Способ получения 2-(2-тиенил)пиррола



Способ получения 2-(2-тиенил)пиррола
Способ получения 2-(2-тиенил)пиррола
Способ получения 2-(2-тиенил)пиррола
Способ получения 2-(2-тиенил)пиррола
Способ получения 2-(2-тиенил)пиррола

 


Владельцы патента RU 2514945:

Федеральное государственное бюджетное учреждение науки Иркутский институт химии им. А.Е. Фаворского Сибирского отделения Российской академии наук (ИрИХ СО РАН) (RU)

Изобретение относится к cпособу получения 2-(2-тиенил)пиррола, который заключается во взаимодействии 2-ацетилтиофена с гидроксиламином, гидроксидом калия и ацетиленом в среде диметилсульфоксида, процесс проводят при атмосферном давлении и температуре 80-120°С в течение 3-5 часов, при мольном соотношении 2-ацетилтиофен:солянокислый гидроксиламин:гидроксид калия, равном 1:1-1.2:2-2.5, используя ацетилен в виде насыщенного раствора в диметилсульфоксиде, а гидроксиламин генерируют непосредственно в реакционной среде из солянокислого гидроксиламина и гидроксида калия. Технический результат: разработан новый селективный способ получения 2-(2-тиенил)пиррола, который является простым и экологически безопасным. 2 з.п. ф-лы, 8 пр.

 

В настоящее время все большее внимание уделяется синтезу производных пиррола и тиофена, полимеры которых обладают пониженным окислительным потенциалом по сравнению с гомополимерами самих пиррола и тиофена [С. Pozo-Gonzalo, J.A. Pomposo, J.A. Alduncin, M. Salsamendi, A.I. Mikhaleva, L.B. Krivdin, B.A. Trofimov Electrochim. Acta, 2007, 52, 4784-4791 (и ссылки в ней)]. В связи с этим особый интерес для получения органических полупроводников с новым улучшенным комплексом электрофизических свойств представляют соединения, содержащие связанные пиррольные и тиофеновые циклы в одной молекуле. Известно, что политиенилпиррольные нанопленки проявляют практически важные электропроводящие и электрохромные свойства [С.Pozo-Gonzalo, J.A. Pomposo, J.A. Alduncin, M. Salsamendi, A.I. Mikhaleva, L.B. Krivdin, B.A. Trofimov Electrochim. Acta, 2007, 52, 4784-4791; С. Pozo-Gonzalo, M. Salsamendi, J.A. Pomposo, H.-J. Grande, E. Yu. Schmidt, Yu. Yu. Rusakov, B.A. Trofimov Macromolecules, 2008, 41, 6886-6894]. Мономеры, относящиеся к классу тиенилпирролов, легко вступают в окислительную поликонденсацию как при химическом, так и при электрохимическом окислении, образуя поли(тиенилпирролы). Такие полимеры способны к дальнейшей сшивке за счет свободных положений пиррольных колец с образованием проводящих сетчатых полимеров с улучшенными механическими свойствами и адгезией по отношению к электродам полимерных аккумуляторов. Таким образом, полимеры тиенилпирролов могут найти применение для получения электропроводящих полимерных слоев с контролируемыми электрофизическими свойствами, в частности как активные компоненты электродов перезаряжаемых полимерных батарей с использованием полианилина или полипиррола как основного полимерного слоя.

Известные методы получения 2-(2-тиенил)пирролов отличаются многостадийностью, требуют применения труднодоступных исходных соединений и, как правило, не обеспечивают высоких выходов целевых соединений [N. Engel; W. Steglich Angew. Chem., 1978, 90, 719-720; J.P. Boukou-Poba, M. Farmer, R. Guilard Tetrahedron Lett., 1979, 19, 1717-1720; S. S. Ghabrial, I. Thomsen, K. B. G. Torssell Acta Chem. Scand., 1987, 41, 426-434; P.G. Aime, P.M. Antonietta, P. Giuseppe J. chem. res. synop, 1993, 6, 210-211; J.Т. Reeves, J.J. Song, Z. Tan, H. Lee, N.K. Yee, С.Н. Senanayake Org. Lett., 2007, 9, 1875-1878]. Самое главное - до сих пор не известно ни одного селективного способа получения самого 2-(2-тиенил)пиррола. Часть известных методов получения тиенилпирролов заключается в построении пиррольного кольца на уже готовом производном тиофена [D.A. Maurizio, D.L. Eliana, M. Giacomo, R. Rocco, S. Giancarlo J. Chem. Soc. Perkin Trans. 1, 1997, 16, 2369-2373].

Кроме того, в качестве исходных часто используются 1,4-дикарбонильные соединения [Н. Steter, W. Haese Chem. Ber., 1984, 777, 682-693; K.A. Hansford, G. S. A. Perez, W.G. Skene, W.D. Lubell J. Org. Chem., 2005, 70, 7996-8000; M. M. M. Raposo, A.M. R.C. Sousa, A. M. C. Fonseca, G. Kirsch Tetrahedron, 2006, 62, 3493-3501].

Вероятно, один из лучших (по выходу) способов получения тиенилпирролов представлен в литературе многостадийным синтезом 1-арил-2-(2-тиенил)пирролов на основе тиофена. Согласно этому способу тиофен на первой стадии ацилируется сукциновым ангидридом с последующей реакцией полученного ацилтиофена с ариламинами в присутствии DCC (1,3-дициклогексилкарбодиимид), с образованием соответствующих амидов, реагирующих далее с реагентом Лавессона (2,4-бис(4-метоксифенил)-1,3,2,4-дитиадифосфетан-2,4-дитион), приводя к смеси 1-арил-2-(2-тиенил)пирролов и 5-ариламино-2,2 с-битиофенов, выход целевых пирролов на последней стадии не превышает 58% [M.M. Raposo, A.M. В.A. Sampaio, G. Kirsch Synthesis, 2005, 0199-0210]. Выход же с учетом всех трех стадий (исходя из взятого в реакцию тиофена) значительно ниже (около 36%).

Реагент толуол, Лавессона кипячение

2-(2-Тиенил)-3-этилпиррол и 3-н-пропил-2-(2-тиенил)пиррол с выходами 37 и 43%, соответственно, были получены из соответствующих ацилтиофенов и ацетилена под давлением в (95-100°С, начальное давление при комнатной температуре 14 атм) [С.Pozo-Gonzalo, M. Salsamendi, J.А. Pomposo, H.-J. Grande, E. Yu. Schmidt, Yu. Yu. Rusakov, B.A. Trofimov Macromolecules, 2008, 41, 6886-6894].

Прототипом настоящего изобретения можно считать синтез тиенилпирролов из ацилтиофенов, которые обрабатываются в отдельном реакторе солянокислым гидроксиламином в присутствии гидрокарбоната натрия в подходящем растворителе с последующим удалением выделяющегося углекислого газа (дополнительная длительная продувка азотом или аргоном). Полученный оксим переносится в другой реактор (автоклав) и после добавления КОН обрабатывается ацетиленом под давлением (14 атм), которое при температуре реакции достигает 20-30 атм [А.И. Михалева, Е.Ю. Шмидт, А.В. Иванов, А.М. Васильцов, Е.Ю. Сенотрусова, Н.И. Процук ЖОрХ, 2007, 43, 236-238, С.Pozo-Gonzalo, М. Salsamendi, J.A. Pomposo, H.-J. Grande, Е. Yu. Schmidt, Yu. Yu. Rusakov, B.A. Trofimov Macromolecules, 2008, 41, 6886-6894].

