Способ диагностики положения направляющих аппаратов осевого компрессора

Изобретение относится к области управления работой газотурбинных двигателей и может быть использовано для диагностики положения направляющих аппаратов осевого компрессора ротора газотурбинной установки, например, авиационного газотурбинного двигателя (ГТД). Дополнительно задают допустимые значения отклонений от программного положения направляющих аппаратов на приемистости и торможении ротора компрессора, причем в качестве значений допустимых отклонений на приемистости и торможении используют значения заданного допустимого уровня отклонения положения направляющих аппаратов и заданной величины скорости изменения частоты вращения ротора компрессора, причем на режимах приемистости или торможения допустимое заданное значение отклонения положения направляющих аппаратов сравнивают с значением отклонения текущего положения направляющих аппаратов от программного, а допустимое значение величины скорости изменения частоты вращения ротора компрессора - с текущим ее значением и по результатам сравнения диагностируют положение направляющих аппаратов ротора компрессора на приемистости или торможении. Технический результат изобретения - повышение надежности диагностирования во всем диапазоне режимов его работы. 2 ил.

 

Изобретение относится к области управления работой газотурбинных двигателей и может быть использовано для диагностики направляющих аппаратов осевого компрессора газотурбинной установки, например, авиационного газотурбинного двигателя (ГТД) в процессе эксплуатации.

Известен реализуемый системой способ управления ГТД, при котором осуществляется диагностика положения направляющих аппаратов компрессора, согласно которому посредством датчиков измеряют положение направляющих аппаратов компрессора, частоту вращения ротора компрессора, температуру воздуха на входе в компрессор, сравнивают их значения с заданными и в случае, если отклонения текущих параметров выходят за пределы заданных, диагностируют отказ работы направляющих аппаратов осевого компрессора (см. патент РФ на полезную модель №115832, кл. F02C 9/00, 2012 г.) - наиболее близкий аналог.

В результате анализа известного способа необходимо отметить, что он обеспечивает эффективную диагностику направляющих аппаратов в процессе работы ГТД на постоянных режимах, однако реализуемый системой данный способ не обеспечивает надежную диагностику направляющих аппаратов компрессора на наиболее «тяжелых» режимах работы, а именно при приемистости и торможении ротора осевого компрессора.

Техническим результатом настоящего изобретения является повышение надежности диагностики за счет обеспечения диагностики направляющих аппаратов компрессора, в том числе на наиболее «тяжелых» режимах работы, а именно при приемистости и торможении ротора осевого компрессора.

Указанный технический результат обеспечивается тем, что в способе диагностики положения направляющих аппаратов осевого компрессора, включающем задание программного значения положения направляющих аппаратов, измерение положения направляющих аппаратов при работе компрессора, сравнение измеренных значений с программными и по результатам сравнения диагностирование положения направляющих аппаратов, новым является то, что дополнительно задают допустимые значения отклонений от программного положения направляющих аппаратов на приемистости и торможении ротора компрессора, причем в качестве значений допустимых отклонений на приемистости и торможении используют значения заданного допустимого уровня отклонения положения направляющих аппаратов и заданной величины скорости изменения частоты вращения ротора компрессора, причем на режимах приемистости или торможения допустимое заданное значение отклонения положения направляющих аппаратов сравнивают со значением отклонения текущего положения направляющих аппаратов от программного, а допустимое значение величины скорости изменения частоты вращения ротора компрессора - с текущим ее значением и по результатам сравнения диагностируют положение направляющих аппаратов ротора компрессора на приемистости или торможении.

Сущность заявленного изобретения поясняется графическими материалами, на которых:

- на фиг.1 - схема устройства, реализующего способ;

- на фиг.2 - графики положения направляющих аппаратов осевого компрессора в процессе работы осевого компрессора. (Нумерация графиков на фиг.2: (1) - программное значение положения направляющих аппаратов осевого компрессора в зависимости от приведенной частоты вращения ротора компрессора; (2) - допустимые значения положения направляющих аппаратов осевого компрессора при приемистости осевого компрессора; (3) - допустимые значения положения направляющих аппаратов осевого компрессора при его торможении; (4) - траектория изменения положения направляющих аппаратов при приемистости в случае отсутствия неисправности; (6) - траектория изменения положения направляющих аппаратов при приемистости и наличии неисправности; (5) - траектория изменения положения направляющих аппаратов при торможении в случае отсутствия неисправности; (7) - траектория изменения положения направляющих аппаратов при торможении и наличии неисправности).

