Способ свч-градиентной активации угольного топлива с использованием защитной пленки


 


Владельцы патента RU 2514826:

Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) (RU)
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский национальный исследовательский государственный университет" (НГУ) (RU)

Изобретение относится к способу СВЧ-градиентной активации угольного топлива с использованием защитной пленки путем СВЧ-воздействия на угольное топливо, при котором производят СВЧ-градиентную активацию угольной частицы, при этом поверхность кусков угля покрыта защитной пленкой, задерживающей выход летучих в течение процесса СВЧ-активации, а давление внутри куска угля превышает 10 атмосфер без образования трещин и разрывов в пленке. Наличие защитной пленки на куске угля позволяет задерживать выход летучих в течение процесса активации, выдерживать температуру до 700ºС без образования трещин и разрывов в пленке, увеличивать полноту сгорания топлива до 98% и уменьшать скорость зашлаковывания внутренних поверхностей котельного оборудования за счет уменьшения доли аэрозолей в отходящих дымовых газах. 3 пр.

 

Изобретение относится к технологии подготовки угольного топлива из различных сортов угля, включая и уголь из окисленных отвалов, к сжиганию в энергетических котлах ТЭЦ, перевозки угольного топлива на дальние расстояния, особенно в условиях низких температур, к технологии углеобогащения, получения из угля углеводородных продуктов для различных отраслей промышленности, включая в первую очередь металлургическую и химическую промышленности.

Известен способ сжигания угольного топлива при дополнительном поджоге струи угольной пыли в котлах при пропускании этой струи через плазменные дуги, формируемые плазмотроном с электродами. В результате частицы угольной пыли нагреваются и при дальнейшем движении внутри большого энергетического котла быстрее сгорают (Жуков М.Ф. и др. Плазменная безмазутная растопка котлов и стабилизация горения пылеугольного факела. - Новосибирск: Наука, 1995. - 304 с.; Иманкулов Э.Р. и др. Плазменный розжиг и стабилизация горения факела донецкого АШ // Теплоэнергетика. - 1990. - №1. - С.51-53).

Недостатки такого метода: высокое потребление электроэнергии плазмотроном, иногда до 10% от вырабатываемой электроэнергии котлом ТЭЦ, загрязнение струи угольной пыли частицами материала электродов плазмотрона, быстрый износ электродов плазмотрона, метод не может быть применен к малым по мощности (менее 0,1 МВт) энергетическим котлам, так как плазмотроны - это сложные и дорогие технические устройства и окупаться они могут только при работе на больших электростанциях и на пылеугольных котлах мощностью более 30 МВт.

Известен способ сжигания угольного топлива в виде угольной пыли в высокочастотной СВЧ-плазме (Буров В.Ф., Стрижко Ю.В. СВЧ-плазмотрон со свободно парящим плазмоидом // Горение и плазмохимия, - т.4, №2, 2007, С.103-109; Буров В.Ф., Стрижко Ю.В. СВЧ-плазмотрон со свободно парящим плазмоидом // Сб. докл. VI Всероссийской конференции "Горение твердого топлива" 8-10 ноября 2006, Новосибирск: ИТ СО РАН, 2006; Буров В.Ф., Стрижко Ю.В. СВЧ-плазмотрон: для зажигания угольной пыли используем свободно парящий плазмоид. Оборудование. Разработки. Технологии, №2 (02), 2007, с.45-48; Патент РФ №2328095, дата подачи заявки: 23.06.2006). В этом способе СВЧ-плазма, формируемая безэлектродным плазмотроном, зажигается также в основании струи угольного порошка, поступающего в топку котла, однако разряд плазменного типа создается за счет ионизации газа, несущего угольный порошок.

Недостатки этого метода: низкий, менее 10-15%, КПД, т.к. почти вся энергия СВЧ-разряда уходит на нагрев плазмообразующего газа и поддержание газового разряда, а частицы угольного топлива поглощают только малую долю затрачиваемой энергии (менее 10-15%); СВЧ-плазма в основании струи очень нестабильна и требуются специальные сложные конструкции с газовыми потоками для реализации метода.