Этим способом получали 2-(2-тиенил)-3-этилпиррол при температуре 95-100°С (0.5 ч), выход составил 47%. Синтез 1-винил-2-(2-тиенил)пиррола осуществлен при температуре 115-120°С (3 ч), выход 51%. Следует подчеркнуть, что сам незамещенный 2-(2-тиенил)пиррол этим способом синтезирован не был.

Серьезным технологическим недостатком этого способа является обязательное удаление углекислого газа (длительной продувкой азотом или аргоном), выделяющегося при получении оксима. Остаточные количества CO2 понижают каталитическую активность КОН и даже могут замедлить или остановить процесс формирования пиррольного цикла. Однако главный (фундаментальный) недостаток данного способа, состоящий в химизме процесса, - его неселективность: синтез 2-(2-тиенил)NH-пирролов всегда сопровождается их дальнейшим винилированием, что приводит к образованию в той или иной степени N-винил-2-(2-тиенил)пирролов, обычно трудно отделяемых от целевых продуктов.

Целью настоящего изобретения является разработка селективного технологически реального способа получения 2-(2-тиенил)пиррола, при этом предполагалось также устранить указанный технологический недостаток (необходимость удаления углекислого газа при подготовке реакционной массы). Цель достигается проведением реакции 2-ацетилтиофена с гидрохлоридом гидроксиламина и ацетиленом при атмосферном давлении в присутствии гидроксида калия при температуре 80-120°C в течение 3-5 часов, при этом ацетилен используется в виде насыщенного раствора в диметилсульфоксиде, а гидроксиламин генерируют непосредственно в реакционной среде из солянокислого гидроксиламина и гидроксида калия.

Основным элементом новизны предлагаемого изобретения является использование в качестве реагента не газообразного ацетилена, а его насыщенного раствора в диметилсульфоксиде, что позволяет выдерживать оптимальное соотношение концентраций между образующимся кетоксимом и ацетиленом, не допуская избытка последнего, что обычно и является главной причиной нарушения селективности процесса, т.е. образования нежелательного в данном случае N-винилпиррола. Насыщенный раствор ацетилена в диметилсульфоксиде готовится непосредственно в реакторе при комнатной температуре. При этом целесообразно использовать повышенное давление ацетилена (до 16 атм), которое после насыщения диметилсульфоксида ацетиленом сбрасывается до атмосферного, и далее реакция проводится в закрытом аппарате без подачи ацетилена, только за счет ацетилена, растворенного в реакционной смеси. Известно, что ацетилен с диметилсульфоксидом (как в присутствии гидроксидов щелочных металлов, так и без них) образует комплексы как за счет водородных связей, так и за счет переноса своей π-электронной плотности на разрыхляющую S=O орбиталь диметилсульфоксида [Б.А. Трофимов, А.И. Михалева, Е.Ю. Шмидт, Л.Н. Собенина. Химия пиррола. Новые страницы. Новосибирск: Наука, 2012, 384 с.; R. Boese, М.Т. Kirchner, W.Е. Billups, L.R. Norman, Angew. Chem. Int. Ed. 2003, 42, 1961-1963], что вызывает его дополнительную активацию. Поэтому насыщенный раствор ацетилена в диметилсульфоксиде в данном случае выполняет роль направленно активированного ацетиленового реагента, особо чувствительного к атаке нуклеофила, каковым в данном случае является оксимат-анион.

Другим элементом новизны предлагаемого изобретения является то, что 2-ацетилтиофен, гидрохлорид гидроксиламина и гидроксид калия используются, в мольном соотношении 1:1-1.2:2-2.5, что обеспечивает полное превращение 2-ацетилтиофена в оксимат калия, т.е. достигается максимальная концентрация оксимат-анионов в реакционной среде. При этом выделяется два эквивалента воды:

Выделяющаяся в результате этих реакций вода проявляет автоингибирующий эффект по отношению к реакции винилирования образующегося тиенилпиррола [Б.А. Трофимов, А.И. Михалева, Е.Ю. Шмидт, Л.Н. Собенина. Химия пиррола. Новые страницы. Новосибирск: Наука, 2012, 384 с.], что способствует повышению селективности синтеза невинилированного тиенилпиррола.

Принципиально важным для достижения максимально высокой селективности процесса является соблюдение оптимальной концентрации 2-ацетилтиофена в диметилсульфоксиде, что, в конечном счете, и определяет соотношение промежуточно образующегося оксимат-аниона и ацетилена, т.к. количество ацетилена в реакционной смеси определяется в данном случае объемом диметилсульфоксида. Высокая селективность (~90%) при технологически приемлемом выходе (~60% на прореагировавший кетон) и конверсии исходного кетона (~70-80%) достигаются при 5-15%-ной (предпочтительно 10%-ной) концентрации 2-ацетилтиофена в диметилсульфоксиде. При соблюдении указанных условий, которые только в своей совокупности, а не каждое в отдельности, составляют предмет изобретения, в реакционной среде формируется равновесная эволюционирующая каталитическая система, представляющая собой континуум частиц калиевого оксимата 2-ацетилтиофена различной размерности - от молекул, молекулярных кластеров и наночастиц, нанесенных на микрокристаллы образующегося хлорида калия. При этом соотношение каталитических частиц различной размерности и каталитическая активность системы в целом контролируется температурой: при температуре реакции 80-120°C система близка к гомогенной и содержит наибольшее количество молекулярных кластеров и наночастиц, участвующих в реакции, тогда как при охлаждении до комнатной температуры оксимат 2-ацетилтиофена и хлорид калия образуют кристаллический осадок. Таким образом, по элементам новизны предлагаемое изобретение отличается от прототипа на фундаментальном уровне. Полезным эффектом изобретения является достижение высокой селективности (~90%) по целевому продукту. 2-(2-Тиенил)-N-винилпиррол, образующийся соответственно в количестве ~10%, легко отделяющийся от целевого 2-(2-тиенил)пиррола перекристаллизацией из гексана, сам по себе представляет ценный мономер и может найти широкое применение в синтезе органических полупроводниковых материалов.

В целом, изобретение реализуется следующим образом. В 0.5-1.5 М (предпочтительно 0.9-1.0 М) раствор гидрохлорида гидроксиламина в диметилсульфоксиде добавляют 1-1.2 моля полугидрата гидроксида калия КОН·0.5·H2O в расчете на гидрохлорид гидроксиламина, содержащийся в диметилсульфоксиде, и перемешивают смесь при 40-50°C в течение 30-40 мин до полной трансформации гидроксида калия и образования хлорида калия (за счет реакции с солянокислым гидроксиламином). После этого в раствор образовавшегося свободного гидроксиламина в диметилсульфоксиде добавляют 1 моль 2-ацетилтиофена и еще 1 моль гидроксида калия (в расчете на взятый гидрохлорид гидроксиламина), перемешивая смесь при температуре 90°С в течение 30 мин. Полученную смесь насыщают ацетиленом при комнатной температуре под давлением 11-16 атм, давление ацетилена сбрасывается до нуля, реактор герметично закрывается и нагревается при перемешивании (или при вращении, в случае использования вращающегося автоклава) при температуре 80-120°C в течение 3-5 ч. После охлаждения диметилсульфоксид отгоняют (на 80-90%) под вакуумом при температуре куба не выше 80°С. Остаток нейтрализуют водным раствором гидрохлорида аммония и экстрагируют толуолом до исчезновения следов продуктов (контроль ТСХ, силуфол). Толуол отгоняют в вакууме, и остаток перекристаллизовывают из гексана, получая 2-(2-тиенил)пиррол с чистотой, близкой к 100% (ЯМР, ГЖХ). Из маточного раствора обычными приемами выделяют дополнительное количество целевого продукта, небольшие количества N-винил-2-(2-тиенил)пиррола и непрореагировашие 2-ацетилтиофен и его оксим. Суммарная конверсия 2-ацетилтиофена и его оксима составляет 70-80%. Выход чистого 2-(2-тиенил)пиррола находится в пределах 44-70% на вступивший в реакцию 2-ацетилтиофен.

