Система регулирования температуры электронагрева


 


Владельцы патента RU 2514129:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" (RU)

Изобретение относится к области электротехники, электроники, автоматического регулирования и может быть использовано для подключения и регулирования работы промышленных и бытовых нагревательных устройств. Технический результат - исключение возможности перекоса фаз в питающей сети; исключение бросков тока; повышение точности регулирования; повышение энергоэффективности за счет снижения потерь мощности. Система регулирования температуры электронагрева включает в себя промышленный контроллер в качестве управляющего устройства; мультивибратор, подключенный к его выходу; линейку мощных полевых транзисторов, управляемых через мультивибратор с дискретного выхода контроллера и работающих в импульсном режиме в качестве коммутирующих элементов; термопару, подключенную ко входу контроллера через нормирующий преобразователь, в качестве датчика температуры; блоки питания контроллера и мультивибратора; трехфазный понижающий трансформатор, обеспечивающий питание силовой части системы через диодный выпрямитель; блок конденсаторов, сглаживающий напряжение на выходе выпрямителя. 1 ил.

 

Изобретение относится к области электротехники, электроники и автоматического регулирования температуры.

Известны устройства регулирования температуры при работе промышленных и бытовых объектов, например регулятор температуры нагревательного устройства, описанный в патенте РФ №93161, заявл. 09.11.2009 г., МПК G05D 23/00, который содержит логическое устройство с управляющим элементом, датчики температуры, дистанционное устройство управления. Основным недостатком этого регулятора температуры является низкий уровень управляемой мощности нагревателей, низкая точность регулирования температуры.

Повысить управляемую мощность нагревателя позволяет «Станция управления контуром электрообогрева» (св. РФ №26856, заявл. 09.07.2002 г., МПК G05D 23/00), принятая за прототип, включающая автоматический выключатель, коммутатор электрообогрева (КЭ), микроконтроллер, модуль управления и контроля (МУК), измеритель тока (ИТ), а также датчики температуры (ДТ), отличающаяся тем, что она дополнительно снабжена независимым расцепителем (HP) и датчиками предельной температуры (ДПТ), соединенными между собой последовательно, число которых более 3, в качестве КЭ она содержит пару бесконтактных симисторов (С), в качестве ИТ - трансформаторы; причем количество ДТ от 1 до 9, а МУК состоит из схемы управления С, мегомметра, схемы контроля величины тока, схемы управления HP по нештатным ситуациям и схемы контроля ДПТ.

Недостатками приведенного устройства являются:

- использование симисторов, работающих в широтно-импульсном режиме, в качестве коммутирующих элементов, что приводит к искажению формы синусоидального сигнала;

- при работе на мощный нагреватель в таком устройстве будет возникать перекос фаз в питающей сети вследствие коммутации только двух фаз из трех с помощью симисторов;

- возникновение больших токов при прямом подключении нагревателя большой мощности к питающей сети.

Известный объект не может быть использован для управления нагревательными элементами большой мощности, поскольку в мощном нагревателе при ступенчатом изменении питающего напряжения вследствие симисторного регулирования будут возникать большие броски тока, что приведет к низкой точности регулирования.

Предложена система регулирования температуры электронагрева, включающая в себя промышленный контроллер в качестве управляющего устройства; мультивибратор, подключенный к его выходу; линейку мощных полевых транзисторов, управляемых с помощью мультивибратора, в качестве коммутирующих элементов; термопару, подключенную ко входу контроллера через нормирующий преобразователь, в качестве датчика температуры; блоки питания контроллера и мультивибратора; трехфазный понижающий трансформатор, обеспечивающий питание силовой части системы через диодный выпрямитель; блок конденсаторов, сглаживающий напряжение на выходе выпрямителя. Данная система отличается тем, что в нее введен понижающий трансформатор и управление производится по его вторичной обмотке, а также в качестве коммутирующих элементов выбрана линейка полевых транзисторов, работающих в импульсном режиме, тем самым обеспечивающих минимальные потери мощности. В систему введена гальваническая развязка, отделяющая силовую часть от информационной, что обеспечивает защиту контроллера.