Способ диагностики положения направляющих аппаратов осевого компрессора реализуется устройством, в котором осевой компрессор обозначен позицией 1, положение направляющих аппаратов (α) компрессора отслеживается датчиком 2, а частота вращения (n) ротора компрессора - датчиком 3. Датчик 3 связан с дифференцирующим блоком 4 и с вычислителем 5 приведенной частоты вращения (nпр) ротора компрессора в зависимости от температуры (Tвх) воздуха на входе в компрессор (датчик температуры не показан). Выход вычислителя 5 связан с задающим блоком 6, формирующим программное значение угла (α0) направляющих аппаратов в зависимости от приведенного значения (nпр) частоты вращения ротора компрессора. Выход задающего блока 6 связан с первым входом первого элемента сравнения 7, со вторым входом которого связан выход датчика 2.

Устройство оснащено вторым 8 и третьим 9 элементами сравнения. Первый вход третьего элемента сравнения 9 связан с первым задатчиком 10 допустимого уровня значений отклонений (B1) направляющих аппаратов, а первый вход второго элемента сравнения 8 связан с первым задатчиком 11 значения уровня производной частоты вращения (A1) ротора компрессора, выше которого производится диагностирование положения направляющих аппаратов компрессора при приемистости компрессора.

Второй вход элемента сравнения 8 связан с выходом дифференцирующего блока 4, а второй вход элемента сравнения 9 связан с выходом первого элемента сравнения 7. Выходы элементов сравнения 8 и 9 связаны с входами первого элемента «И» 12.

Устройство оснащено вторым задатчиком 13 уровня значения производной частоты вращения (A2) ротора компрессора, ниже которого производится диагностирование положения направляющих аппаратов компрессора при торможении компрессора, а также вторым задатчиком 14 допустимого уровня значений (B2) отклонений направляющих аппаратов. Выход задатчика 13 связан с первым входом четвертого элемента сравнения 15, а выход задатчика 14 - с первым входом пятого элемента сравнения 16.

Второй вход четвертого элемента сравнения 15 связан с выходом дифференцирующего блока 4, а второй вход пятого элемента сравнения 16 связан с выходом первого элемента сравнения 7. Выходы элементов сравнения 15 и 16 связаны с входами второго элемента «И» 17.

Выходы элементов «И» 12 и 17 связаны с входами элемента «ИЛИ» 18, выход которого связан с регистратором 19.

Все используемые в устройстве блоки и элементы, являются известными и реализуют присущие им функции, их конкретное выполнение не является предметом патентной охраны и поэтому в материалах заявки указываются их выполняемые функции, а конкретное выполнение не раскрыто.

В качестве регистратора 19 могут быть использованы: запоминающее устройство, световое табло, монитор компьютера и т.п.

Датчики 2 и 3 являются стандартными.

В качестве элементов сравнения 7, 8, 9, 15, 16 и в качестве элементов «И», «ИЛИ» могут быть использованы широко известные логические блоки, выполненные в виде стандартных электронных схем.

В качестве вычислителя 5 может быть использован стандартный процессор, реализующий функцию n п р = n 288 T в х , где nпр - приведенное значение частоты вращения ротора компрессора, n - частота вращения ротора компрессора, Tвх - температура воздуха на входе в компрессор.

В качестве блока 6 может быть использован стандартный цифровой блок памяти, в котором в табличной форме в виде двухмерного массива хранится наперед заданная зависимость программного значения положения направляющих аппаратов компрессора от приведенной частоты вращения его ротора и температуры воздуха на входе в двигатель.

В качестве дифференцирующего блока 4 может быть также использован цифровой блок, в котором реализована функция дифференцирования сигнала с датчика 3.

В качестве задатчиков 10, 11, 13, 14 могут быть использованы стандартные цифровые блоки памяти, в которых хранятся наперед заданные значения допустимых значений отклонений фактического значения положения направляющих аппаратов компрессора от его программного значения и значения производной частоты вращения ротора компрессора при приемистости и торможении соответственно.

Таким образом, аппаратная реализация заявленного способа не может вызывать сомнений.