Таким образом, разработан новый высокоселективный способ получения 2-(2-тиенил)пиррола - перспективного мономера для дизайна электропроводящих органических материалов с улучшенными эксплуатационными свойствами, которые могут найти применение в качестве активных компонентов электродов в полимерных перезаряжаемых источниках тока и электрохромных устройствах.

По сравнению с прототипом разработанный способ обладает следующими принципиальными технологическими преимуществами.

1. Позволяет получать с высокой селективностью и технологически приемлемыми выходами и конверсией исходных материалов незамещенный 2-(2-тиенил)пиррол, тогда как в прототипе описаны только 3-алкил-2-тиенилпирролы, которые образуются в смеси с их N-винильными производными.

2. Устраняет из процесса один из компонентов реакционной смеси - гидрокарбонат натрия, использующийся в прототипе.

3. Соответственно не требуется дорогостоящая технологическая операция - удаление из реакционной среды двуокиси углерода путем длительной продувки инертным газом.

4. Дает возможность простой технологической операцией (отгонкой в вакууме) практически полностью регенерировать ценный растворитель (диметилсульфоксид).

5. Способ экологически безопасен: единственными отходами являются небольшие количества хлорида калия и аммиака, которые могут быть использованы как удобрения, т.е. реально стать товарными продуктами.

Следующие неограничивающие примеры иллюстрируют изобретение.

Пример 1

В стальной вращающийся автоклав емкостью 2 литра загружают смесь 30.4 г (0.44 моль) гидрохлорида гидроксиламина, 44.5 г КОН·0.5 H2O (0.68 моль) и 50 г (0.4 моль) 2-ацетилтиофена в диметилсульфоксиде, полученную последовательным растворением в 500 мл диметилсульфоксида указанных количеств гидрохлорида гидроксиламина и гидроксида калия (0.34 моль) при 50°C в течение 30 мин с последующим добавлением 2-ацетилтиофена и дополнительно 22.2 г (0.34 моль) гидроксида калия при нагревании (90°С) и перемешивании (30 мин). Автоклав герметически закрывают и насыщают ацетиленом под давлением 16 атм при комнатной температуре в течение 12 мин. Далее давление ацетилена в автоклаве сбрасывают до атмосферного, автоклав герметически закрывают и нагревают до 110°C при вращении в течение 4 часов.

Из охлажденной до комнатной температуры реакционной смеси отгоняют в вакууме (~1 мм рт.ст.) диметилсульфоксид - 410 мл (82%), следя за тем, чтобы температура куба не превышала 80°C. Остаток нейтрализуют 100 мл водного раствора NH4Cl (36.38 г (0.68 моль) и экстрагируют толуолом (9×40 мл). Толуольный экстракт промывают водой (3×20 мл), отгоняют толуол и получают 55.6 г сырого продукта (состав: 62.1% пиррола, 0.4% кетона, 26.2% оксима, 11.3% винилпиррола), из которого выделяют (перекристаллизацией из н-гексана и колоночной хроматографией маточного раствора) 31.6 г (выход 54% на взятый ацетилтиофен) 2-(2-тиенил)пиррола с чистотой, близкой к 100% (ЯМР, ГЖХ). Кроме того, выделяют 7.6 г оксима ацетилтиофена (экстракцией сырого продукта водной щелочью с последующим подкислением экстракта) и 5.3 г N-винилпиррола.

Выход 2-(2-тиенил)пиррола на вступивший в реакцию 2-ацетилтиофен (с учетом возвращенного его оксима) составляет 62%.

Пример 2

В стальной вращающийся автоклав емкостью 2 литра загружают смесь 30.4 г (0.44 моль) гидрохлорида гидроксиламина, 44.5 г КОН·0.5 H2O (0.68 моль) и 50 г (0.4 моль) 2-ацетилтиофена в диметилсульфоксиде, полученную последовательным растворением в 500 мл диметилсульфоксида указанных количеств гидрохлорида гидроксиламина и гидроксида калия (0.34 моль) при 50°C в течение 30 мин с последующим добавлением 2-ацетилтиофена и дополнительно 22.2 г (0.34 моль) гидроксида калия при нагревании (90°C) и перемешивании (30 мин). Автоклав герметически закрывают и насыщают ацетиленом под давлением 11 атм при комнатной температуре в течение 12 мин. Далее давление ацетилена в автоклаве сбрасывают до атмосферного, автоклав герметически закрывают и нагревают до 110°C при вращении в течение 3 ч.

Из охлажденной до комнатной температуры реакционной смеси отгоняют в вакууме (~2 мм рт.ст.) диметилсульфоксид - 400 мл (80%), следя за тем, чтобы температура куба не превышала 80°C. Остаток нейтрализуют 100 мл водного раствора NH4Cl (21.4 г(0.4 моль) и экстрагируют толуолом (9×40 мл). Толуольный экстракт промывают водой (3×20 мл), отгоняют толуол и получают сырой продукт (состав: 50% пиррола, 15% кетона, 35% оксима, следовые количества винилпиррола), из которого выделяют (перекристаллизацией из н-гексана и колоночной хроматографией маточного раствора) 19.9 г (выход 33% на взятый ацетилтиофен) 2-(2-тиенил)пиррола с чистотой, близкой к 100% (ЯМР, ГЖХ). Кроме того, выделяют 14.7 г оксима ацетилтиофена (экстракцией сырого продукта водной щелочью с последующим подкислением экстракта.

Выход 2-(2-тиенил)пиррола на вступивший в реакцию 2-ацетилтиофен (с учетом возвращенного его оксима) составляет 44%.

Пример 3

В стальной вращающийся автоклав емкостью 2 литра загружают смесь 3074 г (0.44 моль) гидрохлорида гидроксиламина, 44.5 г КОН·0.5 Н2О (0.68 моль) и 50 г (0.4 моль) 2-ацетилтиофена в диметилсульфоксиде, полученную последовательным растворением в 500 мл диметилсульфоксида указанных количеств гидрохлорида гидроксиламина и гидроксида калия (0.34 моль) при 40°C в течение 40 мин с последующим добавлением 2-ацетилтиофена и дополнительно 22.2 г (0.34 моль) гидроксида калия при нагревании (90°C) и перемешивании (30 мин). Автоклав герметически закрывают и насыщают ацетиленом под давлением 14 атм при комнатной температуре в течение 12 мин. Далее давление ацетилена в автоклаве сбрасывают до атмосферного, автоклав герметически закрывают и нагревают до 110°C при вращении в течение 4 часов.