Предлагаемое устройство позволит исключить возможность перекоса фаз в питающей сети за счет использования трехфазного трансформатора. Помимо этого, переход к управлению постоянным током и введение конденсаторов в качестве сглаживающих фильтров исключит броски тока на нагревательном элементе в отличие от симисторного регулирования. Также использование полевых транзисторов, работающих в импульсном режиме, в качестве управляемых ключей даст экономию электроэнергии за счет уменьшения рассеиваемой ими мощности. Система может быть легко расширена за счет подключения к контроллеру дополнительных датчиков и исполнительных устройств, а также легко интегрирована в общую систему автоматизации предприятия в силу наличия в промышленном котроллере унифицированных интерфейсов связи.

Для пояснения описываемого устройства на фиг.1 приведена его принципиальная схема. Обозначения на схеме:

С1-С3 - конденсаторы (сглаживающий фильтр);

С4 - конденсатор 1 нФ;

R1 - резистор 10 кОм;

R2-R9, R11-R19 - резисторы 10 Ом;

R10 - резистор 100 кОм;

Rн - нагревательный элемент;

Т1-Т16 - линейка мощных полевых транзисторов;

Tr1 - трехфазный трансформатор;

VD1-VD6 - выпрямительные диоды;

VU1 - оптопара;

DD1 - микросхема таймера;

DD2, DD4 - блоки питания контроллера и мультивибратора;

DD3 - промышленный контроллер;

DD5 - нормирующий преобразователь.

Предложенное устройство работает следующим образом. В исходном состоянии контроллер выдает сигнал выключения мультивибратора, полевые транзисторы закрыты, нагреватель отключен. Затем, в соответствии с алгоритмом регулирования, контроллер, получая с датчика температуры (термопары) через нормирующий преобразователь информацию о текущем значении температуры, подает сигнал включения на мультивибратор, который выдает на затворы полевых транзисторов импульсные сигналы с определенной скважностью, тем самым открывая их и включая нагреватель. На примере двухпозиционного алгоритма регулирования работа устройства будет выглядеть следующим образом. Если текущая температура меньше заданного значения, то контроллер включает мультивибратор, а он в свою очередь - нагреватель. Как только текущая температура стала больше заданной, контроллер отключает мультивибратор и нагреватель, процесс повторяется.

Описанная система реализована в качестве опытного образца.

Таким образом, предлагаемое устройство позволяет:

- исключить возможность перекоса фаз в питающей сети;

- исключить броски тока;

- повысить точность регулирования;

- повысить энергоэффективность за счет снижения потерь мощности.

Система регулирования температуры электронагрева, состоящая из коммутатора электронагрева, промышленного контроллера, датчика температуры (термопары), отличающаяся тем, что в нее введен трехфазный трансформатор с первичными обмотками, питаемыми от трехфазной сети, средние точки вторичных обмоток, соединенные между собой и с «корпусом», а в каждую линию их выходных цепей включены диоды, катоды которых соединены с положительными обкладками блока электролитических конденсаторов, сопротивлением нагрузки и стоками линейки мощных полевых транзисторов, их истоки связаны с «корпусом», а затворы соединены через низкоомные резисторы с выходом (3) интегрального таймера, собранного по схеме ждущего мультивибратора с RC-времязадающей цепью, питаемого от первого источника постоянного тока, включенного в одну из фаз трехфазной сети, а входная цепь мультивибратора соединена через элемент гальванической развязки с коллектором ее транзистора, входная цепь гальванической развязки подключена к дискретному входу контроллера, к аналоговому входу которого через нормирующий преобразователь подключен датчик температуры (термопара), питание нормирующего преобразователя, контроллера и оптрона гальванической развязки осуществляется от второго источника постоянного тока, включенного в одну из фаз трехфазной сети.



