Способ преобразования сигналов с дифференциальных индуктивных или емкостных чувствительных элементов



Способ преобразования сигналов с дифференциальных индуктивных или емкостных чувствительных элементов
Способ преобразования сигналов с дифференциальных индуктивных или емкостных чувствительных элементов
Способ преобразования сигналов с дифференциальных индуктивных или емкостных чувствительных элементов
Способ преобразования сигналов с дифференциальных индуктивных или емкостных чувствительных элементов
Способ преобразования сигналов с дифференциальных индуктивных или емкостных чувствительных элементов
Способ преобразования сигналов с дифференциальных индуктивных или емкостных чувствительных элементов
Способ преобразования сигналов с дифференциальных индуктивных или емкостных чувствительных элементов

 


Владельцы патента RU 2514158:

Куролес Владимир Кириллович (RU)

Использование: для уменьшения температурной погрешности датчиков физических величин: микроперемещений, давлений, ускорений, сил, моментов. Сущность способа заключается в том, что в случае применения его для индуктивных и емкостных датчиков требуется преобразование изменения индуктивности при постоянной емкости или изменение емкости при постоянной индуктивности с применением повышающего LDC-моста в изменение потенциалов его выходной диагонали. У пьезодатчиков и тензорезисторных мостовых датчиков на выходе уже образуются потенциалы, изменение которых под воздействием измеряемой величины происходит в противофазе, а под воздействием температуры - синфазно. Это обстоятельство и используется для термокоррекции без применения термометров. С этой целью, кроме усиления разности потенциалов инструментальным усилителем, вычисляется также сумма этих потенциалов, которая вычитается из выходного сигнала усилителя. Причем коэффициент передачи сумматора K рассчитывается из условия:

, где

Kу - коэффициент инструментального усилителя,

и - коэффициенты зависимости дифференциальных потенциалов моста от температуры. Технический результат: снижение трудозатрат для настройки термокоррекции чувствительных дифференциальных индуктивных или емкостных элементов и расширение температурного диапазона, в котором корректируются эти погрешности. 1 ил.

 

Предложенный способ преобразования сигналов может применяться для уменьшения температурной погрешности датчиков физических величин: микроперемещений, давлений, ускорений, сил, моментов. Изобретение относится к измерительной технике.

В связи с широким внедрением в приборостроение технологий МЭМС и LTCC, на рынке появилось множество микро- и наночувствительных элементов, основанных на преобразовании микроперемещений или микродеформаций в изменение индуктивности или емкости или активного сопротивления. Так, например, НИИФИ г.Пенза освоил на базе МЭМС технологий датчики давления, ускорения, температуры, сейсмоскорости, вибраций. Эти датчики описаны в журнале «Датчики и системы» №9, 2012 г. Преобразование емкости или индуктивности в аналоговое напряжение в этих датчиках основано на известных схемах с фазочувствительным выпрямителем. Ограничение применению этих датчиков накладывают температурные их погрешности. С целью исключения этих погрешностей в НИИФИ применяют нормирующие измерительные преобразователи для датчиков физических величин с применением микроконтроллеров. При этом температурные зависимости выходных сигналов первичных преобразователей закладываются в память микроконтроллера. Смотри, например, статью «Применение микроконтроллеров в современных бортовых измерительных системах» и «Нормирующие измерительные преобразователи для датчиков физических величин» в журнале «Датчики и системы» №9, 2012 г., стр.51-52 и стр.59. Технология настройки преобразователей по такому способу является трудоемкой.

Наиболее близким способом преобразования сигналов с дифференциальных индуктивных чувствительных элементов является способ, изложенный в статье «Малогабаритные вихретоковые датчики для бесконтактного измерения перемещений, вибраций, осевых и радиальных биений валов энергетических установок» (смотри указанный выше журнал на стр.12, 13).

Согласно этому известному способу температурную погрешность чувствительного индуктивного элемента корректируют путем измерения сопротивлений обмоток постоянному току. Это осуществляется программно-микропрорцессорной обработкой двух полученных сигналов о температуре каждой из обмоток и третьего сигнала об их разности. При этом способе на результат измерений влияют длины кабелей. С целью их исключения приходится усложнять алгоритмы обработки сигналов с обмоток чувствительного элемента.