Из охлажденной до комнатной температуры реакционной смеси отгоняют в вакууме (~1 мм рт.ст.) диметилсульфоксид - 450 мл (90%), следя за тем, чтобы температура куба не превышала 80°C. Остаток нейтрализуют 100 мл водного раствора NH4Cl (30.4 г (0.57 моль) и экстрагируют толуолом (10×40 мл). Толуольный экстракт промывают водой (3×20 мл), отгоняют толуол и получают 55.5 г сырого продукта (состав: 64.1% пиррола, 1.7% кетона, 28.1% оксима, 6.1% винилпиррола), из которого выделяют (перекристаллизацией из н-гексана и колоночной хроматографией маточного раствора) 29.3 г (выход 50% на взятый ацетилтиофен) 2-(2-тиенил)пиррола с чистотой, близкой к 100% (ЯМР, ГЖХ). Кроме того, выделяют 10.0 г оксима ацетилтиофена (экстракцией сырого продукта водной щелочью с последующим подкислением экстракта) и 3.0 г N-винилпиррола.

Выход 2-(2-тиенил)пиррола на вступивший в реакцию 2-ацетилтиофен (с учетом возвращенного его оксима) составляет 61%.

Пример 4

В стальной вращающийся автоклав емкостью 2 литра загружают смесь 45.7 г (0.66 моль) гидрохлорида гидроксиламина, 66.7 г КОН·0.5 H2O (1.02 моль) и 75 г (0.6 моль) 2-ацетилтиофена в диметилсульфоксиде, полученную последовательным растворением в 750 мл диметилсульфоксида указанных количеств гидрохлорида гидроксиламина и гидроксида калия (0.51 моль) при 50°C в течение 30 мин с последующим добавлением 2-ацетилтиофена и дополнительно 33.3 г (0.51 моль) гидроксида калия при нагревании (90°С) и перемешивании (30 мин). Автоклав герметически закрывают и насыщают ацетиленом под давлением 16 атм при комнатной температуре в течение 12 мин. Далее давление ацетилена в автоклаве сбрасывают до атмосферного, автоклав герметически закрывают и нагревают до 110°C при вращении в течение 4 часов.

Из охлажденной до комнатной температуры реакционной смеси отгоняют в вакууме (~1 мм рт.ст.) диметилсульфоксид - 670 мл (84%), следя за тем, чтобы температура куба не превышала 80°C. Остаток нейтрализуют 200 мл водного раствора NH4Cl (54.6 г(1.02 моль) и экстрагируют толуолом (9×40 мл). Толуольный экстракт промывают водой (3×20 мл), отгоняют толуол и получают 78.0 г сырого продукта (состав: 64.5% пиррола, 0.7% кетона, 20.4% оксима, 14.4% винилпиррола), из которого выделяют (перекристаллизацией из н-гексана и колоночной хроматографией маточного раствора) 44.3 г (выход 50% на взятый ацетилтиофен) 2-(2-тиенил)пиррола с чистотой, близкой к 100% (ЯМР, ГЖХ). Кроме того, выделяют 12.4 г оксима ацетилтиофена (экстракцией сырого продукта водной щелочью с последующим подкислением экстракта) и 10.2 г N-винилпиррола.

Выход 2-(2-тиенил)пиррола на вступивший в реакцию 2-ацетилтиофен (с учетом возвращенного его оксима) составляет 60%.

Пример 5

В стальной вращающийся автоклав емкостью 2 литра загружают смесь 30.4 г (0.44 моль) гидрохлорида гидроксиламина, 44.5 г КОН·0.5 H2O (0.68 моль) и 50 г (0.4 моль) 2-ацетилтиофена в диметилсульфоксиде, полученную последовательным растворением в 500 мл диметилсульфоксида указанных количеств гидрохлорида гидроксиламина и гидроксида калия (0.34 моль) при 50°C в течение 30 мин с последующим добавлением 2-ацетилтиофена и дополнительно 22.2 г (0.34 моль) гидроксида калия при нагревании (90°C) и перемешивании (30 мин). Автоклав герметически закрывают и насыщают ацетиленом под давлением 11 атм при комнатной температуре в течение 15 мин. Далее давление ацетилена в автоклаве сбрасывают до атмосферного, автоклав герметически закрывают и нагревают до 120°C при вращении в течение 4 часов.

Из охлажденной до комнатной температуры реакционной смеси отгоняют в вакууме (~1 мм рт.ст.) диметилсульфоксид - 440 мл (88%), следя за тем, чтобы температура куба не превышала 80°C. Остаток нейтрализуют 100 мл водного раствора NH4Cl (36.38 г (0.68 моль) и экстрагируют толуолом (8×40 мл). Толуольный экстракт промывают водой (3×20 мл), отгоняют толуол и получают 69.6 г сырого продукта (состав: 63.9% пиррола, следовые количества кетона, 18.3% оксима, 17.8% винилпиррола), из которого выделяют (перекристаллизацией из н-гексана и колоночной хроматографией маточного раствора) 28.0 г (выход 47% на взятый ацетилтиофен) 2-(2-тиенил)пиррола с чистотой, близкой к 100% (ЯМР, ГЖХ). Кроме того, выделяют 11.5 г оксима ацетилтиофена (экстракцией сырого продукта водной щелочью с последующим подкислением экстракта) и 9.3 г N-винилпиррола.

Выход 2-(2-тиенил)пиррола на вступивший в реакцию 2-ацетилтиофен (с учетом возвращенного его оксима) составляет 59%.

Пример 6

В стальной вращающийся автоклав емкостью 2 литра загружают смесь 30,4 г (0.44 моль) гидрохлорида гидроксиламина, 44.5 г КОН·0.5 Н2О (0.68 моль) и 50 г (0.4 моль) 2-ацетилтиофена в диметилсульфоксиде, полученную последовательным растворением в 500 мл диметилсульфоксида указанных количеств гидрохлорида гидроксиламина и гидроксида калия (0.34 моль) при 50°C в течение 30 мин с последующим добавлением 2-ацетилтиофена и дополнительно 22.2 г (0.34 моль) гидроксида калия при нагревании (90°C) и перемешивании (30 мин). Автоклав герметически закрывают и насыщают ацетиленом под давлением 16 атм при комнатной температуре в течение 11 мин. Далее давление ацетилена в автоклаве сбрасывают до атмосферного, автоклав герметически закрывают и нагревают до 90°C при вращении втечение 5 часов.

Из охлажденной до комнатной температуры реакционной смеси отгоняют в вакууме (~2 мм рт.ст.) диметилсульфоксид - 435 мл (87%), следя за тем, чтобы температура куба не превышала 80°C. Остаток нейтрализуют 100 мл водного раствора NH4Cl (36.38 г (0.68 моль) и экстрагируют толуолом (9×40 мл). Толуольный экстракт промывают водой (3×20 мл), отгоняют толуол и получают 57.5 г сырого продукта (состав: 65.7% пиррола, 7.3% кетона, 27.0% оксима), из которого выделяют (перекристаллизацией из н-гексана и колоночной хроматографией маточного раствора) 35.2 г (выход 59% на взятый ацетилтиофен) 2-(2-тиенил)пиррола с чистотой, близкой к 100% (ЯМР, ГЖХ). Кроме того, выделяют 9.3 г оксима ацетилтиофена (экстракцией сырого продукта водной щелочью с последующим подкислением экстракта).