 

Похожие патенты:

Изобретение относится к винодельческой промышленности и может быть использовано, в частности, при производстве шампанских вин. Регулирование распределения температуры в цилиндрическом резервуаре с виноматериалом, имеющем снаружи "рубашку" с циркулирующим в ней хладоносителем по замкнутому контуру, включающем вентиль, управляемый электроприводом, компрессор и соединяющие их и "рубашку" трубопроводы, осуществляют путем измерения в центре резервуара температуры виноматериала.

Способ управления является способом управления кондиционером воздуха, чтобы переводить состояние в замкнутом пространстве в предварительно определенное целевое состояние.

Изобретение относится к усовершенствованному способу получения уксусной кислоты, включающему стадии: взаимодействия метанола с монооксидом углерода в реакционной среде, содержащей воду, йодистый метил и метилацетат в присутствии катализатора карбонилирования на основе металла VIII группы; выделения продуктов указанной реакции в летучую фазу продукта, содержащую уксусную кислоту, и менее летучую фазу; дистиллирования указанной летучей фазы в аппарате дистилляции для получения очищенного продукта уксусной кислоты и первого верхнего погона, содержащего йодистый метил и ацетальдегид; конденсации, по меньшей мере, части указанного верхнего погона; измерения плотности указанного сконденсированного первого верхнего погона; определение относительной концентрации йодистого метила, ацетальдегида или обоих в первом верхнем погоне на основании измеренной плотности; и регулирования, по меньшей мере, одного регулирующего технологического параметра, связанного с дистилляцией указанной летучей фазы, в качестве ответной реакции на указанную относительную концентрацию.

Изобретение относится к теплорассеивающему устройству с двумя вентиляторами с функцией удаления пыли. .

Изобретение относится к технике регулирования температуры в прецизионных электронных устройствах и может быть использовано для поддержания постоянства параметров этих устройств в широком диапазоне температур окружающей среды (ТОС).

Изобретение относится к технике регулирования температуры в прецизионных электронных устройствах и может быть использовано для поддержания постоянства параметров этих устройств в широком диапазоне температур окружающей среды.

Термостат // 2454699
Изобретение относится к аналитическому машиностроению. .

Изобретение относится к измерительной технике и может быть использовано при проведении внереакторных испытаний многоэлементных термоэмиссионных электрогенерирующих каналов (ЭГК) для охлаждения и стабилизации температуры постоянно работающей радиоэлектронной аппаратуры и иных промышленных установках.

Изобретение относится к области измерительной техники и может быть использовано в качестве средства измерений температуры с повышенной достоверностью результатов измерений и увеличенным межповерочным или межкалибровочным интервалом.
Изобретение относится к наземной отработке систем терморегулирования аппаратуры изделий авиационной и ракетно-космической техники. Испытания проводят в термокамере в два этапа. На первом этапе подвергают натурный теплоизоляционный пакет приборного отсека внешнему тепловому нагружению, имитирующему полетное. Одновременно создают на внутренней поверхности пакета граничные условия теплообмена, соответствующие теплоотводу от оболочки корпуса внутрь приборного отсека. По измеренным температурам указанной внутренней поверхности получают график изменения температур корпуса приборного отсека по времени. На втором этапе нагревают корпус без теплоизоляции в соответствии с полученным графиком. Одновременно замеряют температуры газовой среды и аппаратуры приборного отсека, производящей тепловыделение в соответствии с полетной циклограммой. Техническим результатом изобретения является сокращение затрат на испытания, проводимые без использования специальных крупногабаритных стендов и камер, с имитацией аэродинамического потока. 1 з.п. ф-лы.

