной колонны, и подают в воздушный холодильник, затем - в водяной холодильник, а затем - в рефлюксную емкость. Из рефлюксной емкости выводят газ стабилизации, углеводородный конденсат, который возвращают на орошение на верх стабилизационной колонны, и воду, которую выводят для дальнейшей переработки. Тепло в низ стабилизационной колонны подают за счет циркуляции горячей струи через печь огневого нагрева. С низа стабилизационной колонны выводят стабильный продукт, который последовательно охлаждают в рекуперативном теплообменнике, воздушном холодильнике, водяном холодильнике и выводят с установки.

Однако способ разработан для стабилизации гидрогенизата дизельного топлива и не может быть использован для стабилизации бензина, поскольку смешение части нестабильного сырья, содержащего тяжелые углеводороды, с парами стабилизации и возврат их после конденсации на верх стабилизационной колонны, что приводит к нарушению режима фракционирования в стабилизационной колонне и, соответственно, росту энергозатрат на нагрев низа и охлаждение верха стабилизационной колонны с целью увеличения парового и флегмового числа для компенсации ухудшения эффективности фракционирования. Кроме того, способ неэффективен при стабилизации бензина из-за больших затрат электроэнергии на охлаждение и конденсацию смеси паров стабилизации и части нестабильного продукта вследствие необходимости поддержания большого расхода охлаждающего воздуха из-за малого температурного напора в воздушном холодильнике. Недостатком описанного способа является также снижение эффективности разделения из-за использования "горячей струи" для обогрева низа стабилизационной колонны вместо нагревательного аппарата с поверхностью раздела фаз (рибойлера).

Наиболее близок к заявляемому способу по технической сущности и принят в качестве прототипа способ стабилизации бензина коксования [Патент РФ №2051950, МПК C10G 7/02, C10G 5/04, опубл. 10.01.1996 г.] путем подачи нестабильного бензина в среднюю часть (зону питания) стабилизационной колонны, подачи в низ колонны паров, полученных за счет частичного испарения в рибойлере жидкости, выводимой с низа стабилизационной колонны, за счет тепла охлаждаемого тяжелого газойля, и вывод из рибойлера стабильного бензина. С верха стабилизационной колонны выводят пары стабилизации. Тяжелый газойль выводят с низа ректификационной колонны, в которой фракционируют пары из реакторов коксования и тяжелый газойль, выводимый из низа абсорбционной колонны, а с верха ректификационной колонны выводят нестабильный бензин. Тяжелый газойль после охлаждения в рибойлере подают в абсорбционную колонну для абсорбции паров от стадии прогрева, пропарки и охлаждения реакторов коксования и выводят тяжелый газойль в ректификационную колонну.

Однако способ характеризуется низким выходом стабильного бензина вследствие потерь легких компонентов из-за отсутствия охлаждения верхней части стабилизационной колонны, а также высокими энергозатратами вследствие отсутствия рекуперации тепла нагретого стабильного бензина. Кроме того, способ сложен и предусматривает использование большого количества оборудования.

Задача изобретения - упрощение способа, повышение выхода стабильного продукта и снижение энергозатрат.

Технический результат, который может быть получен при осуществлении способа:

- упрощение способа за счет уменьшения числа стадий,

- увеличение выхода стабильного бензина за счет снижения потерь легких компонентов с парами стабилизации,

- снижение энергозатрат за счет рекуперации тепла нагретого стабильного бензина.

Указанный технический результат достигается тем, что в известном способе, включающем подачу нестабильного бензина в зону питания стабилизационной колонны (фракционирующего аппарата), вывод паров стабилизации с верха стабилизационной колонны и вывод жидкости с низа стабилизационной колонны, особенностью является то, что

стабилизацию проводят в вертикальном фракционирующем аппарате с падающей пленкой и тремя тепло-массообменными секциями, одна из которых - верхняя расположена выше зоны питания, а две других - средняя и нижняя расположены ниже зоны питания,

при этом верхнюю тепло-массообменную секцию фракционирующего аппарата охлаждают, подавая хладоагент в верхнюю часть и выводя его из нижней части верхней тепло-массообменной секции,

а среднюю и нижнюю тепло-массообменные секции фракционирующего аппарата нагревают, подавая теплоноситель в нижнюю часть и выводя его из верхней части нижней тепло-массообменной секции, а также подавая стабильный бензин из низа фракционирующего аппарата в нижнюю часть и выводя его из верхней части средней тепло-массообменной секции.

