Способ и устройство для конденсации отработавшего пара турбины

Изобретение относится к энергетике. Способ конденсации отработавшего пара турбины включает в себя подачу части отработавшего пара в первичный конденсатор, охлаждаемый оборотной водой, в котором он конденсируется, после которого первичный конденсат по конденсатопроводу рабочим насосом подается в сопла мультиступенчатого эжектора, причем другая часть отработавшего пара подается в приемную камеру первой ступени мультиступенчатого эжектора, причем парожидкостная смесь после мультиступенчатого эжектора поступает во вторичный конденсатор, охлаждаемый воздухом, в котором происходит конденсация всего пара и удаление несконденсированных газов. Также представлено устройство для реализации способа. Изобретение позволяет повысить эффективность конденсации отработавшего пара турбины. 2 н. п. ф-лы, 4 ил.

 

Предлагаемое изобретение относится к теплоэнергетике, а именно к конденсации отработавшего пара после турбин.

Известен способ работы тепловой электрической станции, включающий подачу отработавшего пара в воздушный конденсатор, в котором отъем теплоты пара осуществляется воздухом, подаваемым далее на дутье и воздушное отопление, способ осуществляется в двухсекционном бесконтактном теплообменнике-конденсаторе [патент РФ №2297543, Мкл. F01K 1/02, 2007].

К недостаткам известного способа и устройства относятся возможность подсоса в конденсат дутьевого воздуха, что повышает газосодержание в конденсате и необходимость размещения поблизости потребителя воздушного отопления, что снижает их эффективность.

Более близким к предлагаемому изобретению является установка для конденсации отработавшего пара паровой турбины, содержащая конденсатор, представляющий собой емкость с поверхностями охлаждения, имеющая подводящие и отводящие трубы хладоагента, бак-конденсатосборник, связанный с конденсатором сливным трубопроводом, паровой эжектор для создания вакуума, центробежно-вихревой деаэратор, диспергирующее устройство, в которой отработавший пар охлаждается за счет теплообмена с хладоагентом через стенки поверхностей охлаждения, после чего из него выделяются несконденсированные газы в центробежно-вихревом деаэраторе [заявка РФ №2007136595, Мкл. F28B 01/06, 2009].

Основными недостатками известной установки и способа конденсации отработавшего пара паровой турбины являются сложность и громоздкость конструкции, необходимость использования пара для работы эжектора и вытекающий отсюда повышенный расход тепловой энергии и хладоагента в конденсаторе, что снижает эффективность известного способа и устройства.

Техническим результатом предлагаемого изобретения является повышение эффективности конденсации отработавшего пара турбины.

Технический результат достигается тем, что способ конденсации отработавшего пара турбины включает в себя подачу части отработавшего пара при давлении P0 в количестве n1 (n1 - доля от общего количества отработавшего пара) в первичный конденсатор, охлаждаемый оборотной водой, после которого первичный конденсат по конденсатопроводу рабочим насосом при давлении P1 подается параллельно N потоками в сопла мультиступенчатого эжектора, N ступеней мультиступенчатого эжектора (в каждую ступень мультиступенчатого эжектора подается равное количество первичного конденсата n1/N), создавая разрежение в приемных камерах N ступеней мультиступенчатого эжектора, в результате чего в приемную камеру 1-й ступени мультиступенчатого эжектора всасывается отработавший пар из паропровода через обратный клапан в количестве 1-n1 при давлении P0, который в диффузоре 1-й ступени мультиступенчатого эжектора смешивается с первичным конденсатом, вытекающим из сопла 1-й ступени, образуя парожидкостную смесь, давление которой на выходе из диффузора повышается от P0 до ( значительно меньше, чем давление, создаваемое конденсатным насосом P1, но больше, чем P0), в результате чего в диффузоре I-й ступени происходит частичная конденсация пара, после чего парожидкостная смесь при давлении в количестве (1-n1+n1/N) поступает в приемную камеру II-й ступени и далее в приемную камеру N-й ступени мультиступенчатого эжектора, где происходят вышеописанные процессы частичной конденсации, повышения давления до и , увеличения массы до 1-n1+n1/N и 1 соответственно, после чего при давлении в количестве, равном 1, парожидкостная смесь поступает в цилиндрический расширитель вторичного конденсатора, где происходит резкое снижение скорости парожидкостной смеси, из нее под действием силы тяжести отделяются частицы конденсата, которые выпадают в конический поддон, откуда конденсат подается в систему подготовки подпиточной воды, а несконденсировавшийся пар поступает в вертикальные конденсационные трубы, где происходит процесс конденсации оставшегося пара, образовавшийся конденсат под действием сил тяжести стекает вниз в конический поддон, а несконденсированные газы собираются в полости тороидальной крышки и удаляются в атмосферу через воздушный штуцер, при этом конденсация пара в вертикальных конденсационных трубах осуществляется за счет его охлаждения потоком наружного воздуха, создаваемого вентилятором, обеспечивающего разрежение в вертикальной полости воздушного колодца, в результате чего туда направляются горизонтальные потоки наружного воздуха, который далее выбрасывается вверх в атмосферу.

