Способ разработки залежи высоковязкой нефти



Способ разработки залежи высоковязкой нефти
Способ разработки залежи высоковязкой нефти
Способ разработки залежи высоковязкой нефти
Способ разработки залежи высоковязкой нефти
Способ разработки залежи высоковязкой нефти

 


Владельцы патента RU 2514044:

Открытое акционерное общество "Татнефть" имени В.Д. Шашина (RU)

Изобретение относится к нефтедобывающей промышленности, а именно к способам разработки залежей высоковязкой нефти горизонтальными скважинами. При осуществлении способа используют как минимум две пары непрерывных горизонтальных нагнетательных и добывающих скважин, горизонтальные участки которых размещены параллельно один над другим, осуществляют закачку теплоносителя через верхние горизонтальные нагнетательные скважины, одновременный отбор высоковязкой нефти через нижние горизонтальные добывающие скважины. На каждой паре горизонтальных скважин, расположенных на расстоянии от 100 до 150 м друг от друга, периодически, 1-2 раза в месяц, производят отбор проб высоковязкой нефти. Пробы нефти обезвоживают и производят анализ вязкости добываемой высоковязкой нефти. Затем выбирают пары горизонтальных скважин, показатели вязкости которых отличаются друг от друга на 10 % и более, анализируют влияние изменения высоковязкой нефти пар скважин на равномерность прогрева паровых камер, регулируют режим закачки теплоносителя и отбора продукции, ведут мониторинг дебита и вязкости высоковязкой нефти. Повышается эффективность разработки залежи. 5 ил.

 

Предложение относится к нефтедобывающей промышленности, а именно к способам разработки залежей высоковязкой нефти добывающими горизонтальными скважинами при тепловом воздействии на пласт через нагнетательные горизонтальные скважины, в том числе двухустьевыми горизонтальными скважинами.

Известен способ разработки неоднородного нефтяного пласта, включающий чередование периода закачки в пласт воды через нагнетательную скважину с одновременным отбором пластовых флюидов через добывающие скважины с периодом отбора пластовых флюидов через добывающие скважины при прекращении закачки воды через нагнетательную скважину (патент RU №2095549, МПК Е21В 43/20, опубл. 10.11.1997 г.). Периодически, один раз в 2-3 сут, производят анализ минерализации попутно добываемой воды, при этом закачку воды с одновременным отбором пластовых флюидов ведут до достижения стабильной величины минерализации добываемой воды. Отбор пластовых флюидов при прекращении закачки воды производят до достижения стабильной величины минерализации добываемой воды, равной минерализации пластовой воды. Данный способ позволяет более точно определить продолжительность циклов закачки воды и отбора пластовых флюидов.

Недостатком данного способа является низкая эффективность при разработке залежей высоковязких нефтей методом паротеплового воздействия через горизонтальные скважины.

Известен способ непрерывной добычи вязких углеводородов в гравитационном режиме с нагнетанием нагретых жидкостей (патент US №4344485, МПК Е21В 43/24, опубл. 17.08.1982 г.). По способу используют пары горизонтальных добывающей и нагнетательной скважин, размещенных параллельно одна над другой в вертикальной плоскости, оснащенных колонной насосно-компрессорных труб (НКТ), закачку теплоносителя, прогрев продуктивного пласта с созданием паровой камеры, отбор продукции и контроль технологических параметров пласта и скважины.

Процесс направлен на придание подвижности и извлечение обычно неподвижной высоковязкой нефти из залежи битуминозного песчаника, которая вскрывается добывающей и нагнетательной скважинами. Первоначально осуществляют нагнетание теплоносителя в нагнетательную скважину с высокой скоростью так, что между скважинами устанавливается тепловая связь и создается нагретая проницаемая (паровая) камера.

На границе камеры пар конденсируется, и тепло передается путем проводимости в более холодные окружающие области. Температура нефти рядом с камерой увеличивается, и она течет вниз вместе с горячим пароконденсатом. Нефть непрерывно удаляется в зоне ниже паровой камеры.

Теплоноситель способствует расширению нагретой проницаемой камеры при непрерывном стоке нефти в добывающую скважину.

Добычу ставшей подвижной высоковязкой нефти осуществляют через добывающую скважину. В качестве теплоносителя используется пар.

Добыча нефти регулируется так, что поддерживаются отдельные потоки нефти и воды и устраняется избыточный прорыв пара.

Используются разные конфигурации скважин для осуществления настоящего изобретения. Следующие элементы являются общими для всех конфигураций: а) используется добывающая скважина, которая «продолжается» через пласт битуминозного песка или как горизонтальная скважина, или путем создания трещины (или сочетанием того и другого); б) «тепловая связь» между нагнетательной и добывающей скважинами устанавливается до начала добычи нефти. Двойные концентрические колонны НКТ размещаются внутри обсадной колонны. Внутренняя колонна НКТ располагается в окружающей наружной НКТ большего диаметра.