Целью изобретения является снижение трудозатрат для настройки термокоррекции чувствительных дифференциальных индуктивных или емкостных элементов и расширение температурного диапазона, в котором корректируются эти погрешности.

Указанная цель достигается преобразованием изменения индуктивности или емкости, вызванного измеряемым параметром и температурой, в потенциалы выходной диагонали повышающего LDC моста, вычислением разности этих потенциалов с помощью инструментального дифференциального усилителя, вычислением суммы этих потенциалов с помощью аналогового сумматора с разделенными высокоомными входами и вычислением разности сигналов с выхода инструментального усилителя и сумматора. Причем коэффициент преобразования сумматора при этом обеспечивается равным K:

K Σ = K y 1 | K t 2 K t 1 | 1 + | K t 2 K t 1 |

где Ky - коэффициент инструментального усилителя, а

K t 1 , K t 2 - температурные коэффициенты потенциалов выходной диагонали.

При этом способе используется только один дифференциальный выход с диагонали LDC-моста и не требуется измерение температуры обмоток.

Предложенный способ реализуется с помощью повышающего LDC-моста. При этом коммутирующие транзисторы моста управляются импульсами со скважностью γ=0,5.

Изменение потенциалов Δφ1 и Δφ2 в выходной диагонали моста при этом зависят от измеряемого параметра и температуры так, что:

- от измеряемого параметра эти изменения имеют разные знаки;

- от температуры Δφ1 и Δφ2 имеют одинаковые знаки.

Это обстоятельство и используется в данном способе. Математически данный способ можно описать ниже следующими уравнениями:

Δ ϕ 1 = K 1 A + K t 1 t Δ ϕ 2 = K 2 A + K t 2 t } ( 1 )

где А - измеряемый параметр,

K1, K2 - градуируемые коэффициенты передач первичного элемента,

K t 1 , K t 2 - температурные коэффициенты потенциалов.

u y = K y ( Δ φ 1 Δ φ 2 ) = A ( K 1 + K 2 ) K y + K y ( K t 1 K t 2 ) t u Σ = ( Δ φ 1 + Δ φ 2 ) = ( K 1 K 2 ) A + ( K t 1 + K t 2 ) t } t = [ ( Δ φ 1 + Δ φ 2 ) ( K 1 K 2 ) A ] ( K t 1 + K t 2 )

Обозначим: Δφ1+Δφ2=u.

Поскольку дифференциальные датчики выполняются таким образом, что u на 3 порядка более, чем (K1-K2)·А, то можно записать:

t = u Σ K t 1 + K t 2

Выше приведенное условие выполняется, если K1 стремится к K2, что достигается выполнением индуктивных обмоток или обкладок конденсаторов одинаковыми и одинаковыми параметрами диодов и транзисторных ключей LDC-моста. При этом можно записать:

u в ы х . = u y ( A , t ) u Σ = A ( K 1 + K 2 ) K y + K y ( K t 1 K t 2 K t 1 + K t 2 ) u Σ u Σ K Σ

Если K y 1 K t 2 K t 1 1 + K t 2 K t 1 = K Σ , то выходной сигнал не будет зависеть от температуры, которая и является функцией от u.

Отличительными признаками предложенного способа в сравнении со способом-прототипом являются:

1. Преобразование с помощью повышающего LDC-моста изменение индуктивностей или емкостей в изменение потенциалов выходной диагонали моста.

2. Суммирование этих потенциалов с помощью сумматора с двумя раздельными высокоомными входами.

3. Вычитание выходных сигналов инструментального усилителя и сумматора с определенным коэффициентом передачи.

Общими признаками изобретения и прототипа является преобразование изменения индуктивности или емкости в дифференциальный аналоговый сигнал. Однако если в прототипе это выполнялось фазочувствительным выпрямителем, то здесь с помощью мостовой схемы, которая и позволила получить изменение потенциалов от температуры и изменяемого параметра согласно уравнению 1.

Благодаря отличительным признакам, удается без применения датчиков температур и микропроцессоров, а только с применением аналоговых вычислителей, устранить полностью температурную погрешность рассмотренных чувствительных элементов.