Технический результат достигается также тем, что устройство для конденсации отработавшего пара турбины содержит первичный и вторичный конденсаторы, соединенные параллельными паропроводами отработавшего пара с паровой турбиной, первичный конденсатор соединен конденсатопроводом рабочего конденсата и рабочим насосом с вторичным конденсатором, состоящим из цилиндрического расширителя с коническим днищем, закрытого нижней трубной решеткой с вертикальными конденсационными трубами, размещенными по ее периферии таким образом, что центральная окружность нижней трубной решетки выполнена глухой без отверстий, образуя между вертикальными конденсационными трубами вертикальную полость - воздушный колодец, верхняя трубная решетка выполнена в форме кольца, диаметр центрального отверстия которого равен диаметру центральной окружности нижней трубной решетки, при этом верхняя трубная решетка закрыта тороидальной крышкой, вверху центрального отверстия установлен вентилятор, борт цилиндрического расширителя вторичного конденсатора через отверстие соединен с мультиступенчатым эжектором, который состоит из последовательно размещенных по ходу пара и соединенных между собой N ступеней, каждая из которых содержит приемную камеру, сопло и диффузор, соединенные последовательно, при этом сопла N ступеней соединены параллельно с конденсатопроводом рабочего конденсата, а параллельный паропровод отработавшего пара вторичного конденсатора присоединен к приемной камере I-й ступени мультиступенчатого эжектора через обратный клапан.

На фиг.1 представлена схема материальных потоков и общий вид предлагаемого устройства для конденсации отработавшего пара турбины, на фиг.2 - поперечный разрез вторичного конденсатора, на фиг.3 представлен узел стыковки вертикальных конденсационных труб с нижней трубной доской, на фиг.4 - узел компоновки мультиступенчатого эжектора.

Устройство для конденсации отработавшего пара турбины содержит первичный и вторичный конденсаторы 1 и 2, соединенные параллельными паропроводами отработавшего пара 3 с паровой турбиной (на фиг.1-4 не показана), первичный конденсатор 1 соединен конденсатопроводом рабочего конденсата 4 и рабочим насосом 5 с вторичным конденсатором 2, состоящим из цилиндрического расширителя 6 с коническим днищем 7, закрытого нижней трубной решеткой 8 с вертикальными конденсационными трубами 9, размещенными по ее периферии, таким образом, что центральная окружность 10 нижней трубной решетки 8 выполнена глухой без отверстий, образуя между вертикальными конденсационными трубами 9 вертикальную полость - воздушный колодец 11, верхняя трубная решетка 12 выполнена в форме кольца, диаметр центрального отверстия 13 которого равен диаметру центральной окружности 10 нижней трубной решетки 8, при этом верхняя трубная решетка 12 закрыта тороидальной крышкой 14, вверху центрального отверстия 13 установлен вентилятор 15, борт цилиндрического расширителя 6 вторичного конденсатора 2 через отверстие 16 соединен с мультиступенчатым эжектором (МСЭ) 17, который состоит из последовательно размещенных по ходу пара и соединенных между собой I-й, II-й и III-й ступеней (N=3 принято в качестве примера), каждая из которых содержит приемную камеру 18, сопло 19 и диффузор 20, соединенные последовательно, при этом сопла 19 I-й, II-й и III-й ступеней соединены параллельно с конденсатопроводом рабочего конденсата 3, параллельный паропровод отработавшего пара 3 вторичного конденсатора 2 присоединен к приемной камере I-й ступени 18 мультиступенчатого эжектора 17 через обратный клапан 21.