Дебиты воды и тяжелой нефти тщательно контролируются для обеспечения оптимальной добычи нефти без избыточного прорыва пара.

Недостатком способа является низкая эффективность добычи высоковязкой нефти из-за отсутствия контроля равномерности прогрева паровой камеры тепловым воздействием.

Наиболее близким по технической сущности является способ разработки залежи высоковязкой нефти (патент RU №2379494, МПК Е21В 43/24, опубл. 20.01.2010 г.), включающий пары горизонтальных нагнетательной и добывающей скважин, горизонтальные участки которых размещены параллельно один над другим в вертикальной плоскости продуктивного пласта, оснащенных колонной НКТ, позволяющих вести одновременно закачку теплоносителя и отбор продукции, закачку теплоносителя, прогрев продуктивного пласта с созданием паровой камеры, отбор продукции через добывающую скважину по НКТ и контроль технологических параметров пласта (распределение температуры вдоль фильтровой части ствола добывающей скважины) и скважины (температура жидкости и давление на устье скважины и на приеме насоса, темп отбора жидкости и закачки пара), одновременно в процессе отбора продукции периодически (2-3 раза в неделю) определяют минерализацию попутно отбираемой воды, анализируют влияние изменения минерализации попутно отбираемой воды на равномерность прогрева паровой камеры и с учетом изменения минерализации попутно отбираемой воды осуществляют равномерный прогрев паровой камеры путем регулирования режима закачки теплоносителя или отбора продукции скважин до достижения стабильной величины минерализации попутно отбираемой воды.

Однако данный способ позволяет регулировать равномерность прогрева в пределах одной пары скважин и не учитывает взаимного влияния расширяющихся паровых камер соседних пар скважин.

Задачей предлагаемого решения является повышение эффективности разработки залежи высоковязкой нефти за счет обеспечения равномерности распространения паровых камер путем регулирования режимов закачки теплоносителя и отбора высоковязкой нефти, выравнивания профиля распространения паровых камер, а также путем определения направления распространения паровых камер.

Поставленная задача решается способом разработки залежи высоковязкой нефти с использованием как минимум двух пар непрерывных горизонтальных нагнетательных и добывающих скважин, горизонтальные участки которых размещены параллельно один над другим, включающим закачку теплоносителя через верхние горизонтальные нагнетательные скважины, одновременный отбор высоковязкой нефти через нижние горизонтальные добывающие скважины и регулирование режима закачки и отбора высоковязкой нефти.

Новым является то, что на каждой паре горизонтальных скважин, расположенных на расстоянии от 100 до 150 м друг от друга, периодически, 1-2 раза в месяц, определяют вязкость отбираемой высоковязкой нефти, выбирают пары горизонтальных скважин, показатели вязкости высоковязкой нефти которых отличаются друг от друга на 10 % и более, анализируют влияние изменения вязкости высоковязкой нефти пар скважин на равномерность прогрева паровых камер, регулируют режим закачки теплоносителя и отбора продукции до достижения равномерного распространения паровых камер, ведут мониторинг дебита и вязкости высоковязкой нефти.

На фиг.1, 2 представлены схемы расположения пар одноустьевых и двухустьевых скважин соответственно.

На фиг.3 - схема расположения двух пар скважин.

На фиг.4 приведена динамика изменения вязкости высоковязкой нефти на примере пары скважин №1 и пары скважин №2.

На фиг.5 приведена динамика изменения дебита высоковязкой нефти на примере пары скважин №1.

Сущность изобретения

Разработка залежи высоковязкой нефти традиционными методами без применения тепла характеризуется низкими коэффициентами нефтеизвлечения (5-15%). Значительно увеличить эффективность вытеснения нефти (в 3-4 раза) возможно за счет применения тепловых методов воздействия на пласт. Подача теплоносителя в пласт снижает вязкость нефти и позволяет извлекать ее на поверхность с применением обычных технических средств.

Одним из наиболее эффективных тепловых способов добычи высоковязкой нефти является использование пары горизонтальных нагнетательной и добывающей скважин, горизонтальные участки которых размещены параллельно один над другим в одной вертикальной плоскости продуктивного пласта, оснащенных колонной насосно-компрессорных труб, позволяющих вести одновременно закачку теплоносителя (например, пара) и отбор продукции - высоковязкой нефти, осуществление закачки теплоносителя, прогрева продуктивного пласта с созданием паровой камеры, отбора высоковязкой нефти через добывающую скважину по НКТ и контроля технологических параметров пласта и скважины.