В заявляемом способе охлаждение верхней части фракционирующего аппарата за счет подачи хладоагента в верхнюю тепло-массообменную секцию уменьшает потери легких бензиновых фракций за счет их конденсации, что увеличивает выход стабильного бензина.

Нагрев нижней части фракционирующего аппарата за счет подачи стабильного бензина в среднюю тепло-массообменную секцию и подачи теплоносителя в нижнюю тепло-массообменную секцию позволяет отпарить легкие углеводороды паров стабилизации от стабильного бензина без использования рибойлера.

Подача нагретого стабильного бензина, отбираемого из низа фракционирующего аппарата, в качестве теплоносителя в низ средней тепло-массообменной секции позволяет уменьшить расходы энергии на стабилизацию за счет рекуперации тепла горячего стабильного бензина и использования его для фракционирования.

В качестве тепло-массообменных секций используют, например, устройства, состоящие из распределителя жидкости и блока тепло-массообменных элементов спирально-радиального типа с вертикальными массообменными поверхностями.

Способ осуществляют следующим образом.

Нестабильный бензин I подают в зону питания 1 фракционирующего аппарата 2, а теплоноситель II подают в нижнюю часть и выводят из верхней части нижней тепло-массообменной секции 3. Стабильный бензин III с целью рекуперации тепла из низа фракционирующего аппарата 2 подают в качестве теплоносителя в нижнюю часть и выводят из верхней части средней тепло-массообменной секции 4. С целью снижения потерь бензиновых фракций в верхнюю часть верхней тепло-массообменной секции 5 подают, а из нижней части выводят хладоагент IV. С верха фракционирующего аппарата 1 выводят пары стабилизации V.

Пример 1 (по прототипу). Нестабильный бензин (100% масс), содержащий, масс.%: этан 0,22; пропан 2,40; бутаны 12,40; пентан и высшие 84,98, при температуре 20°С и давлении 1,013 МПа изб. вводят в жидком виде в зону питания тарельчатой стабилизационной колонны с разделительной способностью 16 теоретических тарелок, оборудованной рибойлером. С верха стабилизационной колонны при температуре 97,9°С отбирают пары стабилизации в количестве 17,5% масс. Из рибойлера при температуре 169,5°С отбирают стабильный бензин с давлением паров по Рейду 66,7 кПа в количестве 82,5% масс.

Расход тепла составил 380 МДж/т продукта.

Пример 2. Нестабильный бензин (100% масс), содержащий, масс.%: этан 0,22; пропан 2,40; бутаны 12,40; пентан и высшие 84,98, с температурой 20°С и давлении 1,013 МПа изб. вводят в жидком виде в зону питания тарельчатой стабилизационной колонны с разделительной способностью верхней и нижней части колонны по 8 теоретических тарелок, оборудованной рибойлером и системой подачи острого орошения на верх колонны. Кратность орошения 1:1. С верха стабилизационной колонны при температуре 55,6°С отбирают пары стабилизации в количестве 13,1% масс. С низа стабилизационной колонны при температуре 169,0°С отбирают стабильный бензин с давлением паров по Рейду 66,7 кПа в количестве 86,9% масс

Расход холода составил 87 МДж/т продукта, тепла - 414 МДж/т продукта. Суммарные энергозатраты составили 501 МДж/т.

Пример 3. Нестабильный бензин (100% масс), содержащий, масс.%: этан 0,22; пропан 2,40; бутаны 12,40; пентан и высшие 84,98, с температурой 20°С и давлении 1,013 МПа изб. подают в жидком виде в зону питания, расположенную в средней части стабилизационной колонны, представляющей собой фракционирующий аппарат с падающей пленкой, с верхней тепло-массообменной секцией, имеющей разделяющую способность 8 теоретических тарелок, средней тепло-массообменной секцией, имеющей разделяющую способность 2 теоретических тарелок, и нижней тепло-массообменной секцией, имеющей разделяющую способность 6 теоретических тарелок. Верхнюю часть стабилизационной колонны нагревают, подавая теплоноситель в нижнюю часть нижней тепло-массообменной секции и подавая в нижнюю часть средней тепло-массообменной секции стабильный бензин с температурой 169,1°С, отбираемый из низа стабилизационной колонны. С верха стабилизационной колонны при температуре 68,7°С отбирают пары стабилизации в количестве 13,2% масс, из верхней части средней тепло-массообменной секции при температуре 119,0°С отбирают стабильный бензин с давлением паров по Рейду 66,7 кПа в количестве 86,8% масс.