Предлагаемый способ конденсации отработавшего пара турбины реализуется в предлагаемом устройстве следующим образом. Из паровой турбины (на фиг.1-4 не показана) по параллельному паропроводу 3 часть отработавшего пара при давлении P0 в количестве n1 (n1 - доля от общего количества отработавшего пара) поступает в первичный конденсатор 1, охлаждаемый оборотной водой, где конденсируется, после чего первичный конденсат в этом же количестве n1 по конденсатопроводу 4 рабочим насосом 5 при давлении Pi подается параллельно тремя потоками в сопла 19 I-й, II-й и III-й ступеней мультиступенчатого эжектора (МСЭ) 17 (условно считаем, что в каждую ступень МСЭ 17 подается равное количество первичного конденсата l/3n1), создавая разрежение в приемных камерах 18 I-й, II-й и III-й ступеней. В результате разрежения в приемную камеру 18 I-й ступени МСЭ 17 всасывается отработавший пар из параллельного паропровода 3 через обратный клапан 21 в количестве 1-n1 при давлении P0, в диффузоре 20 он смешивается с первичным конденсатом, вытекающим из сопла 19, образуя парожидкостную смесь, давление которой на выходе из диффузора 20 повышается от P0 до ( значительно меньше, чем давление, создаваемое конденсатным насосом P1, но больше, чем Р0). Одновременно в диффузоре 20 1-й ступени за счет повышения давления происходит частичная конденсация пара, после чего парожидкостная смесь при давлении в количестве 1-n1+n1/3 поступает в приемную камеру 18 II-й ступени. В соответствии с вышеописанными процессами повышения давления и частичной конденсации в I-й ступени мультиступенчатого эжектора 17 во II-й ступени парожидкостная смесь повышает свое давление до , увеличивает свою массу до 1-n1+2n1/3 частично конденсируется, в III-й ступени повышает свое давление до , увеличивает свою массу до 1, дополнительно конденсируется, после чего через отверстие 16 при давлении (которое значительно больше, чем , но несколько меньше, чем P1) в количестве 1 поступает в цилиндрический расширитель 6 вторичного конденсатора 2. В цилиндрическом расширителе 6 происходит резкое снижение скорости парожидкостной смеси, в результате чего из нее под действием силы тяжести отделяются частицы конденсата, которые выпадают в конический поддон 7, откуда конденсат подается в систему подготовки подпиточной воды (на фиг.1-4 не показана), а несконденсировавшийся пар поступает в вертикальные конденсационные трубы 9. В вертикальных конденсационных трубах 9 происходит процесс конденсации оставшегося пара, образовавшийся конденсат под действием сил тяжести стекает вниз в конический поддон 7, а воздух (попадающий в пар за счет разрежения в паропроводе 3) собирается в полости тороидальной крышки 14 и выбрасывается через воздушный штуцер (на фиг.1-4 не показан) в атмосферу. Конденсация пара в вертикальных конденсационных трубах 9 осуществляется за счет его охлаждения потоком наружного воздуха, омывающего наружные поверхности труб 9. Подача наружного воздуха на охлаждение конденсационных труб 9 производится вентилятором 15, создающим разрежение в вертикальной полости воздушного колодца 11, в результате чего туда направляются горизонтальные потоки наружного воздуха, который далее выбрасывается вверх наружу через центральное отверстие 13.

Из описания работы мультиступенчатого эжектора 17 видно, что этот аппарат одновременно выполняет функцию компрессора и конденсатора, причем он обеспечивает большее повышение давления, чем одноступенчатый аппарат, в результате чего внутри него происходит также и конденсация пара, причем величина давления и степень конденсации пара зависят в основном от мощности и давления, развиваемого рабочим насосом 5, и числа ступеней в мультиступенчатом эжекторе 17. Оптимальное число ступеней мультиступенчатого эжектора 17 находят из технико-экономического расчета.

Конструкция вторичного конденсатора 2 позволяет проводить сепарацию пара от капель конденсата в расширителе 6, конденсировать оставшийся пар, выделять из пара и удалять несконденсированные газы (воздух), использовать в качестве хладоагента наружный воздух, а наличие воздушного колодца 11 обеспечивает омывание наружным воздухом всех участков вертикальных конденсационных труб 9, что интенсифицирует скорость теплопередачи между воздухом и паром.

