Устройство защиты от аварийной течи котла-утилизатора

Изобретение относится к способу защиты от аварийной течи котлов-утилизаторов в сернокислотных системах. Устройство защиты от аварийной течи котла-утилизатора в установке производства серной кислоты включает воздуходувку с блоком аварийной остановки двигателя, при этом оно дополнительно содержит охлаждаемый байпасный газоход с датчиком температуры и контроллер, при этом байпасный газоход установлен в любой точке газового тракта сернокислотной системы между выходом из котла-утилизатора и выходом из газового теплообменника после первой стадии контактирования, вход контроллера соединен с датчиком температуры байпасного газохода, а выход - с блоком аварийной остановки двигателя воздуходувки. 3 ил.

 

Изобретение относится к способу защиты от аварийной течи котлов-утилизаторов в сернокислотных системах и может быть использовано в химической и металлургической промышленности.

Проблема защиты котла-утилизатора от аварийной течи очень актуальна в связи с тем, что течь котла-утилизатора в сернокислотной системе вызывает попадание большого количества влаги в технологический газовый поток, вызывая тем самым нарушения в работе контактного аппарата, газовых теплообменников и абсорбционных башен. В сушильно-абсорбционных отделениях происходит разбавление и разогрев серной кислоты в кислотных циклах, увеличиваются выбросы диоксида серы, триоксида серы и тумана серной кислоты в атмосферу с выхлопными газами.

В котлах-утилизаторах, работающих в условиях высоких температур и давлений пара, течь, появляющаяся в одной трубке испарительных элементов котла-утилизатора, быстро прогрессирует за счет повреждения соседних трубок испарительных элементов от паро-водяной струи, вырывающейся с большой скоростью из отверстия поврежденной трубки. Промедление с остановкой работы сернокислотной системы в этой ситуации вызывает большие механические повреждения испарительных элементов и корпусов котлов-утилизаторов, повышенную коррозию газовых теплообменников, холодильников серной кислоты, а также значительные выбросы вредных газов в атмосферу.

Оперативная остановка работы сернокислотной системы в этом случае позволяет значительно минимизировать негативные последствия данной аварийной ситуации.

Наиболее близким к описываемому по технической сущности и достигаемому результату является известное устройство для аварийной защиты котла утилизатора в производстве серной кислоты, защищенное патентом РФ №1458316, кл. C01B 17/76, G05D 27/00.

Устройство для аварийной защиты котла-утилизатора содержит блок аварийной остановки двигателя воздуходувки, датчик температуры на входе в абсорбционное отделение, измеритель скорости изменения температуры, два блока сравнения, элементы И и два блока задания.

Устройство работает следующим образом. Температура газового потока перед абсорбционным отделением, при течах котла-утилизатора, резко поднимается за счет дополнительного тепла, выделяющегося при ассоциации паров воды с триоксидом серы с образованием паров серной кислоты по следующему уравнению:

H2Oпар+SO3(газ)=H2SO4(пар)+Q

Полная ассоциация H2O и SO3 в пар серной кислоты происходит только при относительно низких температурах газового потока (менее 250°C). В сернокислотной системе, в газоходе перед абсорбцией, температура газового потока снижается до 200-250°C, при которой процесс ассоциации паров воды и триоксида серы происходит почти полностью с выделением большого количества тепла.

При технологическом изменении режима работы сернокислотной системы по газовой нагрузке или концентрации диоксида серы перед контактным аппаратом изменение температуры газового потока перед входом в абсорбционное отделение происходит медленно со скоростью около 1°C за 20-30 минут.

Если же происходит резкое увеличение температуры технологического газа перед абсорбцией, то это свидетельствует об утечке воды из котла-утилизатора в технологический газовый поток. В этом случае необходимо прекратить работу сернокислотной системы.

При повышении температуры газов, измеряемых датчиком, более чем на 10°С блок сравнения формирует управляющий сигнал, а при повышении скорости изменения этой температуры, формируемой измерителем на выходе блока сравнения, также образуется управляющий сигнал. Эти два управляющих сигнала поступают на входы элемента И, который подает сигнал на блок и тем самым останавливается воздуходувка и прекращается подача воздуха в агрегат.