Выход 2-(2-тиенил)пиррола на вступивший в реакцию 2-ацетилтиофен (с учетом возвращенного его оксима) составляет 70%.

Пример 7

В стальной вращающийся автоклав емкостью 2 литра загружают смесь 30.4 г (0.44 моль) гидрохлорида гидроксиламина, 44.5 г КОН·0.5 H2O (0.68 моль) и 50 г (0.4 моль) 2-ацетилтиофена в диметилсульфоксиде, полученную последовательным растворением в 400 мл диметилсульфоксида указанных количеств гидрохлорида гидроксиламина и гидроксида калия (0.34 моль) при 50°C в течение 30 мин с последующим добавлением 2-ацетилтиофена и дополнительно 22.2 г (0.34 моль) гидроксида калия при нагревании (90°C) и перемешивании (30 мин). Автоклав герметически закрывают и насыщают ацетиленом под давлением 16 атм при комнатной температуре в течение 12 мин. Далее давление ацетилена в автоклаве сбрасывают до атмосферного, автоклав герметически закрывают и нагревают до 110°C при вращении в течение 3 часов.

Из охлажденной до комнатной температуры реакционной смеси отгоняют в вакууме (~1 мм рт.ст.) диметилсульфоксид - 440 мл (88%), следя за тем, чтобы температура куба не превышала 80°C. Остаток нейтрализуют 100 мл водного раствора NH4Cl (36.38 г (0.68 моль) и экстрагируют толуолом (8×40 мл). Толуольный экстракт промывают водой (3×20 мл), отгоняют толуол и получают 69.6 г сырого продукта (состав: 63.9% пиррола, следовые количества кетона, 18.3% оксима, 17.8% винилпиррола), из которого выделяют (перекристаллизацией из н-гексана и колоночной хроматографией маточного раствора) 28.0 г (выход 47% на взятый ацетилтиофен) 2-(2-тиенил)пиррола с чистотой, близкой к 100% (ЯМР, ГЖХ). Кроме того, выделяют 11.5 г оксима ацетилтиофена (экстракцией сырого продукта водной щелочью с последующим подкислением экстракта) и 9.3 г N-винилпиррола.

Выход 2-(2-тиенил)пиррола на вступивший в реакцию 2-ацетилтиофен (с учетом возвращенного его оксима) составляет 59%.

Пример 6

В стальной вращающийся автоклав емкостью 2 литра загружают смесь 30,4 г (0.44 моль) гидрохлорида гидроксиламина, 44.5 г КОН·0.5 Н2О (0.68 моль) и 50 г (0.4 моль) 2-ацетилтиофена в диметилсульфоксиде, полученную последовательным растворением в 500 мл диметилсульфоксида указанных количеств гидрохлорида гидроксиламина и гидроксида калия (0.34 моль) при 50°C в течение 30 мин с последующим добавлением 2-ацетилтиофена и дополнительно 22.2 г (0.34 моль) гидроксида калия при нагревании (90°C) и перемешивании (30 мин). Автоклав герметически закрывают и насыщают ацетиленом под давлением 16 атм при комнатной температуре в течение 11 мин. Далее давление ацетилена в автоклаве сбрасывают до атмосферного, автоклав герметически закрывают и нагревают до 90°C при вращении в течение 5 часов.

Из охлажденной до комнатной температуры реакционной смеси отгоняют в вакууме (~2 мм рт.ст.) диметилсульфоксид - 435 мл (87%), следя за тем, чтобы температура куба не превышала 80°C. Остаток нейтрализуют 100 мл водного раствора NH4Cl (36.38 г (0.68 моль) и экстрагируют толуолом (9×40 мл). Толуольный экстракт промывают водой (3×20 мл), отгоняют толуол и получают 57.5 г сырого продукта (состав: 65.7% пиррола, 7.3% кетона, 27.0% оксима), из которого выделяют (перекристаллизацией из н-гексана и колоночной хроматографией маточного раствора) 35.2 г (выход 59% на взятый ацетилтиофен) 2-(2-тиенил)пиррола с чистотой, близкой к 100% (ЯМР, ГЖХ). Кроме того, выделяют 9.3 г оксима ацетилтиофена (экстракцией сырого продукта водной щелочью с последующим подкислением экстракта).

Выход 2-(2-тиенил)пиррола на вступивший в реакцию 2-ацетилтиофен (с учетом возвращенного его оксима) составляет 70%.

Пример 7

В стальной вращающийся автоклав емкостью 2 литра загружают смесь 30.4 г (0.44 моль) гидрохлорида гидроксиламина, 44.5 г КОН·0.5 H2O (0.68 моль) и 50 г (0.4 моль) 2-ацетилтиофена в диметилсульфоксиде, полученную последовательным растворением в 400 мл диметилсульфоксида указанных количеств гидрохлорида гидроксиламина и гидроксида калия (0.34 моль) при 50°C в течение 30 мин с последующим добавлением 2-ацетилтиофена и дополнительно 22.2 г (0.34 моль) гидроксида калия при нагревании (90°C) и перемешивании (30 мин). Автоклав герметически закрывают и насыщают ацетиленом под давлением 16 атм при комнатной температуре в течение 12 мин. Далее давление ацетилена в автоклаве сбрасывают до атмосферного, автоклав герметически закрывают и нагревают до 110°C при вращении в течение 3 часов.

Из охлажденной до комнатной температуры реакционной смеси отгоняют в вакууме (~1 мм рт.ст.) диметилсульфоксид - 340 мл (85%), следя за тем, чтобы температура куба не превышала 80°C. Остаток нейтрализуют 100 мл водного раствора NH4Cl (36.38 г (0.68 моль) и экстрагируют толуолом (9×40 мл). Толуольный экстракт промывают водой (3×20 мл), отгоняют толуол и получают 58.8 г сырого продукта (состав: 61.5% пиррола, 1.1% кетона, 20.9% оксима, 16.5% винилпиррола), из которого выделяют (перекристаллизацией из н-гексана и колоночной хроматографией маточного раствора) 29.8 г (выход 50% на взятый ацетилтиофен) 2-(2-тиенил)пиррола с чистотой, близкой к 100% (ЯМР, ГЖХ). Кроме того, выделяют 8.5 г оксима ацетилтиофена (экстракцией сырого продукта водной щелочью с последующим подкислением экстракта) и 7.1 г N-винилпиррола.

Выход 2-(2-тиенил)пиррола на вступивший в реакцию 2-ацетилтиофен (с учетом возвращенного его оксима) составляет 59%.

Пример 8

В стальной вращающийся автоклав емкостью 2 литра загружают смесь 30.4 г (0.44 моль) гидрохлорида гидроксиламина, 65.0 г КОН·0.5 Н2О (1.0 моль) и 50 г (0.4 моль) 2-ацетилтиофена в диметилсульфоксиде, полученную последовательным растворением в 500 мл диметилсульфоксида указанных количеств гидрохлорида гидроксиламина и гидроксида калия (0.5 моль) при 50°C в течение 30 мин с последующим добавлением 2-ацетилтиофена и дополнительно 32.5 г (0.5 моль) гидроксида калия при нагревании (90°C) и перемешивании (30 мин). Автоклав герметически закрывают и насыщают ацетиленом под давлением 14 атм при комнатной температуре в течение 12 мин. Далее давление ацетилена в автоклаве сбрасывают до атмосферного, автоклав герметически закрывают и нагревают до 100°C при вращении в течение 4 часов.