Количество пара n1, который направляется на конденсацию в первичный конденсатор L, охлаждаемый оборотной водой, определяют исходя из требуемого расхода рабочей воды (первичного конденсата) для оптимальной работы мультиступенчатого эжектора 17.

Таким образом, предлагаемый способ и устройство для конденсации пара турбины позволяют за счет использования вторичного конденсатора, охлаждаемого наружным воздухом, снабженного мультиступенчатым эжектором, в котором рабочей водой служит первичный конденсат, полученный в первичном конденсаторе, охлаждаемым оборотной водой, значительно снизить расход охлаждающей оборотной воды на процесс конденсации отработавшего пара, увеличить вакуум после турбины в паропроводе отработавшего пара, что повышает КПД турбины, и в целом увеличить эффективность теплоэлектростанции.

1. Способ конденсации отработавшего пара турбины, включающий эжектирование и подачу отработавшего пара в конденсатор, его конденсацию в результате теплообмена через теплообменные поверхности с хладоагентом, сбор конденсата в конденсатосборнике, деаэрирование с выделением несконденсированных газов, отличающийся тем, что часть отработавшего пара при давлении Р0 в количестве n1 (n1 - доля от общего количества отработавшего пара) направляется в первичный конденсатор, охлаждаемый оборотной водой, после которого первичный конденсат по конденсатопроводу рабочим насосом при давлении P1 подается параллельными потоками в N сопел мультиступенчатого эжектора, создавая разрежение в приемных камерах N ступеней мультиступенчатого эжектора, в результате чего в приемную камеру I-й ступени мультиступенчатого эжектора всасывается отработавший пар из паропровода через обратный клапан в количестве (1-n1) при давлении P0, который в диффузоре I-й ступени мультиступенчатого эжектора смешивается с первичным конденсатом, вытекающим из сопла I-й ступени, образуя парожидкостную смесь, давление которой на выходе из диффузора повышается от P0 до ( значительно меньше, чем давление, создаваемое конденсатным насосом P1, но больше, чем P0), в результате чего в диффузоре I-й ступени происходит частичная конденсация пара, после чего парожидкостная смесь при давлении в количестве (1-n1+n1/N) поступает в приемную камеру II-й ступени и далее в приемную камеру N-й ступени мультиступенчатого эжектора, где происходят вышеописанные процессы частичной конденсации, повышения давления до и , увеличения массы до 1-n1+n1/N и 1 соответственно, после чего при давлении в количестве, равном 1, парожидкостная смесь поступает в цилиндрический расширитель вторичного конденсатора, где происходит резкое снижение скорости парожидкостной смеси, из нее под действием силы тяжести отделяются частицы конденсата, которые выпадают в конический поддон, откуда конденсат подается в систему подготовки подпиточной воды, а несконденсировавшийся пар поступает в вертикальные конденсационные трубы, где происходит процесс конденсации оставшегося пара, образовавшийся конденсат под действием сил тяжести стекает вниз в конический поддон, а несконденсированные газы собираются в полости тороидальной крышки и удаляются в атмосферу через воздушный штуцер, при этом конденсация пара в вертикальных конденсационных трубах осуществляется за счет его охлаждения потоком наружного воздуха, создаваемого вентилятором, обеспечивающего разрежение в воздушном колодце, в результате чего туда направляются горизонтальные потоки наружного воздуха, который далее выбрасывается вверх в атмосферу.