Способ диагностики положения направляющих аппаратов осевого компрессора осуществляют следующим образом.

Для проведения диагностики направляющих аппаратов изначально задают:

- программные значения положения направляющих аппаратов компрессора (в блоке 6);

- значения заданного допустимого уровня отклонения положения направляющих аппаратов (B1) и заданной величины производной частоты вращения ротора компрессора (A1) на режиме приемистости ротора компрессора (их значения закладывают в блоки 10 и 11);

- значения заданного допустимого уровня отклонения положения направляющих аппаратов (B2) и заданной величины производной частоты вращения ротора компрессора (A2) на режиме торможения ротора компрессора (их значения закладывают в блоки 14 и 13).

Значения (A1, A2, B1, B2) могут быть получены как экспериментальным, так и расчетным путем. На фиг.2 интервал допустимых значений - это расстояние по оси абсцисс от графика 1 до графика 2 и от графика 1 до графика 3. Таким образом, задаваемые параметры позволяют диагностировать состояние направляющих аппаратов компрессора на всех режимах его работы.

В процессе работы газотурбинной установки, в режиме реального времени при раскручивании ротора осевого компрессора (на приемистости) датчиком 2 постоянно осуществляется контроль углового положения направляющих аппаратов компрессора, а частота вращения ротора компрессора - датчиком 3. На вход вычислителя 5 постоянно поступает значение температуры воздуха на входе в компрессор.

Блок 4 производит дифференцирование значения сигнала (n), получая (dn/dt) - значение, которое характеризует текущую скорость изменения параметра.

Параллельно вычисляют (в вычислителе 5) значение приведенной частоты вращения (nпр) ротора компрессора, которое осуществляют по зависимости n п р = n 288 T в х , где nпр - приведенное значение частоты вращения ротора компрессора, n - частота вращения ротора компрессора, Tвх - температура воздуха на входе в компрессор.

По вычисленному значению (nпр) в задающем блоке 6 из наперед заданного массива данных или по аппроксимирующей зависимости в зависимости от значения (nпр) и (Tвх) определяют соответствующее ему программное значение положения направляющих аппаратов компрессора (α0). Сигнал (α0) поступает с блока 6 на первый вход первого элемента сравнения 7, на второй вход которого поступает сигнал (α) с датчика 2, в результате сравнения вырабатывается сигнал (Δα), характеризующий текущее отклонение фактического значения положения направляющих аппаратов от программного (Δα=α-α0).

Полученные значения сигналов (Δα) и (dn/dt) в элементах сравнения 9 и 8 сравнивают соответственно с допустимыми (заложены в блоки 10 и 11) значениями (B1) и (A1), и если значения (Δα) и (dn/dt) превышают величины (B1) и (A1) соответственно, то на выходе блоков 9 и 8 вырабатываются логические сигналы «да». При одновременном наличии сигналов «да» на обоих входах логического блока «И» 12 он формирует признак неисправности, который через логический блок «ИЛИ» 18 поступает на регистратор 19. На фиг.2 это состояние иллюстрируется графиком 6, который пересекает график 2. В случае если по результатам сравнения вычисленные значения меньше заданных, то диагностируется нормальное состояние положения направляющих компрессора. В этом случае сигнал через блоки «И» 12 и «ИЛИ» 18 не поступает на регистратор 19. На фиг.2 это состояние иллюстрируется графиком 4, который не пересекает график 2.

Таким образом, в процессе работы ротора компрессора постоянно контролируется как его значение отклонения от заданного положения (Δα), так и скорость (темп) (dn/dt) изменения данного отклонения, которая характеризует скорость развития дефекта, что позволяет заблаговременно проводить необходимые профилактические мероприятия.

При замедлении вращения ротора компрессора (при торможении) в элементах сравнения 16 и 15 сравниваются значения (Δα) и (dn/dt) с допустимыми (заложены в блоки 14 и 13) значениями (B2) и (A2), и если значения (Δα) и (dn/dt) превышают величины (B2) и (A2) соответственно, то на выходе блоков 16 и 15 вырабатываются логические сигналы «да». При одновременном наличии сигналов «да» на обоих входах логического блока «И» 17 он формирует признак неисправности, который через логический блок «ИЛИ» 18 поступает на регистратор 19. На фиг.2 это состояние иллюстрируется графиком 7, который пересекает график 3. В случае, если по результатам сравнения вычисленные значения не выходят за пределы заданных при торможении, то диагностируется исправное состояние направляющих компрессора, соответствующее значение сигнала которого через блоки «И» 17 и «ИЛИ 18 не поступает на регистратор 19.