Расход холода составил 235 МДж/т продукта, расход тепла составил 146 МДж/т продукта. Суммарные энергозатраты составили 381 МДж/т.

Сопоставление примеров 1 и 3 свидетельствует, что предлагаемый способ позволяет повысить выход стабильного бензина при близких энергозатратах, сравнение примеров 2 и 3 показывает, что при практически равном выходе стабильного бензина предлагаемый способ позволяет снизить энергозатраты.

Предлагаемый способ стабилизации бензина может найти применение в нефтегазовой, нефтеперерабатывающей и нефтехимической промышленности для снижения давления насыщенных паров до нормативного значения.

Способ стабилизации бензина путем подачи нестабильного бензина в зону питания стабилизационной колонны, вывода паров стабилизации с верха стабилизационной колонны и вывода жидкости с низа стабилизационной колонны, отличающийся тем, что стабилизацию проводят в вертикальном фракционирующем аппарате с падающей пленкой и тремя тепло-массообменными секциями, одна из которых - верхняя расположена выше зоны питания, а две других - средняя и нижняя расположены ниже зоны питания, при этом верхнюю тепло-массообменную секцию фракционирующего аппарата охлаждают, подавая хладоагент в верхнюю часть и выводя его из нижней части верхней тепло-массообменной секции, кроме того, среднюю и нижнюю тепло-массообменные секции фракционирующего аппарата нагревают, подавая теплоноситель в нижнюю часть и выводя его из верхней части нижней тепло-массообменной секции, а также подавая стабильный бензин из низа фракционирующего аппарата в нижнюю часть и выводя его из верхней части средней тепло-массообменной секции.



 

Похожие патенты:

Изобретение относится к области переработки углеводсодержащего сырья. Изобретение касается способа переработки углеводородсодержащего (нефтесодержащего) сырья в двухзональном реакторе с использованием газообразного агента, в котором исходное сырье подается в верхнюю зону реактора, где поддерживается температура 250-350°C, а газообразный агент подается в нижнюю зону реактора, где поддерживается температура 400-450°C, отбор парафиновой фракции осуществляется из нижней зоны реактора, а парогазовая фракция отводится из верхней зоны реактора и подается на стадию ее частичной конденсации, в результате которой получают жидкую углеводородную фракцию и парогазовую смесь, после отделения в верхней зоне реактора легколетучих углеводородов от исходного сырья образующаяся жидкая смесь углеводородов через переливную трубу подается в нижнюю зону реактора.

Изобретение относится к способам первичной переработки нефти и может быть использовано в нефтеперерабатывающей промышленности. .

Изобретение относится к разделению газов каталитического крекинга газойля различного происхождения и может быть использовано с целью увеличения отбора пропилена как товарного продукта от потенциально образовавшегося в процессе каталитического крекинга газойля.
Изобретение относится к газовой промышленности и может быть использовано на газоконденсатных месторождениях, непосредственно на объектах подготовки газа к транспорту или на централизованных объектах по подготовке нестабильного газового конденсата к транспорту или переработке.

Изобретение относится к области нефтегазопереработки, в частности к фракционированию и разделению газов каталитического крекинга газойля и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к нефтегазоперерабатывающей промышленности, а именно к переработке нестабильного газового конденсата непосредственно на месторождении и может быть использовано для получения моторного топлива.

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано при переработке нефти. .

Изобретение относится к использованию в качестве энергоносителей исходных материалов, содержащих диоксид кремния. .

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам ректификации нефти. .

Изобретение относится к нефтепереработке и может быть использовано на установках первичной переработки нефти с двукратным испарением для увеличения вывода компонентов сжиженного газа - фракции С3-С4 посредством сокращения потерь.

Изобретение относится к процессам регенерации (выделения) метанола из минерализованных водных растворов и может быть использовано в нефтегазовой промышленности при подготовке углеводородных газов к транспорту и переработке.

Изобретение относится к улучшенному способу синтеза метанола, в котором сырой метанол (101) получают в секции синтеза и очищают в секции дистилляции (D), получая очищенный метанол (104), поток (103) мгновенно выделяющегося газа и побочные продукты (105, 106).

Изобретение относится к тепломассообменным процессам в системе газ - жидкость и может быть использовано в установках нефтеперерабатывающей, химической и других отраслей промышленности.