2. Устройство для конденсации отработавшего пара турбины, содержащее паропровод отработавшего пара, соединенный с паровой турбиной, эжектор, конденсатор с теплообменными поверхностями, конденсатосборник, деаэратор, отличающееся тем, что конденсатор включает первичный и вторичный конденсаторы, соединенные параллельными паропроводами отработавшего пара с паровой турбиной, первичный конденсатор соединен конденсатопроводом рабочего конденсата и рабочим насосом с вторичным конденсатором, состоящим из цилиндрического расширителя с коническим днищем, закрытого нижней трубной решеткой, с вертикальными конденсационными трубами, размещенными по ее периферии, таким образом, что центральная окружность нижней трубной решетки выполнена глухой без отверстий, образуя между вертикальными конденсационными трубами вертикальную полость - воздушный колодец, верхняя трубная решетка выполнена в форме кольца, диаметр центрального отверстия которого равен диаметру центральной окружности нижней трубной решетки, при этом верхняя трубная решетка закрыта тороидальной крышкой, вверху центрального отверстия установлен вентилятор, борт цилиндрического расширителя вторичного конденсатора через отверстие соединен с мультиступенчатым эжектором, который состоит из последовательно размещенных по ходу пара и соединенных между собой N ступеней, каждая из которых содержит приемную камеру, сопло и диффузор, соединенные последовательно, при этом сопла всех ступеней соединены параллельно с конденсатопроводом рабочего конденсата, а параллельный паропровод отработавшего пара вторичного конденсатора присоединен к приемной камере I-й ступени мультиступенчатого эжектора через обратный клапан.



 

Похожие патенты:

Изобретение относится к области теплоэнергетики. .

Изобретение относится к энергомашиностроению. .

Изобретение относится к области энергетики и холодильной техники, в частности к способу повышения выработки электроэнергии. .

Изобретение относится к турбостроению и может быть использовано для охлаждения высокотемпературных роторов паровых турбин. .

Изобретение относится к энергомашиностроению и может быть использовано в турбинах, имеющих внутреннее уплотнение ротора и работающих в блоках с прямоточными и барабанными котлами.

Изобретение относится к энергосудостроению для преобразования тепловой энергии в электрическую в судовой энергетической установке глубоководных аппаратов. .

Изобретение относится к теплоэнергетике , может быть использовано на паротурбинных блоках с вспомогательными конденсационными турбинами и позволяет повысить экономичность энергоблока.

Изобретение относится к теплоэнергетике и позволяет повысить экономичность установки путем использования теплоты конденсации пара и теплоты конденсата вспомогательных турбин в системе регенерации главной турбины при всех режимах ее работы.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях и котельных установках, работающих на природном газе для повышения их экономичности. Теплоэнергетическая установка содержит котел, водоподготовительную установку с деаэратором, к которому подключены патрубки исходной и деаэрированной воды, подвода рабочей среды и отвода выпара. Деаэратор включен патрубками подвода рабочей среды и отвода выпара в газопровод перед горелками котла. Изобретение позволяет повысить экономичность теплоэнергетической установки. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях и котельных установках, работающих на природном газе для повышения их экономичности. Теплоэнергетическая установка, содержит котел, водоподготовительную установку с декарбонизатором, к которому подключены патрубки исходной и декарбонизированной воды, подвода и отвода рабочей среды. Декарбонизатор включен патрубками подвода и отвода рабочей среды в газопровод перед горелками котла. Изобретение позволяет повысить эффективность теплоэнергетической установки. 1 ил.

Изобретение относится к станционной энергетике, конкретнее к энергосбережению при эксплуатации котлов электростанций, содержащих паротурбинные установки (ПТУ). В способе глубокой утилизации осуществляют подачу конденсата ПТУ в водогазовый теплообменник (ВГТ) на выходе из котла и нагрев конденсата за счет тепла продуктов сгорания (ПС), продукты сгорания в (ВГТ) охлаждают до температуры ниже точки росы на (5-10)°C, полученный конденсат (ПС) собирают, подвергают очистке по известной технологии и направляют в конденсатную линию и далее последовательно в подогреватель конденсата, деаэратор и котел. Для реализации способа система глубокой утилизации (ГУ) включает размещенный под водогазовым теплообменником (ВГТ) резервуар для слива конденсата (ПС), баки сбора и запаса конденсата, дренажный и конденсатный насосы, а также участок обработки конденсата, соединенный с конденсатной линией станции. Кроме экономии тепла (топлива) данное решение обеспечивает снижение эмиссии токсичных оксидов NOХ и CO2 за счет подавления водяными парами, уменьшения расхода топлива, получение дополнительной воды, которая может использоваться для подпитки котла и других нужд, устраняет или сводит к минимуму конденсацию в газовом тракте и дымовой трубе, улучшают условия их службы, отпадает необходимость в рециркуляции дымовых газов для предотвращения конденсации. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области теплоэнергетики. Вакуумная деаэрационная установка добавочной питательной воды тепловой электрической станции содержит вакуумный деаэратор с трубопроводом деаэрированной добавочной питательной воды, подключенным к трубопроводу основного конденсата турбины, с трубопроводами исходной воды и греющего агента, в которые включены подогреватели исходной воды и греющего агента с трубопроводами греющей среды, трубопроводом выпара. Изобретение позволяет повысить экономичность работы вакуумной деаэрационной установки добавочной питательной воды тепловой электрической станции и снизить затраты электрической энергии на собственные нужды путем обеспечения технологически необходимого температурного режима деаэрации за счет использования в качестве греющей среды для подогревателей вакуумной деаэрационной установки недорогого теплоносителя с достаточными для деаэрации параметрами. 1 ил.