Работу устройств по этому способу можно описать на примере индуктивного дифференциального датчика. На рис.1 приведена его схема.

На рис.1 обозначены:

1 - LDC-мост повышающий.

2 - инструментальный дифференциальный усилитель.

3 - сумматор с раздельными высокоомными входами.

4 - вычитатель.

5 - операционные усилители в режиме «повторителя».

6 - суммирующий операционный усилитель.

7 - генератор, коммутирующий транзисторы повышающего моста.

LDC-мост запитан постоянным напряжением. Транзисторы моста коммутируются в противофазе. В индуктивных катушках датчика наводится ЭДС индукции, которая суммируется с напряжением источника питания и заряжает постоянные конденсаторы моста. Конденсаторы разряжаются на делителях резисторных. Изменение индуктивности при постоянной емкости или изменение емкости при постоянной индуктивности приводит к изменению потенциалов Δφ1 и Δφ2 в соответствии с уравнением 1. Схема из элементов 2, 3, 4 и обеспечивает описанное выше преобразование.

Техническая реализация данного способа, показанная на этом примере, требует гораздо меньше технических средств, чем прототип. При этом настройке подлежит только один параметр - коэффициент передачи сумматора. Реализация сумматора с раздельными входами также не представляется трудоемкой. Для этого используются три операционных усилителя, два из которых (усилители 5) реализуют «повторители» потенциалов, а в третьем (6) их сигналы суммируются. Как известно, входное сопротивление усилителей 5 в таком включении составляет сотни МОм, что исключает влияние сумматора на потенциалы Δφ1 и Δφ2.

Предложенный способ термокоррекции в упрощенном виде может быть применен также для термокоррекции дифференциальных пьезочувствительных элементов и мостовых тензорезисторных схем. В этом случае исключается преобразование с помощью повышающего LDC-моста.

Тем самым следует признать универсальность данного способа термокоррекции, а следовательно, и его техническую применимость. Последнее условие и является необходимым для признания данного способа соответствующим критерию «изобретательский уровень».

Способ преобразования сигналов с дифференциальных индуктивных или емкостных чувствительных элементов, характеризующийся тем, что с помощью повышающего LDC-моста преобразуют изменение индуктивности при постоянной емкости или изменение емкости при постоянной индуктивности в изменение потенциалов в выходной диагонали LDC моста, затем вычисление разности этих потенциалов с помощью инструментального усилителя и суммирование этих потенциалов с помощью сумматора с разделенными высокоомными входами и окончательно определение разности между сигналами с выхода инструментального усилителя и сумматора, причем коэффициент передачи сумматора K определяется из условия:

где
Kу - коэффициент передачи инструментального усилителя,
, - температурные коэффициенты изменения потенциалов выходной диагонали LDC-моста.



 

Похожие патенты:

Изобретение относится к области автоматизации в машиностроении и предназначено для контроля положения и идентификации изделий с учетом их вида материала и термического состояния в автоматизированных высокопроизводительных производствах по сборке изделий.

Относится к измерительной технике и может быть использовано для измерения линейных перемещений с помощью преобразователя перемещения индукционного типа. Техническим результатом заявленного изобретения является существенное повышение надежности работы индукционного датчика положения.

Изобретение относится к медицинской технике, а именно к устройствам для исследования движения тела человека. В первом варианте устройство выполнено с возможностью установки на голове пользователя в области его височной и/или жевательной мускулатуры и включает датчик Холла, по меньшей мере, один постоянный магнит, установленные с возможностью взаимного смещения в упруго деформируемом корпусе, и блок управления и обработки информации.

Изобретение относится к измерительной технике и может применяться в датчиках различных физических величин: давления, ускорения, силы, угла, момента, перемещения. Индуктивный дифференциальный измеритель перемещения содержит две индуктивные катушки с размещенным между ними ярмом на упругом подвесе, в котором каждая из катушек соединены через диод с конденсатором так, что они образуют индуктивно-диодно-емкостной мост (LDC) с выходной диагональю между точками подключения конденсаторов с соответствующим диодом и входной диагональю между общей точкой обоих индуктивных обмоток и общей точкой конденсаторов, источник постоянного напряжения и два ключа.