Изобретение относится к области теплоэнергетики, в частности к системам управления отоплением. Техническим результатом является поддержание допустимой температуры внутри помещений, в которых находятся люди в часы работы дежурного отопления. Система содержит локальный контроллер, дополнительный контроллер, погружной датчик температуры теплоносителя и датчики температуры наружного и внутреннего воздуха, регулирующие клапаны, связанные с наружными тепловыми сетями, циркуляционный насос, перемычку с обратным клапаном, соединяющую подающий и обратный трубопроводы, а также дополнительные регулирующие клапаны, подключенные к выходам дополнительного контроллера, и дополнительные датчики температуры наружного и внутреннего воздуха, подключенные к входам дополнительного контроллера, теплонасосную установку, включающую испаритель, установленный на обратном трубопроводе системы отопления, конденсатор, установленный на ответвлении подающего трубопровода к помещению, в котором могут находиться люди в часы работы дежурного отопления, компрессор с электроприводом, также система снабжена группой вентиляторов, присоединенных к отопительным приборам в контролируемом помещении. 1 ил.

Изобретение относится к электротехническим средствам обеспечения рабочих характеристик интегральных схем (ИС) в защищенной бортовой аппаратуре, в частности, микропроцессоров и микроконтроллеров, путем термостабилизации поверхности корпуса ИС. Технический результат - повышение эффективности работы устройства, увеличение надежности функционирования аппаратуры во всем диапазоне ее рабочих температур и повышение стабильности рабочих характеристик устройства. Достигается тем, что в устройстве стабилизации температуры электронных компонентов, содержащем плату (например, печатную плату) для размещения на ней электрорадиоэлементов, схему регулирования температуры и электрически соединенные с ней нагревательный элемент и датчик температуры, расположенный на рабочей поверхности платы, на печатной плате установлена своей контактной стороной по меньшей мере одна интегральная схема, требующая термостабилизации, с размещенным на ее противоположной стороне плоским радиатором, а нагревательный элемент установлен на площадке, выполненной в центральной части радиатора на его наружной поверхности, причем выводы нагревательного элемента подключены к схеме регулирования температуры через контактные площадки печатной платы. При этом площадь поверхности радиатора, прилегающей к наружной поверхности корпуса интегральной схемы, не меньше площади поверхности корпуса интегральной схемы. 10 з.п. ф-лы, 5 ил.

Изобретение относится к системе регулирования температуры. Система регулирования температуры содержит входной коллектор, возвратный коллектор, контроллер, по меньшей мере один поддерживающий температуру контур, соединяющий входной коллектор и возвратный коллектор, трубу подачи горячей текучей среды и трубу подачи холодной текучей среды, соединенные с входным коллектором, по меньшей мере один выход, соединенный с возвратным коллектором, и вход, соединенный с входным коллектором. При этом в трубе подачи горячей текучей среды и в трубе подачи холодной текучей среды, соответственно, установлены клапаны регулирования потока, управляемые контроллером. На входном коллекторе установлен датчик температуры потока, а на выходе установлен по меньшей мере один двухпозиционный клапан регулирования потока, управляемый контроллером. Техническим результатом изобретения является повышение надежности и повышение точности регулирования температуры. 2 н. и 9 з.п. ф-лы, 1ил.

Изобретение относится к электротехнике и может найти применение в регуляторах электрической энергии прецизионного технологического оборудования, например в установках выращивания сапфира. Техническим результатом является снижение пульсаций температуры в зонах регулирования электропечи. Устройство содержит n регуляторов напряжения, подключенных первыми силовыми выводами к выводам для подключения сети, вторыми силовыми выводами к выводам для подключения n нагрузок, формирователь синхроимпульсов, вход которого соединен с выводами для подключения сети, а выходы - с входом распределителя импульсов, а также n формирователей импульсов управления, выполненных на основе реверсивного двоичного счетчика и имеющих импульсные информационные входы, подключенные к выходам распределителя импульсов, импульсные синхронизирующие входы, управляющие входы, управляющие выходы, подключенные через логическую схему к импульсным синхронизирующим входам, причем в качестве логической схемы используется конъюнктор, а в формирователи импульсов управления введены импульсные управляющие информационные выходы, соединенные с управляющими входами регуляторов напряжения. 1 з.п. ф-лы, 3 ил.