Изобретение относится к улучшенным способам получения простого диметилового эфира (ДМЭ) из метанола (MeOH) путем превращения, предпочтительно при помощи конденсации в условиях кислотного катализа, сырого MeOH, полученного путем MeOH-синтеза, с отщеплением воды в реакторе (12) с получением ДМЭ, при котором исходную смесь, состоящую из сырого MeOH, и по меньшей мере один полученный внутри процесса и образованный из не вступившего в реакцию MeOH и воды из реакции возвратный поток подают в колонну для MeOH (7) и подвергают испарению, а дистиллят, в основном состоящий из газообразного MeOH, подают в реактор.

Изобретение относится к усовершенствованному способу получения чистой метакриловой кислоты, включающему: а) окисление в газовой фазе С4-соединения с получением содержащей метакриловую кислоту газовой фазы, б) конденсирование содержащей метакриловую кислоту газовой фазы с получением водного раствора метакриловой кислоты, в) выделение по крайней мере части метакриловой кислоты из водного раствора метакриловой кислоты с получением по крайней мере одного содержащего метакриловую кислоту сырого продукта, г) выделение по крайней мере части метакриловой кислоты из по крайней мере одного содержащего метакриловую кислоту сырого продукта способом термического разделения с получением чистой метакриловой кислоты, причем на стадии процесса г) метакриловую кислоту выделяют из по крайней мере части по крайней мере одного содержащего метакриловую кислоту сырого продукта с помощью ректификации, и причем чистую метакриловую кислоту отбирают через боковой вывод используемой для ректификации колонны, а количество чистой метакриловой кислоты, отбираемой в определенный интервал времени, составляет от 40 до 80% от количества содержащего метакриловую кислоту сырого продукта, подаваемого в ректификационную колонну в тот же интервал времени.

Изобретение относится к усовершенствованному способу дистилляционной очистки диарилкарбонатов общей формулы (I), в которой R, R′ и R′′, независимо друг от друга, представляют собой атом водорода, прямоцепочечный или разветвленный алкил с 1-34 атомами углерода, алкокси с 1-34 атомами углерода, циклоалкил с 5-34 атомами углерода, алкиларил с 7-34 атомами углерода, арил с 6-34 атомами углерода или галогенный радикал, причем R, R′ и R′′ по обеим сторонам формулы (I) могут быть одинаковыми или разными, а R может также означать -COO-R′′′, причем R′′′ может представлять собой атом водорода; алкил с 1-34 атомами углерода, алкокси с 1-34 атомами углерода, циклоалкил с 5-34 атомами углерода, алкиларил с 7-34 атомами углерода или арил с 6-34 атомами углерода, по меньшей мере, в одной дистилляционной колонне, содержащей, по меньшей мере, одну обогащающую часть в верхней части колонны и, по меньшей мере, одну часть для отгонки в нижней части колонны, где подвергаемый очистке диарилкарбонат получают переэтерификацией, по меньшей мере, из одного диалкилкарбоната и, по меньшей мере, одного ароматического гидроксилсодержащего соединения общей формулы (III), в которой R, R′ и R′′, независимо друг от друга, могут иметь значения, названные для общей формулы (I), в присутствии, по меньшей мере, одного катализатора переэтерификации и который содержит в качестве примеси катализатор, использованный при получении диарилкарбоната, а очищенный диарилкарбонат отводят в боковом потоке первой дистилляционной колонны, причем первой дистилляционной колонной является колонна с разделительной стенкой.

Изобретение относится к области переработки газового конденсата и легкой нефти. Способ включает предварительный подогрев исходного сырья, отгонку в первой ректификационной колонне легкой нафты, подачу кубового остатка во вторую ректификационную колонну и отгонку в ней тяжелой нафты, керосиновой фракции и дизельной фракции с получением в качестве остатка мазута.

Изобретение относится к новому способу очистки раствора диэтаноламина от примесей, включающему нагрев загрязненного водного раствора диэтаноламина, содержащего продукты деструкции диэтаноламина и термостабильные соли, с последующим фракционированием полученной парожидкостной смеси.

Изобретение относится к способам первичной переработки нефти и может быть использовано в нефтеперерабатывающей промышленности. .
Изобретение относится к нефтеперерабатывающей промышленности, а именно к перегонке нефти, и может быть использовано для разделения ее на фракции. .