Изобретение относится к измерительной технике и может быть использовано для измерения угловых положений преобразователем положения индукционного типа. Технический результат: расширение диапазона измерений, упрощение конструкции датчика, повышение точности измерений.

Изобретение относится к области автоматизации производственных технологических процессов. .

Изобретение относится к области контроля перемещения и положения нагретых металлических изделий. .

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике. .

Изобретение относится к испытательной технике и может найти применение для определения нагрузок при строительстве и эксплуатации наземных и подземных сооружений.

Изобретение относится к области метрологии и предназначено для контроля положения и идентификации изделий. Адаптивный датчик содержит чувствительный элемент, образованный индуктивной катушкой, емкостной металлической пластиной и двумя инфракрасными фотоприемниками, логический элемент ИЛИ-НЕ, первый и второй блоки индикации, первый и второй диоды, точка соединения катодов которых и второго входа логического элемента ИЛИ-НЕ является первым выходом адаптивного датчика, счетный триггер, прямой и инверсный выходы которого являются соответственно вторым и третьим выходами адаптивного датчика. При перемещении в одном или другом противоположном направлении ненагретых металлических или ненагретых неметаллических изделий относительно чувствительного элемента адаптивного датчика на его первом выходе отрабатываются потенциальные информационные сигналы напряжения с уровнем логической "1", несущие информацию о контроле положения ненагретых металлических и ненагретых неметаллических изделий, на втором и третьем выходах - соответственно двухразрядные двоичные цифровые коды 10 и 01 идентификации этих изделий. Технический результат - расширение функциональных возможностей. 2 ил.

Изобретение относится к области автоматизации в машиностроении и предназначено для контроля положения и идентификации изделий с учетом их вида материала и термического состояния в автоматизированных высокопроизводительных производствах по сборке изделий, а также для решения общих задач автоматизации различных производственных процессов. Технический результат - расширение функциональных возможностей и улучшение эксплуатационных характеристик. Адаптивный датчик идентификации и контроля положения изделий содержит чувствительную поверхность, датчик контроля двух видов изделий, первую, вторую и третью выходные клеммы, логический элемент ИЛИ-НЕ, два логических элемента И, счетный триггер, первый и второй блоки индикации, генератор электрических колебаний с их соответствующими электрическими связями. При перемещении относительно чувствительной поверхности одного (например, нагретого металлического) или другого (например, ненагретого неметаллического) вида изделия на первой выходной клемме отрабатываются потенциальные сигналы контроля положения этих изделий с уровнями логической "1". При этом на втором и третьем выходах формируется двухразрядный двоичный цифровой код, значения 10 и 01 которого являются кодами идентификации соответственно одного или другого вида контролируемого изделия. Информационные сигналы об идентификации одного и другого видов контролируемых изделий в виде визуальных сигналов снимаются соответственно с первого и второго блоков индикации. Адаптивный датчик обеспечивает автоматический контроль одного или другого вида изделия без механического контакта с ними и автоматическую адаптацию его к конкретному виду контролируемого изделия. 11 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к измерительной технике. Техническим результатом заявляемого изобретения является повышение точности измерения. Технический результат достигается тем, что в устройство для определения поступательного перемещения, содержащее источник излучения и приемник, введены измеритель амплитудно-частотных характеристик, элементы ввода и вывода электромагнитных колебаний, чувствительный элемент выполнен в виде открытого резонатора с вогнутой металлической пластиной и плоской металлической пластиной, снабженной металлической трубкой, причем выход источника излучения соединен с элементом ввода электромагнитных колебаний, элемент вывода электромагнитных колебаний через приемник подключен к измерителю амплитудно-частотных характеристик. 1 ил.

Изобретение предназначено для измерения размеров конструкций, в частности для определения протяженности и размеров здания или транспортного средства. Измерительное устройство 1 содержит два инерциальных измерительных блока 3 и 4, размещенных на расстоянии друг от друга, каждый из которых содержит по меньшей мере два акселерометра и по меньшей мере два гироскопа для восприятия вращений. Устройство снабжено средством для сопряжения с измеряемыми конструкциями. Указанное измерительное устройство и базовый пункт, обеспечивающий получение реперной точки для измерительного устройства, могут входить в состав измерительной установки. Изобретение позволяет повысить надежность результатов измерений. 4 н. и 10 з.п. ф-лы, 6 ил.