При медленном вращении ротора производная dn/dt по абсолютной величине не превышает значений (A1) или (A2), и на блоки «И» не поступают разрешающие команды «да» по вторым входам, то есть при медленном вращении ротора диагностика положения направляющих аппаратов не осуществляется.

Использование данного способа позволяет диагностировать состояние направляющих аппаратов компрессора во всем диапазоне режимов его работы, в том числе на переходных режимах (приемистости и торможения), на которых наблюдаются наибольшие нагрузки на механизмы направляющих аппаратов компрессора.

Способ диагностики положения направляющих аппаратов осевого компрессора, включающий задание программного значения положения направляющих аппаратов, измерение положения направляющих аппаратов при работе компрессора, сравнение измеренных значений с программными и по результатам сравнения диагностирование положения направляющих аппаратов, отличающийся тем, что дополнительно задают допустимые значения отклонений от программного положения направляющих аппаратов на приемистости и торможении ротора компрессора, в качестве значений допустимых отклонений на приемистости и торможении используют значения заданного допустимого уровня отклонения положения направляющих аппаратов и заданной величины скорости изменения частоты вращения ротора компрессора, причем на режимах приемистости или торможения допустимое заданное значение отклонения положения направляющих аппаратов сравнивают с значением отклонения текущего положения направляющих аппаратов от программного, а допустимое значение величины скорости изменения частоты вращения ротора компрессора - с текущим ее значением и по результатам сравнения диагностируют положение направляющих аппаратов ротора компрессора на приемистости или торможении.



 

Похожие патенты:

Изобретение относится к электрическим испытаниям электрооборудования на восприимчивость к электромагнитному воздействию. Способ испытаний микропроцессорной системы управления двигателем автотранспортного средства на восприимчивость к электромагнитному воздействию, в котором испытуемую систему управления в составе транспортного средства подвергают импульсному воздействию электромагнитного излучения с помощью генератора грозового разряда.

Изобретение относится к ракетной технике, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей с имитацией высотных условий.

Изобретение относится к области испытаний и эксплуатации газотурбинных двигателей, в частности двухконтурных, а именно к контролю технического состояния во время их испытаний и эксплуатации для принятия решения по их обслуживанию и дальнейшей эксплуатации.

Изобретения относятся к измерительной технике, в частности к области контроля состояния газотурбинных двигателей, и могут быть использованы для контроля вибрационных явлений, появляющихся в газотурбинном двигателе летательного аппарата во время работы.

Изобретение относится к машиностроению. Сущность изобретения: установка для испытаний кассетного нейтрализатора отработавших газов двигателя внутреннего сгорания содержит пористые проницаемые металлокерамические каталитические блоки фильтрации твердых частиц, пористые проницаемые металлокерамические окислительные и восстановительные каталитические блоки установлены с образованием кассет в секции.

Изобретение относится к авиации и предназначено для определения температуры газа при испытаниях и эксплуатации газотурбинных двигателей на форсажных режимах. Техническим результатом, объективно достигаемым при использовании заявленного способа, является повышение точности определения температуры газа перед турбиной на форсажном режиме за счет уменьшения расчетных величин и использования метода косвенного измерения.

Изобретение может быть использовано при диагностировании двигателей внутреннего сгорания (ДВС). ДВС выводят номинальный тепловой режим и измеряют температурное поле на поверхности выпускного коллектора (ВК).

Изобретение относится к авиадвигателестроению и энергомашиностроению и может найти применение при доводке газотурбинных двигателей (ГТД), а также для создания систем диагностики колебаний.

Изобретение относится к способам технической диагностики дефектов элементов газотурбинного двигателя при его испытаниях и может найти применение при его доводке, а также для создания систем диагностики двигателя.