Схемы расположения скважин и размещения НКТ, представленные на фиг.1 (одна пара одноустьевых скважин), фиг.2 (одна пара двухустьевых скважин), включают добывающую 1 и нагнетательную 2 скважины, вскрывающие продуктивный пласт 3. Скважины пробурены таким образом, что горизонтальный участок 4 скважины 2 находится над горизонтальным участком 5 скважины 1 в одной вертикальной плоскости на расстоянии от 5 до 7 м. Скважина 2 используется для закачки теплоносителя в пласт 3 и создания паровой камеры, скважина 1 - для добычи высоковязкой нефти. Скважины оснащены колоннами насосно-компрессорных труб 6. Скважина 1 включает в себя насосы 7 для подъема высоковязкой нефти на поверхность. Процесс паротеплового воздействия начинается со стадии предподогрева, в течение которой проводится циркуляция пара и в добывающей, и в нагнетательной скважинах. За счет кондуктивного переноса тепла разогревается межскважинная зона пласта (зона между добывающей и нагнетательной скважинами), при этом снижается вязкость высоковязкой нефти, происходит ее термическое расширение, повышается подвижность. После установления гидродинамической связи между добывающей и нагнетательной скважинами закачку пара в добывающую скважину прекращают, а в нагнетательную скважину продолжают закачивать пар, который из-за разности плотностей стремится к верхней части продуктивного пласта, создавая увеличивающуюся в размерах паровую камеру. На поверхности раздела паровой камеры и холодных нефтенасыщенных толщин постоянно происходит процесс теплообмена, в результате которого разогретая высоковязкая нефть извлекается на поверхность.

В способе разработки залежи высоковязкой нефти используют как минимум две пары нагнетательных и добывающих горизонтальных скважин. Определяют пары скважин, расположенные на расстоянии от 100 до 150 м друг от друга. В процессе отбора высоковязкой нефти периодически, 1-2 раза в месяц, проводят отбор проб высоковязкой нефти, далее пробы нефти обезвоживают и производят анализ вязкости добываемой высоковязкой нефти. Затем выбирают пары горизонтальных скважин, показатели вязкости высоковязкой нефти которых отличаются друг от друга на 10 % и более (фиг.3), анализируют влияние изменения высоковязкой нефти пар скважин на равномерность прогрева паровых камер. За счет зональной неоднородности разрабатываемой залежи вязкость высоковязкой нефти в одной паре скважин отличается от вязкости в другой паре скважин и имеет свою тенденцию изменения. Для повышения эффективности добычи высоковязкой нефти на каждой паре скважин проводят регулирование режимов работы за счет изменения объема и пропорций закачиваемого пара и добываемой высоковязкой нефти.

Изменение (уменьшение или увеличение) значения вязкости высоковязкой нефти в одной из пар скважин на 10 % и более свидетельствует о том, что паровая камера, расширяясь, достигла зоны, характеризующейся вязкостью нефти, отличающейся от первоначальной. Сравнивая значения измененной вязкости высоковязкой нефти в одной паре скважин с тенденциями изменения вязкости нефти в других парах скважин, можно сделать вывод о направлении распространения (движения) паровой камеры. Неравномерное расширение паровой камеры может привести к ее преждевременному прорыву к другим парам скважин и снизить эффективность добычи высоковязкой нефти, уменьшив площадь соприкосновения паровой камеры с нефтенасыщенной породой. Предположим, что изначально вязкость высоковязкой нефти пары скважин №1 на 10 % и более выше, чем вязкость высоковязкой нефти соседней пары скважин №2 (фиг.3). Уменьшение вязкости высоковязкой нефти в паре скважин №1 на 10 % и более говорит о том, что паровая камера пары скважин №2, расширяясь, значительно приблизилась к зоне дренирования пары скважин №1. Чтобы снизить неравномерность распространения паровой камеры, необходимо уменьшить объем закачки пара в пару скважин №2 и уменьшить отбор высоковязкой нефти в паре скважин №1. При этом интенсивность роста паровой камеры пары скважин №2 уменьшится, что позволит сохранить уровень дебита нефти пары скважин №1. Увеличение вязкости высоковязкой нефти пары скважин №2 на 10 % и более говорит о том, что паровая камера пары скважин №1, расширяясь, приблизилась к зоне дренирования пары скважин №2. Чтобы снизить неравномерность распространения паровой камеры, необходимо уменьшить объем закачки пара в пару скважин №1 и уменьшить отбор высоковязкой нефти в паре скважин №2. При этом интенсивность роста паровой камеры пары скважин №1 уменьшится, что позволит сохранить уровень дебита нефти пары скважин №2.

После обеспечения равномерности распространения паровых камер ведут мониторинг дебита и вязкости высоковязкой нефти.

Примеры конкретного выполнения

Пример 1.