Изобретение относится к инвазивным медицинским устройствам. Медицинский зонд содержит вводимую трубку, имеющую продольную ось и дистальный конец, дистальный кончик, расположенный на дистальном конце вводимой трубки и сконфигурированный для введения в контакт с тканью тела, стык, который соединяет дистальный кончик с дистальным концом вводимой трубки, и датчик стыка, заключенный внутри зонда, для распознавания положения дистального кончика относительно дистального конца вводимой трубки, причем датчик стыка содержит первый и второй подузлы, которые расположены внутри зонда на противоположных соответствующих сторонах стыка, и каждый подузел содержит один или более магнитных измерительных преобразователей. Стык содержит упругий элемент, который сконфигурирован, чтобы деформироваться в ответ на давление, прикладываемое на дистальный кончик, когда он входит в соприкосновение с тканью, при этом упругий элемент содержит трубчатую деталь из эластичного материала, имеющую винтовой срез вдоль части длины детали. Устройство для исполнения медицинской процедуры включает зонд и процессор, который присоединен с возможностью подавать ток к одному из первого и второго подузлов, заставляя тем самым один из подузлов генерировать, по меньшей мере, одно магнитное поле, и для приема и обработки одного или более сигналов, выводимых другим из первого и второго подузлов относительно указанного, чтобы обнаруживать изменения в положении дистального кончика относительно дистального конца вводимой трубки. Устройство для обнаружения перемещения стыка в узле содержит первый и второй сенсорные подузлы, которые расположены внутри узла на противоположных соответствующих сторонах стыка, при этом каждый подузел содержит один или более магнитных измерительных преобразователей, и процессор, выполненный с возможностью обнаруживания посредством обработки одного или более сигналов осевое сжатие стыка и угловое отклонение стыка. Способ выполнения медицинской процедуры на ткани в теле пациента включает применение в теле зонда и продвижение его таким образом, чтобы дистальный кончик входил в соприкосновение и прикладывал давление на ткань, подачу тока к одному из первого и второго подузлов и прием и обработку одного или более сигналов, выводимых другим из первого и второго подузлов относительно указанного, по меньшей мере, одного магнитного поля так, чтобы обнаруживать изменение в положении дистального кончика. Использование изобретения позволяет повысить надежность и легкость манипулирования катетером в теле. 4 н. и 23 з.п. ф-лы, 3 ил.