Изобретение относится к стендам для испытаний газотурбинных установок (ГТУ) газоперекачивающих агрегатов магистральных газопроводов. Стенд включает в себя испытательный станок с установленной на нем платформой с ГТУ, выхлопное устройство, выполненное в виде выпускного вертикально расположенного газохода, в состав которого входит пристыкованный к выходу испытуемой ГТУ выпускной коллектор, расположенный выше него и присоединенный к нему термокомпенсирующий и виброгасящий блок, пристыкованный к термокомпенсирующему и виброгасящему блоку переходный канал, присоединенную к переходному каналу выхлопную трубу, верхний срез которой расположен выше входной шахты.

Изобретение относится к контролю технического состояния авиационных газотурбинных двигателей (ГТД) и может быть использовано для диагностики ГТД в процессе их эксплуатации в реальном времени. Способ вибродиагностики двухвального газотурбинного двигателя включает измерение частоты вращения каждого ротора и выделение значений вибрации каждого ротора в зависимости от частоты его вращения, причем дополнительно по значениям частот вращения каждого ротора определяют расчетное значение частоты вращения и снимают значение вибрации на данной частоте, которое сравнивают с выделенными значениями вибрации каждого ротора, а также с заданным допустимым значением уровня вибрации двигателя на данной частоте и по результатам каждого сравнения определяют состояние газотурбинного двигателя. Технический результат изобретения - точность и надежность диагностики ГТД за счет определения неисправности трансмиссии каждого ротора отдельно, а также состояния межвального подшипника двигателя в широком диапазоне режимов работы двигателя независимо от конструкции межвального подшипника. 1 ил.

Способ определения эрозии крыльчатки центробежного турбокомпрессора ступени сжатия турбомашины. Крыльчатка (10) центробежного турбокомпрессора содержит ступицу (12), полотно (14), продолжающееся радиально от ступицы, и множество лопаток (16), установленных на крыльчатке. Полотно содержит индикатор (18) эрозии. Индикатор (18) эрозии содержит по меньшей мере одно ребро (20), выступающее радиально от периферийного края (22) полотна в положении задней кромки (16b) одной из лопаток (16). Причем ребро (20) имеет осевую толщину, которая меньше осевой толщины полотна (14) для образования уступа между плоской поверхностью ребра и поверхностью полотна, от которой продолжается лопатка. Для проверки вводят эндоскоп (40) в ступень (13) сжатия для проверки износа индикатора (18) эрозии крыльчатки. Исключена необходимость в демонтаже крыльчатки турбокомпрессора для проверки его эрозии, поскольку механик может проверить износ крыльчатки, направив камеру на индикатор износа. Затем, поворачивая крыльчатку турбокомпрессора, механик может легко проверить эрозию, создаваемую бороздами у хвостовиков каждой лопатки крыльчатки. Таким образом, степень эрозии можно определить при регламентном обслуживании, а не только при капитальном ремонте турбомашины. 4 н. и 3 з.п. ф-лы, 7 ил.

Изобретение может быть использовано при диагностировании технического состояния двигателей внутреннего сгорания. Диагностирование проводят в процессе эксплуатации дизеля. Способ заключается в измерении перепада давления на масляном фильтре грубой очистки (ФГО), определении степени его загрязнения и определении степени износа подшипников коленчатого вала дизеля (ПКВД). Степень загрязнения ФГО определяют путем сравнения измеренного перепада давления с заданным порогом, в качестве которого принимают перепад давления на ФГО нового дизеля с незагрязненным фильтром. В случае превышения измеренной величины перепада давления заданного порога формируют сообщение о загрязненном состоянии ФГО. Определение степени износа ПКВД осуществляют при отсутствии превышения заданного порога перепада давления на ФГО, для чего производят серию не менее чем трех замеров перепада давления на ФГО на различных частотах вращения коленчатого вала дизеля по формуле:I=100(k-k0)/(kmax-k0), %, где I - степень износа подшипников, выраженная в процентах, k, k0 и kmax - коэффициенты, определяемые для диагностируемого дизеля, нового дизеля и дизеля с максимально допустимой степенью износа ПКВД соответственно. В случае превышения вычисленной величины степени износа ПКВД заданного порога формируют сообщение об аварийном состоянии дизеля, при этом значение коэффициента k определяют по формуле: k = ( ∑ p н ( i ) / ∑ p д ( i ) ) − 1, где p н ( i ) - величина давления перед фильтром грубой очистки масла для i-го измерения, p д ( i ) - величина давления после фильтра грубой очистки масла для i-го измерения. Техническим результатом изобретения является постоянное автоматическое диагностирование состояния ФГО и степени износа ПКВД без его разбора и вывода из эксплуатации. 2 ил.