Наиболее близким по технической сущности к заявляемому способу СВЧ-градиентной активации угольного топлива с использованием защитной пленки является «Способ СВЧ-градиентной активации угольного топлива» (патент РФ №2458107, дата подачи заявки: 10.11.2010). В этом способе активации угольного топлива, включающем СВЧ-воздействие на угольное топливо, производят СВЧ-градиентную активацию в высокоградиентном СВЧ-поле в режиме управления скоростью нарастания СВЧ-поля до возникновения в куске угля трещин глубокого разлома, не приводящих к его полному разрушению.

Недостатком данного способа является то, что при СВЧ-градиентной внутренней активации происходит СВЧ-нагрев внутреннего объема угольного куска, образование и нагрев паров воды, что приводит к резкому образованию щелей в угольном куске от центра до самой ее поверхности. Через щели начинают выделяться летучие углеводороды, как легкие, так и тяжелые, легкие углеводороды преимущественно воспламеняются над поверхностью угля, а тяжелые углеводороды преимущественно образуют аэрозоль из углеводородов в атмосфере над поверхностью угля, что не позволяет уменьшить температуру воспламенения топлива до 500-600 С° и увеличить полноту сгорания топлива до 98% по содержанию углеводородов в первичном угле.

Задачей предлагаемого изобретения является снижение температуры воспламенения летучих до 500 С°, увеличение выхода летучих углеводородов, разложение тяжелых углеводородов внутри куска угля, включая гетерогенное разложение на минеральной составляющей угля, что обеспечит высокоэффективное сгорание угольных топлив всех промышленных сортов горючего, увеличит полноту сгорания топлива до 98% по содержанию углеводородов в первичном угле.

Технический результат достигается тем, при осуществлении способа СВЧ-градиентной активации угольного топлива с использованием защитной пленки поверхность отдельного куска угля до начала активации покрывают пленкой, которая задерживает первичный выход летучих в течение СВЧ-активации, при этом давление внутри матрицы угля увеличивается и превышает 10 атмосфер без образования трещин и разрывов в нанесенной пленке.

Существует десятки способов создания защитной пленки из различных материалов. Тип пленки и способ ее получения зависит от конкретных условий активации угля и характеристик угля (например, размеров кусков угля, времени СВЧ-активации, сорта угля). Выполненная различными способами защитная пленка должна удовлетворять следующим требованиям: задерживать выход летучих в течение процесса активации, выдерживать давление внутри куска угля до 10 атмосфер, выдерживать температуру до 700°С без образования трещин и разрывов во время процесса активации.

Наличие защитной пленки на куске угля позволяет повышать температуру куска угля без его растрескивания до 600-700°С, поэтому при осуществлении предлагаемого способа скорость разложения летучих внутри куска угля, покрытого пленкой, под воздействием СВЧ-градиентного поля возрастает в 10-100 раз, в зависимости от сорта углей и как следствие в процессе активации до 5-20 раз в зависимости от параметров активации (мощность, время, скважность импульсов СВЧ-импульсов) увеличивается выход легких углеводородов, не способных к образованию видимых аэрозолей, химический состав продуктов выброса из угольного куска состоит из значительно более легких, а значит, и более летучих и горючих углеводородов, что в свою очередь приводит к снижению температуры воспламенения до 500°С, увеличению полноты сгорания топлива до 98% и уменьшению скорости зашлаковывания внутренних поверхностей котельного оборудования за счет уменьшения доли аэрозолей в отходящих дымовых газах. При дальнейшем горении активированного заявляемым способом угля в топках котлов горение происходит в режиме газового факела, без большого выброса сажи и несгоревших кусков угольных частиц, при этом оксидная (состоящая из окислов, например, Al2O3, SiO2 и др.) минеральная часть угольного топлива переходит не в аэрозольную фракцию, а в компактный осадок на дне топки, что в 3-8 раз в зависимости от конструкции котла уменьшает скорость зашлаковки конструкций котлов и экономайзеров.