Изобретение относится к области автоматизации в машиностроении и предназначено для контроля положения и идентификации изделий с учетом их вида материала и термического состояния в автоматизированных высокопроизводительных производствах по сборке изделий. Технический результат - расширение функциональных возможностей. Адаптивный датчик идентификации и контроля положения трех видов изделий содержит чувствительную поверхность, бесконтактный датчик идентификации трех видов изделий, логический элемент ИЛИ-НЕ, шесть логических элементов И, блок установки в исходное состояние, двоичный счетчик электрических импульсов, первый, второй и третий блоки индикации, тактовый генератор с их соответствующими электрическими связями. Точка соединения выходов четвертого, пятого, шестого логических элементов И и второго входа логического элемента ИЛИ-НЕ является первым выходом адаптивного датчика. Выходы третьего, второго и первого логических элементов И являются соответственно вторым, третьим и четвертым выходами адаптивного датчика. При перемещении относительно чувствительной поверхности одного, или другого, или третьего вида изделия на первом выходе отрабатываются потенциальные информационные сигналы контроля положения этих изделий с уровнями логической “1”. При этом на втором, третьем и четвертом выходах формируется трехразрядный двоичный цифровой код, значения 100, 010 и 001 которого являются кодами идентификации соответственно одного, или другого, или третьего вида контролируемого изделия. Информационные сигналы об идентификации одного, другого, третьего видов контролируемых изделии в виде визуальных сигналов снимаются соответственно с первого, второго, третьего блоков индикации. Адаптивный датчик обеспечивает автоматический контроль изделий без механического контакта с ними и автоматическую адаптацию его к конкретному виду контролируемого изделия. 8 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения многокоординатных смещений торцов лопаток в турбомашинах. Устройство для измерения многокоординатных смещений торцов лопаток, содержащее источник постоянного напряжения, ключ, рабочий и компенсационный одновитковые вихретоковые датчики, два резистора и первый усилитель. При этом выход источника постоянного напряжения соединен с входом ключа, выход ключа соединен с первыми выводами рабочего и компенсационного датчиков. Второй вывод рабочего датчика соединен с первым выводом первого резистора. Второй вывод компенсационного датчика соединен с первым выводом второго резистора. Также введены второй и третий усилители. Инвертирующий вход второго усилителя соединен с первым выводом первого резистора, выход которого соединен со вторым выводом первого резистора, образуя первый преобразователь ток - напряжение. Инвертирующий вход третьего усилителя соединен с первым выводом второго резистора, выход которого соединен со вторым выводом второго резистора, образуя второй преобразователь ток - напряжение. Выходы первого и второго преобразователей ток - напряжение соединены соответственно с инвертирующим и неинвертирующим входами первого усилителя, используемого в режиме усилителя разности напряжений. Технический результат заключается в повышении быстродействия и чувствительности устройства. 3 ил.
Изобретение относится к контрольно-измерительной технике и может быть использовано для проведения ресурсных и метрологических испытаний внутритрубных инспекционных приборов. Способ испытания внутритрубного испытательного прибора заключается в ведении его в контролируемый трубопровод через камеру пуска-приемки, затем перемещение его потоком перекачиваемого продукта по замкнутому кольцевому трубопроводу с направлением движения по часовой стрелке, с возможностью считывания информации о состоянии трубопровода и накопления информации о ее состоянии в бортовой памяти внутритрубного инспекционного прибора, соответствия между показаниями приборов и фактическими размерами дефектов. Причем количество пропусков внутритрубного инспекционного прибора по замкнутому кольцевому трубопроводу и скорость перемещения его зависят от диаметра трубопровода, после выполнения задания осуществляют остановку насосной станции, извлекают внутритрубный инспекционный прибор через камеру пуска-приемки, считывают информацию на внешний терминал, а затем на сервер для подготовки данных к интерпретации, расшифровывают, обрабатывают программой обработки данных, анализируют и представляют в виде отчета. Технический результат - аттестация и проверка внутритрубных инспекционных приборов, комплексная проверка функционирования всех узлов и систем приборов, проверка соответствия между показаниями приборов и фактическими размерами дефектов при различных скоростях движения снаряда. 4 з.п. ф-лы, 1 табл.

Изобретение относится к измерительным устройствам и может быть использовано в интегральных линейных и угловых акселерометрах и гироскопах в качестве датчика перемещений. Технический результат: повышение точности нулевого сигнала преобразователя перемещений. Сущность: магниторезистивный датчик содержит пластину проводящего монокремния, в которой с помощью анизотропного травления выполнен подвижный объект. На разных сторонах конца подвижного объекта размещены дискретные источники магнитного поля, которые расположены напротив четырехслойных магниторезистивных структур, размещенных на разных сторонах пластины проводящего монокремния. Четырехслойные магниторезистивные структуры состоят из первого свободного ферромагнитного слоя, второго проводящего немагнитного слоя, третьего зафиксированного ферромагнитного слоя и четвертого антиферромагнитного слоя. Два свободных и два зафиксированных ферромагнитых слоя соединены в четырехплечий мост. 4 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Технический результат - повышение точности достигается тем, что устройство содержит генератор сверхвысокочастотных электромагнитных волн с частотой, управляемой модулирующим генератором линейно изменяющегося напряжения, подсоединенный через первый вывод делителя мощности и циркулятор к приемо-передающей антенне для излучения электромагнитных волн в сторону поверхности диэлектрической пластины по нормали к ней, смеситель, вычислительное устройство, являющееся выходным блоком, соединенное с выходом смесителя и с модулирующим генератором, вторую приемо-передающую антенну для излучения электромагнитных волн в сторону поверхности диэлектрической пластины по нормали к ней, соединенную со вторым выводом делителя мощности через первый умножитель частоты в N раз и второй циркулятор, выход которого соединен со вторым входом смесителя, при этом первый вход смесителя соединен со вторым выходом первого циркулятора через второй умножитель частоты в N раз. 1 ил.
Наверх