Изобретение относится к области энергетики. Устройство получения электроэнергии, содержащее воздуховод, первый тепловой коллектор, нагревательные элементы, накопитель-радиатор, турбогенератор, второй тепловой коллектор, блок управления, аккумулятор, электроконвертор, при этом первый выход первого теплового коллектора соединен с нагревательными элементами, выход которых соединен с накопителем-радиатором, выход блока управления соединен с первым входом турбогенератора, первый выход которого является первым выходом устройства, выход аккумулятора соединен с входом электроконвертора, выход которого является вторым выходом устройства. Устройство дополнительно содержит вихревой разделитель теплоносителя, насос, выпрямительно-зарядное устройство. Первый вход устройства соединен с первым входом воздуховода и вторым входом турбогенератора, второй вход устройства соединен с вихревым разделителем теплоносителя, первый выход которого соединен с входом первого теплового коллектора и вторым входом воздуховода, второй выход первого теплового коллектора соединен с первым входом насоса, второй вход которого соединен с выходом блока управления, а выход соединен с входом второго теплового коллектора, первый выход которого соединен с первым выходом воздуховода, вторым выходом вихревого разделителя теплоносителя и является третьим выходом устройства, второй выход второго теплового коллектора соединен с вторым выходом турбогенератора, третьим выходом первого теплового коллектора и входом блока управления, первый выход турбогенератора соединен с входом выпрямительно-зарядного устройства, выход которого соединен с входом аккумулятора, второй выход воздуховода соединен с выходом накопителя-радиатора и является четвертым выходом устройства. Изобретение направлено на получение электроэнергии из тепловой энергии контура охлаждения градирни при использовании градирни в качестве воздуховода. 1 ил.