На опытном участке залежи высоковязкой нефти (Ашальчинское месторождение), находящемся на глубине 90 м, представлено неоднородными пластами толщиной 20-30 м с температурой 8°С, давлением 0,5 МПа, нефтенасыщенностью 0,70 д.ед., пористостью 30%, проницаемостью 0,265 мкм, с высоковязкой нефтью, имеющей плотность 956 кг/м и вязкость более 3000 мПа·с, определены 2 пары горизонтальных скважин: пара №1, пара №2 (фиг.3), находящихся на расстоянии 100 м друг от друга. Вязкость высоковязкой нефти пары скважин №1 изначально составила 5360-5920 мПа·с, вязкость высоковязкой нефти пары скважин №2 изначально составила 3420-3920 мПа·с (на 26,9-42,2% ниже вязкости высоковязкой нефти пары скважин №1). Каждая из пар скважин состоит из пары непрерывных горизонтальных скважин: нагнетательной и добывающей скважин, горизонтальные участки которых расположены параллельно друг другу в одной вертикальной плоскости продуктивного пласта. До начала освоения добывающих горизонтальных скважин осуществили прогрев межскважинной зоны путем одновременной циркуляции пара в каждой из указанных скважин. Нагнетание пара производили через верхнюю нагнетательную скважину и добычу высоковязкой нефти через нижнюю добывающую скважину.

С начала разработки за период с 04.06.2009 г. по 03.12.2009 г. периодически, 1 - 2 раза в месяц, определяли вязкость добываемой высоковязкой нефти. Анализ динамики изменения свойств высоковязкой нефти пары скважин №1 в период с 04.06.2009 по 10.09.2009 г. показал, что наблюдается постепенный рост вязкости высоковязкой нефти (фиг.4). Значение вязкости высоковязкой нефти 10.09.2009 г. составило 6120 мПа·с. Следующий отбор пробы произвели 24.09.2009 г., анализ вязкости высоковязкой нефти показал, что вязкость высоковязкой нефти резко снизилась и составила 4260 мПа·с, что на 30,4% меньше предыдущего значения.

В то же время (с 04.06.2009 г. по 03.12.2009 г.) вязкость высоковязкой нефти, отобранной из пары скважин №2. на протяжении всего процесса парогравитационного воздействия на пласт постепенно увеличивалась. Значение вязкости высоковязкой нефти на 24.09.2009 г. составило 3960 мПа·с. Это говорит о том, что паровые камеры обеих пар скважин неравномерно расширяются в стороны, распространяются в направлении навстречу друг к другу, и в момент резкого снижения вязкости высоковязкой нефти пары скважин №1 часть высоковязкой нефти из области пары скважин №2 поступает в область пары скважин №1, о чем свидетельствует уменьшение вязкости высоковязкой нефти, добываемой из пары скважин №1. Это, в свою очередь, привело к уменьшению площади охвата нефтенасыщенной зоны паротепловым воздействием и, как следствие, снижению эффективности добычи высоковязкой нефти. Для предотвращения прорыва паровой камеры пары скважин №2 к соседней паре скважин №1, выравнивания профиля распространения паровой камеры постепенно снизили объем закачки пара в нагнетательную скважину пары №2 (начиная с 10 до 35%) и уменьшили отбор высоковязкой нефти из добывающей скважины пары №1 (начиная с 5 до 20%). Темпы роста паровой камеры пары скважин №2 снизились, о чем свидетельствует уровень дебита пары скважин №1 (фиг.5). Средний дебит добываемой высоковязкой нефти пары скважин №2 составил 30,1 т/сут. Далее продолжали вести мониторинг вязкости и дебита высоковязкой нефти, регулирование режима закачки и отбора продукции до достижения равномерного распространения паровых камер.

Предлагаемый способ разработки залежи высоковязкой нефти позволяет повысить эффективность разработки залежи высоковязкой нефти за счет равномерного формирования паровых камер и прогрева пласта тепловым воздействием путем регулирования режимов закачки теплоносителя и отбора продукции.

Способ разработки залежи высоковязкой нефти с использованием как минимум двух пар непрерывных горизонтальных нагнетательных и добывающих скважин, горизонтальные участки которых размещены параллельно один над другим, включающий закачку теплоносителя через верхние горизонтальные нагнетательные скважины, одновременный отбор высоковязкой нефти через нижние горизонтальные добывающие скважины и регулирование режима закачки и отбора высоковязкой нефти, отличающийся тем, что на каждой паре горизонтальных скважин, расположенных на расстоянии от 100 до 150 м друг от друга, периодически, 1-2 раза в месяц, определяют вязкость отбираемой высоковязкой нефти, выбирают пары горизонтальных скважин, показатели вязкости высоковязкой нефти которых отличаются друг от друга на 10% и более, анализируют влияние изменения вязкости высоковязкой нефти пар скважин на равномерность прогрева паровых камер, регулируют режим закачки теплоносителя и отбора продукции до достижения равномерного распространения паровых камер, ведут мониторинг дебита и вязкости высоковязкой нефти.