Наличие защитной пленки предотвращает преждевременный выход летучих, что позволяет в 3-8 раз уменьшить потребление электроэнергии СВЧ-генераторами, так как теперь раскалывание куска угля на множество частей или появление в нем трещин не является недостатком способа, потому что внутренняя активация куска угля происходит за время от 1 до 5 с и успевает закончиться до начала разрыва пленки или раскалывания куска угля на отдельные части. Кроме того, наличие защитной пленки на поверхности угольной частицы позволяет осуществлять дополнительную экономию электроэнергии, затрачиваемую СВЧ-генераторами на нагрев угольной частицы, за счет уменьшения потерь тепла из угольной частицы.

Еще одно важное следствие применения заявляемого способа - в конце процесса внутренней активации происходит взрывной разлет активированного куска угля. Это явление является очень важным для горения в котлах различного типа, а особенно в котлах с кипящим нижним и кипящим объемным слоем, т.к. осколки куска угля попадают сразу же в кислородную среду кипящих слоев и продолжают интенсивное догорание уже как СВЧ активированные осколки угля.

Нагрев СВЧ-излучением ведется непосредственно в топочном пространстве угольного котла до разрушения пленки силами внутреннего давления. При этом разрушение пленки происходит не по всей поверхности одновременно, а только в некоторых местах, часто даже в одном. Мощная струя легких углеводородов мгновенно вырывается из разрушенного места, и в месте перемешивания с внешним окислителем (воздухом) вспыхивает высокотемпературный факел (более 1600° С), что в свою очередь приводит к эффективному сгоранию отколовшихся от куска угля частиц угля микронных размеров. При таком режиме размеры отколовшихся частиц угля не бывают большими (до 100-300 мкм), поэтому они эффективно догорают почти во всех конструкциях котлов, включая кипящий слой. Отсюда следует, что заявленный способ не только повышает энергетическую эффективность и экологичность горения углей, но и его использование должно привести к уменьшению размеров котлов.

Пример 1

Образец из угля цилиндрической формы размером в 4,5 см устанавливался так, чтобы максимум СВЧ-поля находился в его центре или близко к центру. Без защитной пленки при воздействии мощным СВЧ-импульсом образец мгновенно разлетался на несколько кусков, выпадающих из СВЧ фокусного объема. Если в тех же условиях испытывался аналогичный образец, покрытый защитной пленкой, то образец не разрушался и его внутренняя активация происходила при повышении мощности СВЧ-генератора от 600 Вт и до 3500 Вт, а давление водяных паров внутри образца на момент окончания активации составляло 13 атм.

В этом примере защитная пленка создавалась методом погружения первичного куска угля в разбавленный бетонный раствор с добавлением некоторых солей (например, поваренной соли) для улучшения адгезионных свойств пленки. Высыхание защитной пленки происходило под действием тепла от СВЧ-активации. Влажная пленка полезна тем, что заполняет трещины куска угля, характерные для высокозольных низкосортных углей.

Пример 2

Были проведены эксперименты в модельных режимах горения угля в кипящем слое и горения угля на колоснике на малых котлах мощностью 0,8 и 0,3 МВт производства Черепановского завода (Новосибирская область). Эксперименты проводились при СВЧ-активации кусков угля, покрытых защитной пленкой.

В данном примере защитная пленка создавалась на основе применения готового материала, газобетонных блоков, механическим способом. Уголь помещался внутрь твердой формы из газобетона и плотно прижимался к поверхности газобетонных стенок формы прессом. Такой механический способ изготовления защитной пленки позволяет менять толщину и форму защитной пленки в широких пределах - от тысячных до сотых долей метра, в зависимости от технологической задачи и скорости проведения СВЧ-активации для энергетических котлов.

Анализ горения угольного топлива проводился методами инфракрасной съемки с инфракрасной дальнофокусной линзой и скоростной кинокамерой в оптическом диапазоне до 4000 кадров/с. Для отбора аэрозольной фракции из пламени использовались высокоскоростные вакуумные пробоотборники. Эксперименты показали, что вылетевшие из куска угля, покрытого защитной пленкой, активированные частицы угля имеют температуру не менее 1600°С и горят в режиме внешнего диффузионного факела. В то же время частицы угля от неактивированного куска угля, поднятые в объем горения воздушными потоками кипящего слоя (воздушной форсунки), горят в режиме гетерогенных поверхностных реакций с температурами ниже 950°С, что приводит к их неполному выгоранию, их уносу из котельного пространства и мехнедожогу.