Изобретение относится к области транспорта и может быть использовано в устройстве для диагностики неисправностей расходомера (11) воздуха в двигателе внутреннего сгорания. Техническим результатом является возможность установления неисправности расходомера воздуха в рабочем диапазоне низких объемов всасываемого воздуха. В устройстве для диагностики неисправности расходомера (11) воздуха расходомер (11) воздуха имеет неисправность, когда коэффициент отклонения, т.е. значение отклонения оцененного объема всасываемого воздуха относительно фактического объема всасываемого воздуха, полученного посредством расходомера (11) воздуха, превышает опорное значение для определения неисправности, определенное на основе частоты вращения двигателя (1) внутреннего сгорания. По мере того как частота вращения двигателя уменьшается, верхний предельный критерий диагностики увеличивается, а нижний предельный критерий диагностики снижается с тем, чтобы сужать область для определения того, что расходомер воздуха имеет неисправность. Следовательно, диагностика неисправностей расходомера (11) воздуха может заранее выполняться во всем диапазоне частот вращения двигателя, т.е. во всем рабочем диапазоне двигателя (1) внутреннего сгорания, тем самым не допуская ухудшения рабочих характеристик выпуска выхлопных газов, которое может возникать вследствие повреждения в расходомере (11) воздуха. 6 з.п. ф-лы, 4 ил.

Способ предназначен для испытания, доводки, диагностики и эксплуатации турбореактивных реактивных двигателей, а конкретно для диагностики технического состояния ГТД по акустическим и газодинамическим параметрам потока. Сравнивают поля акустических и газодинамических параметров потока скорости и тяги испытуемого двигателя с акустическими и газодинамическими параметрами потока скоростью и тягой эталонного двигателя и с акустическими и газодинамическими параметрами потока скоростью и тягой двигателя с характерными дефектами проточной части. Такой способ позволяет повысить точность и достоверность диагностики технического состояния элементов проточной части ТРДД, определения конкретного дефекта и его местонахождения и размер как при испытаниях на стенде, так и в аэродромных условиях для определения дефектов двигателей, находящихся в эксплуатации. 3 з.п. ф-лы, 1 ил.

Изобретение может быть использовано при диагностировании двигателей внутреннего сгорания. Способ заключается в измерении расход масла через подшипник и определении степени износа коренных подшипников. При реализации способа устанавливают номинальную частоту вращения коленчатого вала, измеряют плотность масла, включателями встроенных гидролиний поочередно подводят давление от масляных полостей каждого коренного подшипника к дроссельному устройству диафрагменного типа Дифференциальным манометром измеряют величину перепада давления диафрагме и вычисляют расход масла в гидролинии диагностируемого подшипника. Расчетную величину зазора в нем определяют по формуле ,где k - опытный коэффициент (предварительно находят по каждому типу двигателей путем замера искомых зазоров со снятием поддона двигателя); ρ - плотность моторного масла; Qi - расход моторного масла в гидролинии i-го подшипника; Δpi - перепад давления на диафрагме дроссельного устройства. Степень износа каждого коренного подшипника определяют путем сравнения полученной расчетной величины зазора с его допускаемым значением для данного подшипника. Технический результат заключается в повышении точности определения технического состояния коренных подшипников. 3 ил.

Изобретение может быть использовано при испытаниях малогабаритных многоцелевых двигателей (Д), работающих при знакопеременных нагрузках. Стенд содержит амортизирующую знакопеременную передачу (АЗП), соединяющую выходной вал испытываемого Д с нагрузочным устройством через присоединительные фланцы (ПФ) АЗП. Стенд снабжен излучателем света, отражателем и фотоприемником, а на присоединительных фланцах АЗП закреплены диски с отверстиями. Отражатель закреплен на ПФ выходного вала Д под углом 45° к оси вала, а излучатель света и фотоприемник установлены на кронштейне с возможностью поворота вокруг оси вала. Диаметр отверстия на диске, прикрепленном к ПФ нагрузочного устройства, равен диаметру луча, а радиус отверстия на другом диске равен максимально допустимому повороту ПФ относительно друг друга. Длина фотоприемника вдоль оси вращения больше допуска осевого перемещения. На Д установлен вибродатчик, выход которого связан с входом вычитателя, а к другому входу вычитателя дополнительно присоединен выход фотоприемника. Перед испытаниями осевое перемещение выходного вала устанавливают в среднее положение, а на отверстие в присоединительном фланце, закрепленном на выходном валу двигателя, присоединяется диафрагма с отверстием, соосным и равным отверстию на другом диске, а центр фотоприемника совмещают с лучом, после чего диафрагму снимают. Технический результат заключается в повышении работоспособности стенда и расширении его функциональных возможностей. 2 н. и 2 з.п. ф-лы, 4 ил.