 

Похожие патенты:

Изобретение относится к нефтяной промышленности. Технический результат - повышение нефтеотдачи, увеличение охвата пласта воздействием за счет равномерного распространения зоны прогрева пласта.

Группа изобретений относится к скважинному парогенератору. Устройство может включать в себя секцию введения, секцию сжигания и секцию парообразования.

Изобретение относится к нефтяной промышленности. Технический результат - повышение коэффициента нефтеизвлечения продуктивного пласта и снижение скорости обводнения продукции добывающих скважин при разработке залежей вязкой нефти или битума массивного или структурно-литологического типов.

Изобретение относится к методам скважинной геотехнологии разработки залежей горючих сланцев с высоким выходом жидких углеводородов («сланцевой нефти»). Способ заключается в бурении на залежь горючих сланцев наклонно-направленных и вертикальных скважин, создании в них воспламененной зоны, сжигании части углеводородного сырья, прогреве залежи продуктами горения и отгонке сланцевого керогена в виде продуктов термической обработки горючих сланцев.

Изобретения относятся к нефтяной промышленности. Технический результат - увеличение извлечения углеводородов из подземного коллектора.

Изобретение относится к горнодобывающей промышленности и может быть использовано для наиболее полного извлечения всех видов нефтей и газов и других полезных ископаемых с применением мощного лазерного излучения для их добычи.
Изобретение относится к горнодобывающей области и касается процессов восстановления дебита нефтяных и газоконденсатных скважин. Технический результат - повышение эффективности воздействия на продуктивный пласт в прискважинной зоне и на расстоянии до 50 м от скважинысведение в единый процесс всех воздействий, сокращение времени и трудозотрат.

Предложение относится к нефтяной промышленности. Технический результат - увеличение эффективности вытеснения вязких нефтей и битумов, в том числе путем увеличения охвата пласта агентом воздействия, получение дополнительной добычи вязких нефтей и битумов за счет последовательной отработки всего пласта с одновременным снижением затрат и упрощением строительства горизонтальных скважин.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке месторождений высоковязкой нефти и/или битума с использованием термических способов добычи из наклонно направленных скважин.

Группа изобретений относится к транспортировке «in-situ» битума или особо тяжелой фракции нефти из подземных резервуаров - месторождений нефтеносного песка и горючих сланцев.

Изобретение относится к области электротехнологии в нефтедобывающей промышленности, может быть использовано для очистки эксплуатационных колонн, скважин от парафиновых и других отложений. Способ электронагрева нефтескважины нефтедобывающего комплекса заключается в электрической цепи для электронагрева. При этом электрическая цепь образована колоннами насосно-компрессорных труб, погружным контактом, обсадной колонной и электроизоляционными компонентами. Входные зажимы электрической цепи соединены с регулируемым источником электрической мощности, состоящим из полупроводникового преобразователя, системы управления и регулятора тока, соединенных между собой и с датчиком тока полупроводникового преобразователя, подключенного к питающей сети. Дополнительно введен датчик нагрузки электродвигателя насоса, а в регулируемый источник электрической мощности введен релейный элемент с гистерезисной характеристикой, подключенный к входу регулятора тока и входом соединенный с выходом введенного датчика тока электродвигателя насоса. Подключают регулируемый источник электрической мощности к выходным зажимам образованной электрической цепи для электронагрева. При этом регулируемый источник электрической мощности включают при возрастании нагрузки на электродвигатель нефтеоткачивающего насоса выше заданного, например, номинального значения и отключают при ее соответствующем снижении, для чего в регулируемом источнике электрической мощности создают гистерезисную характеристику «вход - выход». Техническим результатом заявленного изобретения является улучшение качества очистки нефтескважины от парафиновых отложений и снижение вязкости нефти при ее откачке из скважины. 2 н.п. ф-лы, 2 ил.

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяного месторождения с залежами вязкой или высоковязкой и сверхвязкой нефти, совпадающими полностью или частично в структурном плане. Обеспечивает повышение нефтеотдачи, темпов отбора нефти месторождения и экономию эксплуатационных затрат. Сущность изобретения: способ включает бурение на залежи сверхвязкой нефти горизонтальных пар скважин для проведения парогравитационного дренирования и бурение на залежи вязкой или высоковязкой нефти, расположенной ниже в структурном плане, горизонтальных добывающих скважин, закачку пара в нагнетательные скважины парогравитационного дренирования и горячей воды в нагнетательные скважины залежи вязкой или высоковязкой нефти, отбор продукции из добывающих скважин, разделение на устье нефти и воды и повторное использование данной воды. Отбираемую горячую воду из горизонтальных добывающих скважин залежи сверхвязкой нефти после отделения на устье от нефти закачивают через нагнетательные скважины в залежь вязкой или высоковязкой нефти, причем горизонтальный ствол каждой из этих нагнетательных скважин располагают между горизонтальными стволами двух добывающих скважин, расстояние между устьем добывающей скважины сверхвязкой нефти и нагнетательной скважины вязкой или высоковязкой нефти, а также промежуточного оборудования назначают из условия обеспечения потери температуры перекачиваемой воды не более чем на 10°C при любых климатических условиях данного региона, а отбираемую и отделенную в отстойнике от нефти воду из залежи вязкой или высоковязкой нефти подают в парогенератор, где производят процесс ее парообразования, отделения от примесей и доведения до степени сухости 0,6-0,8, и закачивают через горизонтальные нагнетательные скважины в залежь сверхвязкой нефти, формируя таким образом непрерывный цикл циркуляции воды для разработки двух объектов с применением тепла, при этом для обеспечения необходимых уровней компенсации отбора закачкой производят регулировку объемов закачки воды из отстойника, где нефть отделяют от воды после подъема продукции из залежи вязкой или высоковязкой нефти. 1 табл., 2 ил., 1 пр.