Устройство применялось в сернокислотных системах, не имеющих в составе 1-ой ступени конверсии контактного отделения экономайзеров и генераторов пара.

В современных условиях сернокислотные системы должны быть энерготехнологичными, т.е. кроме получения самой серной кислоты они должны выпускать энергетический пар. В связи с этим они включают в состав экономайзеры и генераторы пара.

А известное устройство не может быть применено в таких системах, имеющих более высокую эффективность теплосъема (более чем в 3 раза по сравнению с газовыми теплообменниками). В этом случае при возникновении течи котла-утилизатора ассоциация и конденсация паров серной кислоты с выделением тепла происходит уже в экономайзерах или генераторах пара, которые за счет более высокой эффективности теплосъема его утилизируют, нивелируя тем самым эффект резкого повышения температуры газового потока перед абсорбцией.

Кроме того, современные сернокислотные системы в основном оснащены АСУТП, программное обеспечение которых несовместимо с применяемым в данном устройстве устаревшим приборным оформлением. Так, функции измерителя скорости изменения температуры, двух блоков сравнения, элементов И и двух блоков задания выполняет современный прибор-контроллер.

Нами поставлена задача создать устройство защиты от аварийной течи котла утилизатора, которая может быть применена в современных сернокислотных системах, которое позволит повысить надежность работы оборудования, снизить эксплуатационные затраты, повысить производительность и уменьшить выбросы вредных газов в атмосферу.

Технический результат достигается благодаря предлагаемому устройству, включающему воздуходувку с блоком аварийной остановки двигателя, которое дополнительно содержит охлаждаемый байпасный газоход с датчиком температуры и контроллер, при этом байпасный газоход установлен в любой точке газового тракта сернокислотной системы между выходом из котла-утилизатора и выходом из газового теплообменника после первой стадии контактирования, вход контроллера соединен с датчиком температуры байпасного газохода, а выход - с блоком аварийной остановки двигателя воздуходувки.

На рис.1 представлен вариант предлагаемого устройства для аварийной защиты котла-утилизатора (байпасный газоход установлен на выходе из котла-утилизатора перед первой ступенью конверсии).

Устройство включает воздуходувку - 1, печь - 2, котел-утилизатор - 3, первую ступень конверсии - 4, газовый теплообменник после первой ступени конверсии - 5, охлаждаемый байпасный газоход с датчиком температуры - 6, контроллер - 7 и блок аварийной остановки двигателя воздуходувки - 8.

Устройство работает следующим образом.

Воздух воздуходувкой 1 подается в печь 2, где происходит сжигание серы. Технологический газ с высокой температурой поступает в котел-утилизатор 3. При этом при охлаждении газа происходит образование пара.

Охлажденный газ выходит из котла-утилизатора. Небольшая его часть направляется в охлаждаемый байпасный газоход 6, а основная его часть поступает на первую ступень конверсии - 4, где происходит каталитическое окисление SO2 в SO3.

После первой ступени конверсии газ, содержащий SO2 в SO3, охлаждается в газовом теплообменнике - 5 с дальнейшим его охлаждением в последующем теплообменном оборудовании перед поступлением на абсорбцию SO3. При возникновении течи котла-утилизатора - 3 возрастает содержание влаги в основном технологическом газовом потоке и, соответственно, в его небольшой части, пропускаемой через охлаждаемый байпасный газоход - 6. Вследствие этого в выходной зоне охлаждаемого байпасного газохода - 6, где температура газа снижена до 200-250°C, происходит интенсивная ассоциация паров серной кислоты с выделением большого количества тепла и соответствующим резким повышением температуры газа, фиксируемой датчиком замера температуры, установленном в байпасном газоходе - 6. Сигнал от датчика температуры поступает в контроллер - 7.

При повышении температуры более чем на 10°C и скорости ее роста более чем 1°C в минуту в соответствии с программным обеспечением контроллер формирует управляющий сигнал на блок аварийной остановки двигателя воздуходувки - 8.