Изобретение относится к способу получения по меньшей мере одного диарилкарбоната общей формулы (I), в которой R, R′ и R″ независимо друг от друга означают атом водорода, неразветвленный или разветвленный алкил с 1-34 атомами углерода, алкокси с 1-34 атомами углерода, циклоалкил с 5-34 атомами углерода, алкиларил с 7-34 атомами углерода, арил с 6-34 атомами углерода или атом галогена, причем R, R′ и R″ в обеих частях формулы (I) могут быть одинаковыми или разными, а R может означать также группу -COO-R′″, в которой R′″ может означать атом водорода, неразветвленный или разветвленный алкил с 1-34 атомами углерода, алкокси с 1-34 атомами углерода, циклоалкил с 5-34 атомами углерода, алкиларил с 7-34 атомами углерода или арил с 6-34 атомами углерода, по меньшей мере из одного диалкилкарбоната и по меньшей мере из одного ароматического гидроксисоединения общей формулы (III), в которой R, R′ и R″ независимо друг от друга имеют вышеуказанные значения, причем (а) диалкилкарбонат(ы) в присутствии по меньшей мере одного катализатора переэтерификации взаимодействует(ют) с ароматическим(и) гидроксисоединением(ями) в первой реакционной колонне с находящейся в ее верхней части по меньшей мере одной укрепляющей зоной, ниже которой расположена по меньшей мере одна реакционная зона, состоящая по меньшей мере из двух секций, (b) кубовый продукт из первой реакционной колонны направляют по меньшей мере в одну другую реакционную колонну с находящейся в ее верхней части по меньшей мере одной укрепляющей зоной, ниже которой расположена по меньшей мере одна реакционная зона, и подвергают дальнейшему превращению, (с) непревращенный или образовавшийся во время реакции в реакционных колоннах технологических стадий (а) и/или (b) диалкилкарбонат полностью или частично отделяют от образовавшегося во время реакции алкилового спирта по меньшей мере на одной другой технологической стадии, оснащенной по меньшей мере одной дистилляционной колонной, (d) пары, отбираемые из верхней части по меньшей мере одной реакционной колонны технологической стадии (b) и содержащие ароматическое(ие) гидроксисоединение(я), полностью или частично направляют по меньшей мере на одну другую оснащенную по меньшей мере одной дистилляционной колонной технологическую стадию, на которой выделяют соединения с температурой кипения, находящейся в интервале между точками кипения диалкилкарбоната и образующегося во время получения диарилкарбоната алкиларилкарбоната общей формулы (IV), в которой R, R′ и R″ независимо друг от друга имеют вышеуказанные значения, a R1 является неразветвленным или разветвленным алкилом с 1-34 атомами углерода, и (е) содержащий диарилкарбонат кубовый продукт другой(их) реакционной(ых) колонны (колонн) технологической стадии (b) направляют по меньшей мере на одну другую технологическую стадию для очистки по меньшей мере в одной дистилляционной колонне по меньшей мере с одной укрепляющей зоной в верхней части и по меньшей мере с одной отпарной зоной в нижней части, и по меньшей мере одна реакционная колонна, выбранная из группы, включающей первую реакционную колонну и другую(ие) реакционную(ые) колонну(ы), снабжена одним или несколькими конденсаторами, причем теплоту реализуемой в конденсаторе(ах) конденсации непосредственно или косвенно возвращают в технологический процесс, и теплоту реализуемой в конденсаторе(ах) другой(их) реакционной(ых) колонны (колонн) конденсации непосредственно или косвенно, полностью или частично используют для отделения диалкилкарбоната от образовавшегося во время реакции алкилового спирта и/или для испарения направляемого в первую реакционную колонну диалкилкарбоната, а рабочее давление в разделительной(ых) дистилляционной(ых) колонне(ах) технологической стадии разделения диалкилкарбоната и алкилового спирта устанавливают таким образом, чтобы температура испарения в кубе разделительной(ых) дистилляционной(ых) колонны (колонн) технологической стадии разделения диалкилкарбоната и алкилового спирта была ниже температуры конденсации в конденсаторе(ах) другой(их) реакционной(ых) колонны (колонн) и/или при необходимости имеющемся(ихся) промежуточном(ых) конденсаторе(ах) первой реакционной колонны. Способ позволяет эффективно оптимизировать внутреннее использование тепловой энергии. 16 з.п. ф-лы, 14 ил., 1 пр. , ,
Наверх