Изобретение относится к нефтяной промышленности - области добычи нефти тепловыми методами и может быть использовано для добычи высоковязкой нефти или битума из вертикальной скважины с применением метода парогравитационного дренажа. Обеспечивает повышение эффективности добычи высоковязкой нефти или битума из вертикальных скважин с применением метода парогравитационного дренажа. Сущность изобретения: способ включает строительство вертикальной скважины с верхним и нижним интервалами сообщения с пластом, разделение интервалов сообщения, закачку высокотемпературного пара в верхний интервал и отбор продукции из нижнего интервала сообщения. Согласно изобретению вертикальную скважину строят в два этапа. На первом этапе цементируют обсадную колонну до кровли пласта, а на втором - спускают хвостовик с компенсатором тепловых расширений, герметично взаимодействующим с обсадной колонной, и двумя интервалами сообщения с пластом, выполненными в виде соответствующих верхнего и нижнего фильтров с расположенным между ними местом для пакера. Верхний фильтр размещают ближе к кровле пласта, а нижний фильтр - ближе к его подошве. Через верхний и нижний фильтры хвостовика подают через скважину пар с температурой порядка 200°C в пласт и прогревают его вокруг этой скважины. После прогрева пласта прекращают подачу пара и скважину останавливают на термокапиллярную пропитку пласта. Подачу пара возобновляют после спуска колонны труб с пакером через верхний фильтр до образования в верхней части пласта паровой камеры. При этом закачку высокотемпературного пара в верхний интервал производят по межтрубному пространству скважины, а отбор продукции - по колонне труб. 1 ил.

Изобретение относится к горному делу и может применяться для разработки газогидратных залежей, тепловой обработки призабойной зоны скважины и восстановления гидравлической связи пласта со скважиной. Устройство для тепловой обработки газогидратных залежей содержит два корпуса нагревателя, водоподающую систему, включающую выпускные клапаны во втором корпусе. Устройство дополнительно содержит насосно-компрессорные трубы (НКТ), соединенные с водоподающей трубой с насосом и емкостью с водой, термостойкий пакер, расположенный над корпусами, регулятор напряжения, распределитель, по оси которого установлен узел сопряжения НКТ, с трубчатой диэлектрической вставкой и переходником с отверстием, соосным с отверстием трубчатой вставки. При этом верхняя часть токовода соединена с жилами силового кабеля через переходник. Второй корпус выполнен с выпускными клапанами в его верхней части, заполнен рабочей жидкостью и установлен снаружи первого корпуса, выполненного герметичным. В первом корпусе установлены диски-электроды с перфорацией, а на центральном трубчатом тоководе в межэлектродных интервалах за пределами термостойких изоляторов установлены нулевые электроды. Диски-электроды жестко связаны с центральным тоководом и изолированы термостойкими изоляторами от первого корпуса нагревателя, заполненного токопроводящей жидкостью. Первый корпус дополнительно снабжен датчиками давления и уровня, аварийным клапаном давления, и верхним и нижним проходными изоляторами. При этом термостойкий пакер установлен между распределителем и вторым корпусом, а НКТ соединены с первым корпусом через второй. Техническим результатом является повышение интенсивности тепловой обработки пласта газогидратов, расширение возможностей устройства. 3 ил.