Пример 3

Были проведены экспериментальные исследования СВЧ-активации угольных кусков, покрытых защитной пленкой для разных образцов угля (Кемеровские угли, Новосибирские, Красноярские). В данном примере применялся полимерно-клеющий способ изготовления защитной пленки. А именно, куски угля на несколько секунд погружались в смесь канцелярского клея и керамических частиц с размерами 1-10 мкм. После этого кусок угля сразу же подвергался СВЧ-активации. Высыхание защитной пленки, как и в примере 1, происходило под действием тепла от СВЧ-активации.

При этом выяснилось, что для СВЧ-активации угольных кусков, не покрытых защитной пленкой, сорт угля довольно сильно влияет на выбор режимов активации и подбор оптимальных режимов, а для активации угольных кусков, покрытых защитной пленкой, сорт угля практически не влияет на выбор режимов активации и подбор оптимальных режимов. Что, несомненно, является еще одним положительным свойством предлагаемого изобретения.

Способ СВЧ-градиентной активации угольного топлива с использованием защитной пленки путем СВЧ-воздействия на угольное топливо, при котором производят СВЧ-градиентную активацию угольной частицы, отличающийся тем, что поверхность кусков угля покрывают защитной пленкой, которая задерживает выход летучих в течение процесса СВЧ-активации, при этом давление внутри куска угля превышает 10 атмосфер без образования трещин и разрывов в пленке.



 

Похожие патенты:

Изобретение относится к способу активирования угольных частиц в вертикальной осесимметричной кольцевой камере путем порционной загрузки надподового участка предварительно фракционированными по размеру частицами, нагрева, вывода влаги и летучих веществ, а также охлаждения при организованном подъемно-опускном кольцевом циркуляционном движении частиц нагретыми и охлажденными дымовыми газами и паром, вводимыми со стороны потолочного перекрытия осевыми вертикально-опускными потоками, отводом в процессе активирования и сбросом в топку теплопроизводящей установки газообразных продуктов активирования, порционной выгрузки активированных охлажденных частиц из надподового участка, характеризующемуся тем, что циркуляцию частиц в подъемно-опускном кольцевом потоке организуют вводимыми в кольцевую камеру осевыми вертикально-опускными потоками вначале нагретых дымовых газов, затем смеси нагретых дымовых газов и пара, по окончании охлажденных дымовых газов, при этом объем загружаемых порций угольных частиц составляет Vу=(0,1-0,7)Vк объема кольцевой камеры, м3, скорость среды в подъемной ветви циркулирующего кольцевого потока равна wп=(0,1-0,6)w0 скорости осевого вертикально-опускного потока дымовых газов и пара, м/с, а долю кислорода во вводимых осевых вертикально-опускных потоках поддерживают на уровне O2=(0,04-0,16).
Изобретение относится к области утилизации древесно-растительных отходов и торфа и может быть использовано при производстве экологически чистых биотоплив в виде активных брикетов и гранул (пеллет) для промышленных и коммунально-бытовых нужд.

Изобретение относится к технологии подготовки угольного топлива к сжиганию в энергетических котлах. .

Изобретение относится к улучшению качества твердого топлива, используемого для электростанций. .

Изобретение относится к способу деминерализации каменного угля. .

Изобретение относится к бытовым устройствам для приготовления пищи и может найти применение в туризме, охоте, быту, а также при работе в полевых условиях. .

Изобретение относится к технологии производства пылевидного угольного топлива для факельного сжигания. .

Изобретение относится к технологии получения твердого топлива для его сжигания в топочных устройствах, в металлургических процессах, в производстве глинозема, керамзита, извести, цемента, кирпича, работающих с использованием мазута, водоугольных, мазутоугольных суспензий или пылевидного угля.