Изобретение относится к электроэнергетике на основе возобновляемых источников энергоресурсов и местных видов топлива, в частности биомассы, децентрализованному электроснабжению, а также к переработке и утилизации твердых органических отходов. Способ предполагает производство электроэнергии по двухстадийной технологической схеме с газификацией сырья в реакторе-газификаторе прямого процесса паровоздушной газификации в плотном слое, в частности цилиндрическом наклонном вращающемся реакторе-газификаторе в режиме фильтрационного горения со сверхадиабатическим разогревом, и последующим непосредственным сжиганием получаемого горячего топливного газа и преобразованием тепловой энергии получаемого пара в электроэнергию посредством тепловой (паровой) машины и электрогенератора. Изобретение предусматривает рекуперацию «сбросной» теплоты отработавшего пара посредством его конденсации в замкнутом контуре циркуляции рабочего тела (воды/органического теплоносителя) тепловой (паровой) машины по двухступенчатой схеме воздушного охлаждения, включающей непрерывную межступенчатую комбинированную конвективную воздушно-калориферную и кондуктивную (контактную) сушку исходного сырья в конденсационно-сушильном блоке, использованный при этом воздух в необходимом объеме подают в реактор-газификатор в качестве газифицирующего агента. Осуществление изобретения предполагается посредством введения в состав устройства конденсационно-сушильного блока, подключенного к выходу тепловой (паровой) машины для отработавшего пара и конструктивно представляющего собой двухступенчатый воздушный конденсатор пара, содержащий паропровод в виде последовательно соединенных узлов - модуля 1-й ступени конденсации, коллектора перепуска пара и отвода конденсата с интегрированным (встроенным) вращающимся сушильным барабаном, модуля 2-й ступени конденсации. Предлагается использование различных типов тепловой (паровой) машины - паровой турбины, паровой винтовой машины, парового поршневого двигателя, турбины органического цикла. Изобретение позволяет повысить электрический КПД и расширить спектр используемого дешевого низкосортного сырья в части некондиционной, в том числе по содержанию влаги, топливной биомассы, включая утилизируемые некондиционные твердые городские (бытовые) отходы, при минимизации вредного влияния на окружающую среду и обеспечении автономности процесса производства электроэнергии. 2 н. и 8 з.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к электроэнергетике на основе возобновляемых источников энергоресурсов и местных видов топлива, в частности биомассы, децентрализованному электроснабжению, а также к переработке и утилизации твердых органических, в том числе бытовых отходов. Способ предлагает производство электроэнергии по двухстадийной технологической схеме с газификацией сырья в реакторе-газификаторе прямого процесса паровоздушной газификации в плотном слое, в частности, цилиндрическом наклонном вращающемся реакторе-газификаторе в режиме фильтрационного горения со сверхадиабатическим разогревом, и последующим непосредственным сжиганием получаемого топливного газа и преобразованием тепловой энергии получаемого пара в электроэнергию посредством тепловой (паровой) машины конденсационного типа и электрогенератора. Изобретение предусматривает рекуперацию «сбросной» теплоты посредством конденсации отработавшего пара в замкнутом контуре циркуляции рабочего тела (воды/органического теплоносителя) посредством двухступенчатой схемы воздушного охлаждения с промежуточной (межступенчатой) конвективной воздушно-калориферной сушкой исходного сырья путем принудительной циркуляции атмосферного воздуха. При осуществлении изобретения предлагается использование двухступенчатого воздушного конденсатора и сушильного аппарата, например, барабанного типа, а также различных типов тепловой (паровой) машины (паровой турбины, паровой винтовой машины, парового поршневого двигателя, турбины органического цикла). Изобретение позволяет повысить электрический КПД и расширить спектр используемого дешевого низкосортного сырья в части некондиционной, в том числе по содержанию влаги, топливной биомассы, включая утилизируемые некондиционные твердые городские (бытовые) отходы, при минимизации вредного влияния на окружающую среду и обеспечении автономности процесса производства электроэнергии. 2 н. и 7 з.п. ф-лы, 6 ил., 1 табл.

Изобретение может быть использовано в энергетике, водоочистке, топливной промышленности. Система для производства электроэнергии и очищенной воды включает в себя: i) оборудование для получения электроэнергии, преобразованной из солнечного излучения; ii) оборудование для получения электроэнергии из биотоплива; iii) оборудование для очистки воды; iv) оборудование для орошения и выращивания сельскохозяйственных культур; v) оборудование для производства биотоплива, в которой по меньшей мере один выходной продукт от оборудования для производства электроэнергии питает оборудование для очистки воды, которая используется в оборудовании для орошения и выращивания сельскохозяйственных культур, по крайней мере некоторые из которых или их остатки используются в оборудовании для производства биотоплива, служащего сырьем оборудования для производства электроэнергии из биотоплива, а компост для выращивания сельскохозяйственных культур получен из побочного продукта от производства биотоплива. Способ производства электроэнергии и очищенной воды включает стадию обеспечения системы для производства электроэнергии и очищенной воды и стадию производства электричества и очищенной воды. Изобретение не требует привлечения поступающих извне энергоносителей, позволяет увеличить производительность системы, снизить уровень содержания углерода в атмосферных выбросах, улучшить качество грунтовой воды и регенерация земель. 5 н. и 17 з.п. ф-лы, 6 ил.

Изобретение относится к энергетике. Способ конденсации отработавшего пара турбины включает в себя подачу части отработавшего пара в первичный конденсатор, охлаждаемый оборотной водой, в котором он конденсируется, после которого первичный конденсат по конденсатопроводу рабочим насосом подается в сопла мультиступенчатого эжектора, причем другая часть отработавшего пара подается в приемную камеру первой ступени мультиступенчатого эжектора, причем парожидкостная смесь после мультиступенчатого эжектора поступает во вторичный конденсатор, охлаждаемый воздухом, в котором происходит конденсация всего пара и удаление несконденсированных газов. Также представлено устройство для реализации способа. Изобретение позволяет повысить эффективность конденсации отработавшего пара турбины. 2 н. п. ф-лы, 4 ил.

Наверх