Из охлажденной до комнатной температуры реакционной смеси отгоняют в вакууме (~1 мм рт.ст.) диметилсульфоксид - 450 мл (90%), следя за тем, чтобы температура куба не превышала 80°C. Остаток нейтрализуют 100 мл водного раствора NH4Cl (53.49 г (1.0 моль) и экстрагируют толуолом (9×40 мл). Толуольный экстракт промывают водой (3×20 мл), отгоняют толуол и получают 60.0 г сырого продукта (состав: 59.2% пиррола, 8.4% кетона, 18.8% оксима, 13.6% винилпиррола), из которого выделяют (перекристаллизацией из н-гексана и колоночной хроматографией маточного раствора) 29.2 г (выход 49% на взятый ацетилтиофен) 2-(2-тиенил)пиррола с чистотой, близкой к 100% (ЯМР, ГЖХ). Кроме того, выделяют 6.9 г оксима ацетилтиофена (экстракцией сырого продукта водной щелочью с последующим подкислением экстракта) и 6.0 г N-винилпиррола.

Выход 2-(2-тиенил)пиррола на вступивший в реакцию 2-ацетилтиофен (с учетом возвращенного его оксима) составляет 56%.

1. Способ получения 2-(2-тиенилпиррола) взаимодействием 2-ацетилтиофена с гидроксиламином, гидроксидом калия и ацетиленом в среде диметилсульфоксида, отличающийся тем, что процесс проводят при атмосферном давлении и температуре 80-120°С в течение 3-5 часов, при мольном соотношении 2-ацетилтиофен:солянокислый гидроксиламин:гидроксид калия, равном 1:1-1,2:2-2,5, используя ацетилен в виде насыщенного раствора в диметилсульфоксиде, а гидроксиламин генерируют непосредственно в реакционной среде из солянокислого гидроксиламина и гидроксида калия.

2. Способ по п.1, отличающийся тем, что насыщенный раствор ацетилена в диметилсульфоксиде получают при комнатной температуре под давлением 11-16 атм непосредственно в реакционном аппарате.

3. Способ по п.1, отличающийся тем, что целевой продукт выделяют после отгонки 80-90% диметилсульфоксида, с последующей нейтрализацией реакционной смеси гидрохлоридом аммония или CO2, экстракцией разбавленного водой остатка толуолом и перекристаллизацией целевого продукта из гексана.



 

Похожие патенты:

Изобретение относится к новым пираниларилметилбензохиназолиноновым соединениям формулы (I), которые являются положительными аллостерическими модуляторами рецептора M1 и которые применимы для лечения заболеваний, в которых задействован рецептор M1, таких как болезнь Альцгеймера, шизофрения, болевые расстройства или нарушения сна.

Изобретение относится к замещенным пирролидин-2-карбоксамидам формулы или их фармацевтически приемлемым солям, где значения X, Y, R1, R2, R3, R4, R5, R6 и R7 приведены в пункте 1 формулы.

Настоящее изобретение относится к области органической химии, а именно к соединению формулы (1) или его соли, где D1 - одинарная связь, -N(R11)- или -О-, где R11 - атом водорода или С1-С3 алкил; А1 - С2-С4 алкилен, или любую из двухвалентных групп, выбранных из следующих формул (1a-1)-(1а-3), (1а-5) и (1а-6), где n1 - целое число 0 или 1; n2 - целое число 2 или 3; n3 - целое число 1 или 2; R12 и R13 каждый независимо обозначает атом водорода или C1-C3 алкил; v - связь с D1; и w - связь с D2; D2 - одинарная связь, C1-C3 алкилен, -C(O)-, S(O)2-, -C(O)-N(R15)-, или -Е-С(O)-, где E - C1-C3 алкилен, а R15 - атом водорода; R1 - атом водорода, C1-C6 алкил, насыщенную гетероциклическую группу, которая может быть замещена C1-C6 алкильными группами, ароматическое углеводородное кольцо, которое может быть замещено C1-C3 алкильными группами, C1-C4 алкоксигруппами, атомами галогена, цианогруппами, моноциклическое ароматическое гетероциклическое кольцо, содержащее один или два гетероатома, выбранных из группы, состоящей из атома азота, атома серы и атома кислорода, или следующую формулу (1b-3), где n1 - целое число 0, 1 или 2; m2 - целое число 1 или 2; D12 - одинарная связь, -С(О)- или -S(O)2-; R18 и R19 - атом водорода; R17 - атом водорода или C1-C3 алкил; и х - связь с D2, при условии, что когда R17 обозначает атом водорода, D12 обозначает одинарную связь; при условии, что когда D1 обозначает одинарную связь, А1 обозначает двухвалентную группу, представленную вышеуказанной формулой (1a-5) или (1a-6); когда D1 обозначает -N(R11)-, -O-, или -S(O)2-, A1 обозначает одинарную связь, C2-C4 алкилен, или любую из двухвалентных групп, выбранных из формул (1a-1)-(1a-3), где, когда А1 обозначает одинарную связь, D2 обозначает -Е-C(О)-; и D3 - одинарная связь, -N(R21)-, -N(R21)-C(O)- или -S-, где R21 - атом водорода; и R2 обозначает следующую формулу (2a-1), где Q обозначает ароматическое углеводородное кольцо, моноциклическое ароматическое гетероциклическое кольцо, содержащее один или два гетероатома, выбранных из группы, состоящей из атома азота, атома серы и атома кислорода, конденсированное полициклическое ароматическое кольцо, содержащее один или два гетероатома, выбранных из группы, состоящей из атома азота, атома серы и атома кислорода, или частично ненасыщенное моноциклическое или конденсированное бициклическое углеродное кольцо и гетероциклическое кольцо; и у обозначает связь с D3; и R23, R24 и R25 каждый независимо обозначает атом водорода, атом галогена, цианогруппу, С1-С3 алкил, который может быть замещен гидроксильными группами, атомами галогена, или цианогруппами, С1-С4 алкоксигруппу, которая может быть замещена атомами галогена, алкиламиногруппу, диалкиламиногруппу.

Изобретение относится к новым производным пиррола формулы (1): или его фармацевтически приемлемым солям, где: R1 означает Н, галоген; R2 означает 8-10-членную бициклическую углеводородную группу, при необходимости замещенную, или бициклическую гетероциклическую группу, состоящую из одного или двух атомов, выбранных из азота, кислорода и серы, и из 5-9 атомов углерода, при необходимости замещенную, где возможный заместитель означает галоген, низший алкил, ОН, низший алкокси, оксо, NO2, CN; R3 означает Н.

Изобретение относится к новым пиррольным соединениям формулы I или его фармацевтически приемлемым солям: где Ar означает фенил, тиофенил; R1 означает имидазолил, имидазолил замещенный С1-С6алкилом, хлор, бром, фтор, гидроксигруппу, метоксигруппу; R2 означает Н, СН3, Cl, F, ОН, ОСН3, ОС2Н5, пропоксигруппу, карбамоил, диметиламиногруппу, NH2, формамидогруппу, CF3; X означает СО и SO2.