На рис.2 представлен вариант предлагаемого устройства с установкой охлаждаемого байпасного газохода после первой стадии контактирования.

На рис.3 представлен вариант установки предлагаемого с установкой охлаждаемого байпасного газохода после газового теплообменника после первой ступени конверсии.

Использование предлагаемого устройства в современных технологических системах (например, в технологическом процессе получения серной кислоты, защищенном патентом РФ №2201393, C01B 17/80 от 2001 г.) позволит снизить продолжительность непроизводственных простоев в технологическом цикле на 30-35%, что повысит производительность системы, а также на 10-15% уменьшить выбросы вредных газов в атмосферу.

Устройство защиты от аварийной течи котла-утилизатора в установке производства серной кислоты, включающее воздуходувку с блоком аварийной остановки двигателя, отличающееся тем, что оно дополнительно содержит охлаждаемый байпасный газоход с датчиком температуры и контроллер, при этом байпасный газоход установлен в любой точке газового тракта сернокислотной системы между выходом из котла-утилизатора и выходом из газового теплообменника после первой стадии контактирования, вход контроллера соединен с датчиком температуры байпасного газохода, а выход - с блоком аварийной остановки двигателя воздуходувки.



 

Похожие патенты:

Изобретение относится к способу получения серной кислоты, при этом в установке для производства серной кислоты получают исходный газ, содержащий SO2, который пропускают, по меньшей мере, через один реактор, в котором протекает каталитическая реакция с окислением SO3 в SO2, а из образовавшегося при этом SO3 получают серную кислоту.

Изобретение относится к устройству для непрерывного каталитического полного или частичного окисления исходного газа, содержащего диоксид серы и кислород. .

Изобретение относится к химической промышленности и может быть использовано для окисления диоксида серы до триоксида в сернокислотном производстве. .

Изобретение относится к области химии, а именно к способам окисления диоксида серы, и может применяться для окисления диоксида серы в триоксид в производстве серной кислоты, как из элементарной серы и серосодержащих минералов (пирита), так и при очистке серосодержащих промышленных газовых выбросов.

Изобретение относится к крупномасштабному производству серной кислоты. .

Изобретение относится к металлургии цветных металлов, в частности предназначено для утилизации газов цинкового производства в серную кислоту. .

Изобретение относится к способу переработки концентрированного сернистого газа, включающего окисление диоксида серы, и может быть использовано в химической промышленности для получения контактным способом жидкого триоксида серы, серной кислоты, олеума.
Изобретение относится к способам получения серной кислоты по методу двойного или тройного контактирования и может быть использовано в химической и других отраслях промышленности.

Изобретение относится к области химии. Способ производства серной кислоты или олеума содержит стадии: (a) производства сырьевого газа, (b) прохождения сырьевого газа через первую стадию превращения SO2 до SO3; (c) охлаждения содержащего SO3 газа; (d) прохождения газа на стадию промежуточной конденсации серной кислоты, где содержащий SO3 газ охлаждается и серная кислота конденсируется в охлаждаемых воздухом трубках, в которых газ SO3 движется вниз, тогда как охлаждающий воздух противотоком движется кверху промежуточного конденсатора, и в которых указанный воздух подается из контура рециркуляции воздуха, соединенного с указанным промежуточным конденсатором, и отвода от дна промежуточного конденсатора потока конденсированной серной кислоты или олеума, а также газового потока, содержащего непревращенный SO2 и неконденсированные SO3 и H2SO4; (e) подачи воды и кислорода в газовый поток из промежуточного конденсатора, содержащего непревращенный SO2 и неконденсированные SO3 и H2SO4 путем добавления к этому газовому потоку воздуха, отведенного от указанного контура рециркуляции воздуха, (f) повторный нагрев полученного газового потока из этапа (е) и подачу этого газа на вторую стадию превращения SO2 и последующую подачу газа на конечную стадию конденсации; g) подачу в газ перед или после его охлаждения в соответствии со стадией (f) твердых частиц. Изобретение позволяет снизить потребление энергии. 12 з.п. ф-лы, 6 ил., 6 табл., 4 пр.