Изобретение относится к горнодобывающей промышленности и может быть использовано для разработки месторождений. Обеспечивает наиболее полное извлечение из месторождений высоковязких и других нефтей, битумов, сланцевых нефтей, газоконденсатов, сланцевых и природных газов, а также для газификации углей и разработки других полезных ископаемых. Сущность изобретения: по способу через скважины, пробуренные на месторождениях, осуществляют нагнетание различных рабочих жидкостей при различных давлениях закачки в пласты, размещают в них твердые электроды, подают к ним переменный ток, зажигают электрические дуги между твердыми электродами двух соседних скважин при наличии в нефтегазовых пластах естественных слоев с электропроводными свойствами. В качестве рабочей жидкости нагнетают жидкость с электропроводными свойствами, искусственно создают после ее нагнетания зоны, обладающие свойствами электропроводности. Подключают в цепь электроды из рабочей жидкости с электропроводными свойствами, затем повышают напряжение в нагревательных скважинах, осуществляют разогрев и получают по ним пробой между подключенными соседними нагревательными скважинами, зажигают электрические дуги и обрабатывают их плазмой месторождения полезных ископаемых. На новых месторождениях нагревательные скважины обсаживают стеклопластиковыми трубами с электроизоляционными свойствами и располагают их на заданном расстоянии друг от друга. Добывающие скважины размещают между нагревательными скважинами. На эксплуатирующихся месторождениях бурят дополнительные нагревательные скважины. Их стенки не закрепляют обсадными трубами в пределах пластов, многократно разбуривают нагревательные скважины и увеличивают по мере необходимости их диаметры для улучшения фильтрации. После проведения полного цикла обработок пластов осуществляют ротацию нагревательных скважин для использования их в качестве добывающих. При наличии свиты из многих пластов многократно обрабатывают внутрипластовые пространства плазмой электрических дуг одного или нескольких выше или ниже расположенных ближайших соседних пластов в свитах или расположенных внутри свит на близком расстоянии от пластов водоносных горизонтов подземных вод. При этом изменяют напряженно-деформированное состояние других рядом расположенных выше или ниже ближайших пластов в свите и снижают горное давление на них. Многократно нагнетают через определенные временные интервалы рабочую жидкость с электропроводными свойствами в искусственно созданные ранее слои, зоны и области с электропроводными свойствами в пластах или в расположенные рядом с ними водоносные горизонты подземных вод. Поддерживают внутрипластовое давление на месторождениях, для чего одновременно зажигают электрические дуги либо между определенными соседними нагревательными скважинами, либо между всеми нагревательными скважинами на месторождениях. 1 ил.

Группа изобретений относится к способам и системам, предназначенным для добычи углеводородов, водорода и/или других продуктов из различных подземных пластов. Система тепловой обработки внутри пласта для добычи углеводородов из подземного пласта содержит саморегулирующийся ядерный реактор, трубопровод, по меньшей мере, частично расположенный в активной зоне саморегулирующегося ядерного реактора, с первой теплообменной средой, циркулирующей через трубопровод, и теплообменник, через который проходит указанная первая теплообменная среда и нагревает вторую теплообменную среду. При этом вторая теплообменная среда используется для повышения температуры, по меньшей мере, части пласта выше температуры, при которой происходит мобилизация флюида, легкий крекинг и/или пиролиз углеводородсодержащего материала, с тем, чтобы в пласте образовывались мобилизованные флюиды, флюиды легкого крекинга и/или флюиды пиролиза. Причем саморегулирующийся ядерный реактор выполнен с возможностью регулирования его температуры путем регулировки давления водорода, подаваемого в саморегулирующийся ядерный реактор. При этом указанное давление регулируется на основе пластовых условий. Техническим результатом является снижение количества энергии, требуемой для добычи продуктов из подземных пластов. 2 н. и 8 з.п. ф-лы, 8 ил.

Изобретение относится к системам и способам для обработки подземного пласта. Система термической обработки in situ для добычи углеводородов из подземного пласта, содержит саморегулирующийся ядерный реактор; систему труб, по меньшей мере, частично расположенную в активной зоне саморегулирующегося ядерного реактора, с первым теплоносителем, циркулирующим через систему труб и теплообменник. Теплообменник предназначен для прохождения через него первого теплоносителя для нагрева второго теплоносителя. При этом второй теплоноситель предназначен для повышения температуры, по меньшей мере, части пласта выше температуры, обеспечивающей образование подвижного флюида, легкий крекинг и/или пиролиз углеводородсодержащего материала, приводящих к образованию в пласте подвижных флюидов, флюидов, являющихся результатом легкого крекинга, и/или флюидов, являющихся результатом пиролиза. Причем поступление тепла в, по меньшей мере, часть пласта в течение времени, по меньшей мере, приблизительно соотносится со скоростью затухания саморегулирующегося ядерного реактора. Техническим результатом является повышение эффективности прогрева пласта. 2 н. и 17 з.п. ф-лы, 8 ил.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке мощных пластов с высоковязкими нефтями. Обеспечивает повышение нефтеотдачи в мощных неоднородных пластах с высоковязкими нефтями. Сущность изобретения: способ заключается в том, что из направляющих вертикальных скважин бурят наклонные стволы криволинейной формы, на начальной стадии разработки во всех скважинах проводят термоциклическую обработку пласта с паровой стимуляцией и в последующем переходят на отбор пластовых флюидов через добывающие скважины с площадным воздействием на пласт через нагнетательные скважины. Согласно изобретению бурят не менее четырех вертикальных направляющих скважин от устья до забоя, расположенного выше или ниже кровли пласта, из которых проводят наклонные криволинейные стволы, направленные к подошве пласта, которые бурят по пространственным траекториям, представляющим не более четверти окружности или параболы, лежащим в двух вертикальных, взаимно перпендикулярных плоскостях. При этом стволы перфорированы по всей нефтенасыщенной толщине пласта. Верхний интервал перфорации должен находиться на расстоянии не менее 10 метров по вертикали от горизонтальной нагнетательной скважины, которая лежит ниже кровли пласта и проходит через центр и параллельно двум сторонам воображаемого квадрата, образованного устьями вертикальных направляющих скважин. При этом в результате гидродинамического взаимодействия системы наклонных добывающих стволов с горизонтальной нагнетательной скважиной формируют область дренирования пласта. 1 з.п. ф-лы, 2 пр., 2 ил.