Изобретение относится к системам регулирования температуры и может быть использовано в инерциальных микромеханических навигационных системах на основе датчиков ускорения и угловой скорости. Блок стабилизации температуры инерциальной навигационной системы содержит микромеханическую инерциальную навигационную систему, электровентилятор, электронагреватель блока стабилизации температуры теплоносителя, датчик температуры, автоматический регулятор температуры. Датчик температуры и осушитель воздуха помещены в герметичном кожухе, содержащем минимальный объем воздуха, который через переходную плиту жестко связан с негерметичным кожухом, оснащенным радиатором, и который в свою очередь соединен с шаговым двигателем калибровки, размещенным на корпусе самодвижущейся платформы робототехнического комплекса. Электронагреватель блока стабилизации температуры теплоносителя и электровентилятор установлены внутри негерметичного кожуха. Автоматический регулятор температуры выполнен в виде блока управления, который включает в себя микроконтроллер, выполняющий программу стабилизации температуры и управляющий работой подсистем калибровки и стабилизации температуры. Технический результат - повышение точности навигационных определений. 2 ил.

Изобретение относится к области автоматического регулирования расходов жидкого теплоносителя, а точнее, к жидкостным терморегуляторам (ЖТР) для разделения или смешения потоков рабочей жидкости, применяемых, например, в системах терморегулирования (СТР) космических аппаратов (КА). Жидкостный терморегулятор содержит: цилиндрический корпус с выходным патрубком, продольная ось которого расположена ортогонально продольной оси корпуса, и с входными патрубками соответственно для горячей и холодной жидкости, соосными с продольной осью корпуса, посадочные седла для регулирующих клапанов указанных входных патрубков и закрепленных на противоположных торцах сильфона, выполненного с перегородкой его полости на левую и правую части, которая неподвижно закреплена на средней части корпуса с вертикальным расположением ее торцевых поверхностей и имеющей неподвижные левую и правую направляющие оси, соосные с продольной осью корпуса, канал для связи между левой и правой полостями сильфона; термобаллон, заправленный рабочей жидкостью, например спиртом, установленный в выходном патрубке. Особенность решения заключается в том, что: цилиндрический корпус выполнен со сквозной внутренней резьбой, посредством которой установлены входные патрубки, посадочные седла и перегородка с ее сопряжением по всему периметру корпуса; канал для связи между левой и правой полостями сильфона выполнен в виде центрального сквозного канала в направляющих осях, герметично связанного с полостью термобаллона, выполненной в разы большей по сравнению с полостью сильфона, посредством другого канала, выполненного проходящим в перегородке ортогонально указанному каналу; седла для регулирующих клапанов выполнены в виде колец и расположены слева от своих регулирующих клапанов, а в их центральных проходах установлены вновь введенные пружины, торцы которых сопряжены соответственно с входным патрубком для горячей жидкости и его регулирующим клапаном, выполненным с муфтой, охватывающей конец левой направляющей оси, и с входным патрубком для холодной жидкости и его регулирующим клапаном, выполненным разборным и состоящим из самого клапана и направляющей муфты с фланцем, охватывающей конец правой направляющей оси, при этом фланец выполнен с диаметром, меньшим диаметра центрального прохода посадочного седла, и соединен с торцом сильфона с одной стороны и с указанным клапаном - с другой стороны, полость корпуса разделена перегородкой на левую и правую части, каждая из которых связана своим каналом в стенке корпуса с выходным патрубком, в котором расположен заправочный штуцер термобаллона, выполненный на его свободном торце. Технический результат заключается в упрощении его конструкции, снижении массы, повышении надежности, расширении возможностей регулируемой настройки терморегулятора и условий его применения. 4 з.п. ф-лы, 1 ил.
Наверх