Изобретение относится к химической промышленности и может быть использовано для получения серной кислоты. Установка содержит воздуходувку (1), печь (7) для сжигания серосодержащего сырья, котел-утилизатор (6) с испарительными элементами, контактный аппарат (3) с пятью слоями катализатора, два пароперегревателя (4), (5), газовоздушный теплообменник (2), экономайзер (8). Второй пароперегреватель (5) соединен с выходом газового потока после второго слоя катализатора контактного аппарата (3) и со входом на третий слой катализатора. Вход газовоздушного теплообменника (2) по газовому тракту соединен с выходом из третьего слоя катализатора. Выход с четвертого слоя катализатора контактного аппарата (3) соединен с компрессором. Выход с пятого слоя катализатора соединен с экономайзером (8). Вода в экономайзер поступает из узла питания (9). Изобретение позволяет повысить надежность работы установки и снизить содержание вредных соединений связанного азота в выхлопных газах. 1 ил.

Изобретение относится к регенерации энергии при производстве серной кислоты. Способ включает сжигание источника серы в газе, содержащем избыток кислорода; контакт потока газа, содержащего газообразный продукт сгорания, с катализатором для превращения диоксида серы в триоксид серы; контакт полученного конверсионного газа с первичной абсорбционной жидкостью, содержащей серную кислоту; циркуляцию указанной абсорбционной жидкости между первичной абсорбционной зоной и косвенным теплообменником, в котором тепло отбирается жидким теплоносителем; контакт потока газа, выходящего из первичной абсорбционной зоны, с вторичной абсорбционной жидкостью, содержащей серную кислоту. Изобретение позволяет повысить регенерацию энергии, высвобождаемой при поглощении влажного SO3 серной кислотой. 4 н. и 6 з.п. ф-лы, 24 ил., 7 табл., 7 пр.

Изобретение относится к сернокислотному производству и может быть использовано для утилизации отходящих сернистых газов предприятий цветной металлургии. Исходный сернистый газ с содержанием SO2 0,5-1,2 об.% нагревают в теплообменнике до температуры 250-300°С. Далее подогретую реакционную смесь одновременно вводят в несколько сегментов 1 с катализатором. Проводят процесс окисления SO2 в нестационарном режиме в одновременно движущихся нескольких тепловых фронтах - зонах реакции. Прореагировавшая реакционная смесь поступает в канал 5 сборника газа, откуда ее по каналу 4 распределителя реакционной смеси подают в несколько последующих сегментов 2 с катализатором. Прореагировавший газ направляют на абсорбцию. Переключение подачи исходного сернистого газа с одних сегментов с катализатором на другие сегменты с катализатором производят по достижении температуры на входе в них 430°С. Изобретение позволяет наиболее эффективно осуществить процесс конверсии SO2 в SO3. 1 ил., 1 табл.

Группа изобретений относится к химической промышленности, в частности к вариантам производства серной кислоты. Для получения серной кислоты осуществляют сжигание серы в сухом газе, содержащем избыток кислорода, с получением потока газа, содержащего оксид и диоксид серы, кислород и возможно водяной пар. Приводят поток газа в контакт с катализатором с образованием триоксида серы и превращением потока газа в конверсионный газ. Вводят водяной пар в конверсионный газ. Приводят конверсионный газ в контакт с поглощающей жидкостью, содержащей серную кислоту, в первичной теплорегенерационной абсорбционной зоне. Осуществляют циркуляцию поглощающей жидкости между первичной абсорбционной зоной и косвенным теплообменником. Тепло, высвобождаемое при реакции триоксида серы и воды, конденсации серной кислоты и/или абсорбции триоксида серы, передают жидкому теплоносителю. Обеспечивается регенерации энергии при производстве серной кислоты, снижение образования тумана при поглощении SO3 и регулирование содержания тумана серной кислоты в потоке газа, выходящего из этапа поглощения SO3. 6 н. и 19 з.п. ф-лы, 24 ил., 4 табл., 7 пр.
Наверх