Настоящее изобретение относится к области органической химии, а именно к новым производным фенилимидазола общей формулы (1), где R1 представляет собой атом водорода, фенил-низшую алкильную группу или пиридил-низшую алкильную группу, причем бензольное кольцо и пиридиновое кольцо необязательно замещены 1 или 2 заместителями, выбранными из группы, состоящей из атомов галогена, цианогруппы и галогензамещенных низших алкильных групп; один из R2 и R3 представляет собой атом водорода, а другой представляет собой низшую алкоксигруппу; R4 представляет собой низшую алкильную группу, фурильную группу, тиенильную группу или фенильную группу, необязательно замещенную 1 или 2 заместителями, выбранными из группы, состоящей из низших алкильных групп, низших алкоксигрупп, атомов галогена, карбоксильной группы, низших алкоксикарбонильных групп и галогензамещенных низших алкильных групп; R5 и R6 являются одинаковыми или разными и представляют собой атом водорода или низшую алкильную группу; R7 и R8 являются одинаковыми или разными и представляют собой атом водорода или низшую алкоксигруппу; при условии, что если R1 представляет собой незамещенную фенил-низшую алкильную группу, R2 представляет собой низшую алкоксигруппу, R3 представляет собой атом водорода, R4 представляет собой незамещенную фенильную группу или фенильную группу, содержащую 1 или 2 галогензамещенные низшие алкильные группы, и R5 представляет собой атом водорода, то R6 не является атомом водорода.

Настоящее изобретение относится к соединениям, являющимся ингибиторами аспартильных протеаз, пригодным для лечения сердечно-сосудистых, нейродегенеративных заболеваний и грибковых инфекций, формулы где W представляет собой -C(=O)-; X представляет собой -NH-; U представляет собой -C(R6)(R7)-; R1 представляет собой метил; R2, R3 и R6 представляют собой H; R4 и R7 представляют собой необязательно замещенный фенил, а также их таутомерам и фармацевтически приемлемым солям.

Изобретение относится к соединению формулы (I): или к его фармацевтически приемлемому сложному эфиру, амиду, карбамату, сольвату или соли, включая соль такого сложного эфира, амида или карбамата и сольват такого сложного эфира, амида, карбамата или соли, где значения R 1, R2, R3, R4, R5 и R6 приведены в пункте формулы, за исключением: 4-[3-(4,5-Дигидро-1Н-имидазол-2-ил)-2-(3,5-диметилизоксазол-4-ил)индол-1-ил]фенола; 1-(4-Гидроксифенил)-2-(4-метилимидазол-1-ил)-1Н-индол-3-карбонитрила; 1-(4-Гидроксифенил)-2-(1Н-пиразол-3-ил)-1Н-индол-3-карбонитрила; 1-(3-Хлор-4-гидроксифенил)-2-(1-метил-1Н-пиразол-4-ил)-1Н-индол-3-карбонитрила; 1-(4-Гидроксифенил)-2-проп-1-инил-1Н-индол-3-карбоновой кислоты амид; 1-(4-Гидроксифенил)-2-тиазол-2-ил-1Н-индол-3-карбоновую кислоту.

Изобретение относится к соединениям формулы (I), где V выбирают из -О- или простой связи; W выбирают из -N(R5 )C(O)-, -S(O)t- и -С(O)O-; Х выбирают из С(Н) или N; Y выбирают из S, N(H) или N(CH3); р обозначает 0 или 2; t обозначает 1 или 2; R1 выбирают из группы, включающей водород, C1-6алкил, который необязательно замещен 1 или 2 галогруппами, С3-7циклоалкилС 1-6алкил, 2,3-дигидро-1H-инденил, С6арС 1-6алкил, который необязательно замещен одной или двумя галогруппами, и гетероарилС1-6алкил, где гетероарильный фрагмент гетероарилалкильной группы обозначает 5-6-членный моноциклический гетероарил, содержащий 1 или 2 гетероатома, независимо выбранных из группы, включающей азот, который необязательно окислен, кислород и серу, или гетероарильный фрагмент гетероарилалкильной группы обозначает 9-членный бициклический гетероарил, содержащий 1 или 2 гетероатома, независимо выбранных из группы, включающей азот, кислород и серу, где моноциклический гетероарил гетероарилалкильной группы может быть необязательно замещен одним или двумя заместителями, независимо выбранными из группы, включающей галогруппу, цианогруппу, C1-6алкил, галоС1-6алкил и C1-6 алкил-O-С(O)-; R2 выбирают из группы, включающей водород, C1-6алкил, который необязательно замещен фенокси, гидрокси C1-6алкил, С3-7циклоалкил, С 3-7циклоалкилС1-6алкил, фенил, который необязательно замещен галогруппой, галоС1-6алкил, С6арС 1-6алкил (который необязательно замещен галогруппой, галоС 1-6алкилом или галоС1-6алкоксигруппой), 2-оксоимидазолидинил, гетероциклилС1-6алкил и гетероарилС1-6алкил, где гетероциклил гетероциклилалкила обозначает 5- или 6-членный моноцикл, содержащий кислород, и где гетероарильный фрагмент гетероарилалкильной группы обозначает 5-6-членный моноцикл, содержащий от 1 до 3 гетероатомов, выбранных из группы, включающей азот, кислород и серу, или гетероарильный фрагмент гетероарилалкильной группы обозначает 9- или 10-членный бицикл, содержащий от 1 до 2 гетероатомов, выбранных из группы, включающей азот и серу, где моноциклический гетероарил гетероарилалкильной группы может быть необязательно замещен 1 или 2 заместителями, независимо выбранными из группы, включающей галогруппу, C1-6алкил, галоС1-6алкил и фенил, который необязательно замещен галогруппой; R3 выбирают из группы, включающей водород и алкил; две соседние R4 группы, вместе с атомами углерода, к которым они присоединены, могут образовать фенил; R5 обозначает водород; или его фармацевтически приемлемая соль.

Изобретение относится к 5-членным гетероциклическим соединениям общей формулы (I), их пролекарствам или фармацевтически приемлемым солям, обладающим ингибирующей ксантиноксидазу активностью. В формуле (I) T представляет собой нитро, циано или трифторметил; J представляет собой кольцо фенила или гетероарила, где гетероарил представляет собой 6-членную ароматическую гетероциклическую группу, имеющую один гетероатом, выбранный из азота, или 5-членную ароматическую гетероциклическую группу, имеющую один гетероатом, выбранный из кислорода; Q представляет собой карбокси, низший алкоксикарбонил, карбамоил или 5-тетразолил; X1 и X2 независимо представляют собой CR2 или N, при условии, что оба из X1 и X2 одновременно не представляют собой N и, когда присутствуют два R2, эти R2 необязательно являются одинаковыми или отличными друг от друга; R2 представляет собой атом водорода или низший алкил; Y представляет собой атом водорода, гидрокси, амино, атом галогена, перфтор(низший алкил), низший алкил, низший алкокси, необязательно замещенный низшим алкокси; нитро, (низший алкил)карбониламино или (низший алкил)сульфониламино; R1 представляет собой перфтор(низший алкил), -AA, -A-D-L-M или -A-D-E-G-L-M (значения AA, A, D, E, G, L, M приведены в п.1 формулы изобретения). Изобретение относится также к ингибитору ксантиноксидазы и фармацевтической композиции, которые содержат соединение формулы (I). 3 н. и 24 з.п. ф-лы, 94 табл., 553 пр.