Изобретение относится к устройствам для отбора проб отработавших газов двигателя, позволяющего производить отбор проб на движущемся транспортном средстве, и может быть использовано при контроле технического состояния транспортных средств и для оценки опасности воздействия транспортного средства на окружающую среду. Устройство для отбора проб содержит пробоотборник, соединенный с выхлопной трубой посредством входной трубки, с отборной эластичной камерой, смонтированной в переносном приспособлении, и контрольно-регистрирующую аппаратуру. Отборная эластичная камера выполнена съемной и снабжена дистанционно управляемым запорным элементом, а переносное приспособление снабжено патрубком, выходной конец которого расположен в одной плоскости с концом пробоотборника. Входная трубка имеет поворотный механизм, обеспечивающий соединение с очередной отборной эластичной камерой, а также клапан, замыкающий вход отработавших газов двигателя внутреннего сгорания во входную трубку. Причем каждая из отборных эластичных камер имеет контактный механизм отключения пробоотбора при заполнении всего объема отборной эластичной камеры. Кроме того, переносное приспособление имеет внутреннюю охлаждающую оболочку и охлаждаемый туннель для прохождения отработавших газов от выхлопной трубы транспортного средства, а контрольно-регистрирующая аппаратура выполнена в виде процессора, взаимосвязанного с поворотным механизмом, обеспечивающим соединение очередной отборной эластичной камеры с входной трубкой устройства и клапаном, замыкающим вход отработавших газов двигателя внутреннего сгорания во входную трубку. Достигаемый при этом технический результат заключается в обеспечении отбора проб отработавших газов при различных режимах работы двигателя с возможностью предотвращения протекания вторичных химических реакций между компонентами отработавших газов. 1 ил.

Изобретение относится к области авиации, в частности к системам диагностики технического состояния летательных аппаратов. Система сбора данных, контроля и диагностики технического состояния агрегатов привода винтов вертолета включает пьезоэлектрические датчики вибрации, которые установлены на корпусе, по меньшей мере, одного из агрегатов привода винтов вертолета и расположены так, что получают данные с полнотой, достаточной для диагностики технического состояния деталей, узлов, по меньшей мере, одного агрегата привода винтов работающего вертолета, и бортовой электронный блок. Электронный блок связан с выходами датчиков вибраций и выполнен с возможностью цифровой обработки вибросигналов, управления и осуществления сбора, первичной обработки и оценки параметров сигналов отдельных датчиков и/или их комбинаций, накопления данных датчиков и сохранения их на внешних и/или съемных носителях, пригодных для считывания компьютером, и вторичной обработки в наземных условиях. Повышается эффективность сбора данных, информативность контроля и диагностики технического состояния агрегатов привода винтов работающего вертолета. 2 н. и 10 з.п. ф-лы, 7 ил.

Цех подготовки авиационных двигателей к транспортировке содержит участок (10) монтажа измерительных и испытательных средств на двигатель, средства (14) для перемещения двигателя в испытательное помещение (16) и возврата двигателя в цех, участок (18) демонтажа измерительных и испытательных средств, участок (20) эндоскопического контроля, участок (22) доводки и участок (24) транспортировки. Двигатели перемещаются с участка на участок с помощью траверс, закрепленных на двигателях и зацепляемых талями, перемещаемыми по верхней раме, размещенной над цехом. Каждый участок снабжен информационными терминалами для отображения и отслеживания задач, осуществляемых на двигателе на соответствующем посту. Повышаются безопасность, скорость и надежность при подготовке двигателей к транспортировке. 14 з.п. ф-лы, 10 ил.
Наверх