Изобретение относится к топливоэнергетической промышленности, обеспечивающей работу энергосиловых и ядерных установок, а также к предприятиям военно-промышленного и оружейного комплексов, включающих производство компонентов твердого топлива и взрывчатых веществ.

Изобретение относится к способу подготовки неспекающегося угля с содержанием летучих веществ не более 16%, при котором осуществляют нагрев неспекающегося угля до температуры 200-395°C для разрушения нетермостойких компонентов кусков угля, последующее охлаждение и классификацию. В качестве неспекающегося угля используют антрацит и/или тощий уголь. Охлаждение нагретого угля осуществляют при температуре окружающей среды. Технический результат, достигаемый заявляемым изобретением, - стабилизация гранулометрического состава топлива из неспекающихся углей за счет сохранения термостойких фракций кусков топлива при горении; упрощение способа подготовки неспекающихся углей; повышение теплотворной способности топлива; обеспечение высокой эффективности способа. 4 з.п. ф-лы, 1 ил., 4 табл., 4 пр.

Изобретение относится к способу получения высококачественного кокса путем нанесения бората на раскаленный кокс после выдачи из коксовых печей с температурой 1050±50°C, причем его тушение производят водным раствором боратов с содержанием боратов 3-10 г/дм3 в виде раствора и пульпы в тушильном вагоне под тушильной башней в течение 90-120 сек, при этом в качестве боратов используют тетраборат натрия пентагидрат, буру десятиводную, дисодиум октаборат тетрагидрат. Техническим результатом изобретения является повышение качества доменного кокса по показателю горячей прочности после реакции с CO2 (CSR) и снижение его реакционной способности (CRI). 1 ил., 3 табл.

Изобретения относятся к химической и топливной отраслям промышленности, а также к охране окружающей среды. Сначала сравнивают данные об исходном образце твердого топлива с одной или более требуемых характеристик после обработки. На основе этого сравнения формируют показатель разницы в составе твердого топлива и определяют по меньшей мере один рабочий параметр обработки. Регистрируют показатель загрязняющих веществ, выделенных из твердого топлива в процессе его обработки. По меньшей мере, один параметр обработки регулируют, если зарегистрированный показатель загрязняющих веществ указывает, что одна или более требуемых характеристик не достигнута. По меньшей мере, один рабочий параметр выводят на контроллер и установку управления и определяют одну или более конечных характеристик твердого топлива, которые сравнивают с требуемыми характеристиками, и направляют информацию обратной связи, характеризующую одну или более конечных характеристик, в установку обработки твердого топлива. Изобретения обеспечивают уменьшение вредных выбросов. 2 н. и 14 з.п. ф-лы, 13 ил.

Изобретения могут быть использованы в области переработки бурого угля, в т.ч. высокозольного. Технологическая линия переработки бурого угля содержит реактор нагрева сверхвысоких частот (2), соединенный выходом газообразных продуктов с устройством охлаждения (4), диспергирующее устройство (9), насос (8). Реактор нагрева сверхвысоких частот (2) является устройством полукоксования и выходом твердых веществ соединен с емкостью с водой (7), которая, в свою очередь, соединена с диспергирующим устройством (9), которое, в свою очередь, соединено с как минимум одной осадительно-разделительной колонной (11). Технологическая линия предназначена для реализации способа, включающего обработку бурого угля полукоксованием измельченного бурого угля с утилизацией горючего газа. Полукоксование угля производят в реакторе нагрева сверхвысоких частот (2). Утилизацию горючего газа осуществляют после отделения его от возгонов в устройстве охлаждения (4). Возгоны после их осаждения в устройстве охлаждения (4) используют как концентрат металлов. Уголь после полукоксования смешивают с водой и диспергируют, а диспергированную смесь разделяют на термоуголь и минеральную часть. Изобретения заключаются в наиболее полном комплексном использовании бурого угля с извлечением газа, возгонов и одновременным обогащением термоугля. 2 н. и 5 з.п. ф-лы., 1 ил.
Наверх