Изобретение относится к области нефтегазодобывающей промышленности, преимущественно к добыче вязкой и сверхвязкой нефти, а также может быть использовано для интенсификации добычи нефти, осложненной вязкими составляющими и отложениями. Создают высокочастотный импульсный ток в группе двухпроводных линий передачи электрической энергии, расположенных в группе скважин и состоящих из двух изолированных проводников или из одного изолированного проводника и использованного в качестве второго проводника металла трубопроводов группы скважин, посредством группы генераторов высокочастотного импульсного тока. Воздействуют высокочастотным импульсным электромагнитным полем, создаваемым высокочастотным импульсным током проводников группы двухпроводных линий передачи, на поверхность металла трубопроводов группы скважин. Осуществляют термическое и акустическое воздействие на внутритрубную жидкость в группе скважин и через нее на пласт нефтяной залежи посредством нагрева и механических вибраций металла трубопроводов, возникающих при прохождении высокочастотного импульсного тока по двухпроводной линии передачи электрической энергии. Осуществляют дополнительное термическое и акустическое воздействия на внутритрубную жидкость в группе скважин и через нее на пласт нефтяной залежи посредством нагрева и колебаний давлений, возникающих на конце двухпроводной линии передачи в результате высокочастотного импульсного разряда через внутритрубную жидкость. При этом генераторы высокочастотного импульсного тока настраивают так, чтобы создавать импульсы высокочастотного импульсного тока с одинаковой длительностью и частотой следования. Техническим результатом является увеличение интенсивности добычи нефти. 2 н. и 20 з.п. ф-лы, 3 ил.

Изобретение относится к нефтедобывающей промышленности и, в частности, к термошахтным способам разработки месторождений высоковязких нефтей и природных битумов. Обеспечивает увеличение конечной нефтеотдачи пласта за счет одновременного поэлементного охвата всей площади разрабатываемого участка пласта прогревом и дренированием путем контролируемого нагнетания пара и отбора нефти из каждой конкретной зоны. Сущность изобретения: способ предусматривает выделение на площади участка залежи условных элементов с высотой, соответствующей толщине нефтяного пласта, бурение нагнетательных скважин с поверхности в центральную часть каждого условного элемента с выделением по геолого-геофизическим данным по каждой нагнетательной скважине в нижней части пласта в каждом условном элементе наиболее проницаемого пропластка, бурение добывающих скважин из горной выработки в наиболее проницаемый пропласток в каждом условном элементе. Одной добывающей скважиной вскрывают наиболее проницаемый пропласток нескольких условных элементов, если наиболее проницаемый пропласток в смежных элементах расположен на одном уровне или выше, чем в ранее пройденных элементах. Забой добывающей скважины размещают на внешней границе условного элемента. Определяют наличие гидравлической связи между нагнетательной и добывающей скважинами в каждом условном элементе. При отсутствии гидравлической связи между нагнетательной и добывающей скважинами эту связь обеспечивают, например, гидроразрывом пласта. Закачку теплоносителя осуществляют во все нагнетательные скважины, при этом каждую нагнетательную скважину обсаживают на глубину от устья до кровли пласта. Осуществляют контроль за параметрами жидкости в каждой добывающей скважине. При прорыве теплоносителя в добывающую скважину какого-либо условного элемента осуществляют мероприятия по увеличению расстояния между зоной нагнетания и зоной отбора, например, производят закачку изолирующего раствора в нагнетательную скважину. Эти мероприятия осуществляют неоднократно при повторных прорывах теплоносителя в эту же добывающую скважину этого же условного элемента до подъема зоны нагнетания в нагнетательной скважине до кровли пласта. Закачку теплоносителя осуществляют до полной выработки запасов из данного условного элемента с последующим отключением нагнетательной скважины этого элемента. 6 з.п. ф-лы, 1 пр., 5 ил.
Наверх