Изобретение относится к сельскому хозяйству. Пестицидная композиция содержит: соединение, имеющее следующую формулу (I): где X представляет собой NO2, CN или COOR4; L представляет собой одинарную связь или R1, S и L, взятые вместе, представляют собой 4-, 5- или 6-членное кольцо; R1 представляет собой (C1-C4)алкил; R2 представляет собой метил, этил, фтор, хлор или бром, и R3 представляет собой водород; n равно 1, когда L представляет собой одинарную связь, или равно 0, когда R1, S и L, взятые вместе, представляют собой 4-, 5- или 6-членное кольцо; Y представляет собой (C1-C4)галогеналкил, F, Cl, Br или I; и R4 представляет собой (C1-C3)алкил; и органическую кислоту или ее соль. Композицию применяют для борьбы с насекомыми. Изобретение позволяет повысить стабильность композиции. 4 н. и 11 з.п. ф-лы, 10 пр., 5 табл.

Изобретение относится к сельскому хозяйству. Осуществляютполучение инсектицидной композиции, имеющей первое соотношение стереоизомеров соединения, имеющего следующую структуру: и нагревание композиции в течение 4-72 часов при температуре 23-70°С с получением второго, иного соотношения стереоизомеров. Изобретение позволяет повысить стабильность композиции. 3 н. и 9 з.п. ф-лы, 3 табл., 9 пр.

Изобретение относится к органической и фармацевтической химии, а именно к способу получения калиевой соли 2-[1-(1,1-диоксотиетанил-3)бензимидазолил-2-тио]уксусной кислоты. Сначала синтезируют o-фенилендиамина (o-ФДА) дигидрохлорид растворением o-ФДА в растворе хлороводородной кислоты, фильтрацией полученного раствора и выпариванием под вакуумом до сухого остатка, который высушивают при 105-110°C; затем сухой дигидрохлорид o-ФДА смешивают с мочевиной, полученную смесь нагревают на парафиновой бане до 150°C, полученный сплав охлаждают, измельчают и растворяют в теплом разбавленном растворе едкого натра, фильтруют, к фильтрату прибавляют раствор хлороводородной кислоты до нейтральной реакции, а выпавший бензимидазолон-2 отфильтровывают, очищают перекристаллизацией из этанола; после этого к бензимидазол-2-ону приливают хлорокись фосфора, добавляют концентрированную хлороводородную кислоту, нагревают при температуре 145-150°C в течение 4 ч, после охлаждения смесь перемешивают и выливают на лед, реакционную смесь отфильтровывают, а фильтрат нейтрализуют 10% раствором аммиака до pH 7-8, выпавший осадок 2-хлорбензимидазола фильтруют, сушат при температуре 60°C, проводят перекристаллизацию из смеси этанол-вода 1:1; проводят синтез 2-хлорметилтиирана, для чего смешивают эпихлоргидрин и этанол, охлаждают до 0°C, добавляют измельченную тиомочевину, перемешивают в течение 60 минут при температуре 0-5°C, затем медленно повышают температуру до 20°C в течение 60 минут и перемешивают при данной температуре в течение 3 ч, фильтруют, фильтрат тремя порциями выливают в делительную воронку, содержащую 3 литра воды, органический слой собирают, отмывают водой, фильтруют, фильтрат сушат, добавляя безводный кальция хлорид, фильтруют и перегоняют под вакуумом. Далее проводят синтез 1-(тиетанил-3)-2-хлорбензимидазола, для чего к водному раствору калия гидроксида добавляют 2-хлорбензимидазол, нагревают до 70°C и добавляют 2-хлорметилтииран, реакционную смесь перемешивают при этой температуре до pH≤7, выпавший осадок отфильтровывают, промывают диэтиловым эфиром, 10% раствором калия гидроксида, водой, сушат, очищают кристаллизацией из смеси этанол-вода 1:1, органический и водный слои фильтрата делят, к водному раствору добавляют раствор хлористоводородной кислоты до pH 5-6, выпавший осадок отфильтровывают, промывают водой, сушат. Затем для получения 2-[1-(1,1-диоксотиетанил-3)бензимидазолил-2-тио]уксусной кислоты используют раствор тиогликолевой кислоты, раствор калия гидроксида в дистиллированной воде, кипятят в течение 30 минут, охлаждают до комнатной температуры, после чего раствор фильтруют, фильтрат подкисляют раствором хлороводородной кислоты до pH 3-4, осадок отфильтровывают, промывают водой, сушат. Для получения конечного продукта к раствору 2-[1-(1,1-диоксотиетанил-3)бензимидазолил-2-тио]уксусной кислоты в этаноле добавляют калия гидроксид, кипятят смесь в течение 45 минут, охлаждают, выпавший осадок отфильтровывают, сушат. Технический результат: разработан новый способ получения калиевой соли 2-[1-(1,1-диоксотиетанил-3)бензимидазолил-2-тио]уксусной кислоты, в результате которого повышается выход конечного продукта, сокращается время и затраты для его получения. 1 пр.

Изобретение относится к соединениям формул I, II, III, IV, V, VIII или к их фармацевтически приемлемым солям: (I) (III) (VIII) (II) (IV)(V) где: Z представляет собой , или фенил; D представляет собой или ; X представляет собой N(R9), O, S, S(=O) или S(O)2; каждый Y независимо представляет собой O или S; G представляет собой или ; другие значения радикалов описаны в формуле изобретения. Изобретение также относится к фармацевтическим композициям на основе указанных соединений. Технический результат: получены новые соединения и композиции на их основе, которые могут найти применение для лечения малярии или уничтожения или ингибирования роста видов Plasmodium. 25 н. и 5 з.п. ф-лы, 3 табл., 23 пр.

Изобретение относится к способу получения хиральных гетероциклических лигандов на основе 1,2-диаминоциклогексана, содержащих гетероциклические фрагменты: тиенил-2-, тиенил-3-, фурил-2-, 5-метилфурил-2-, (2,2'-битиофен)-5-ил-, 5-(4'-метилциклогекс-1'-ен-1'-ил)тиофен-2-, которые могут входить в структуру комплексов для проведения энантиоселективных реакций и асимметрического катализа, а также обладать люминесцентными свойствами. Упрощение технологического процесса достигается за счет использования доступных реагентов, использование приемлемого мольного соотношения реагентов, значительного сокращения общего времени проведения реакции, уменьшение стоимости производства достигается за счет упрощения схемы реактора и времени проведения реакции. 2 пр.

Предлагаемое изобретение относится к новому 6-метил-1-(1-оксотиетан-3-ил)урацилу в виде смеси цис- и транс-изомеров в мольном соотношении 10:1. Соединение проявляет гипотензивную активность и соответствует общей формуле 1 з.п. ф-лы, 2 табл., 4 пр.

Изобретение относится к органической химии, а именно к производным 2-бром-1-(тиетанил-3)имидазол-4,5-дикарбоновой кислоты формул Ia, b, где R представляет собой СООK (Ia) или Технический результат: получены новые гетероциклические соединения, обладающие антидепрессивной активностью. 3 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к органической химии, а именно к смеси E- и Z-изомеров (4-бромфенил)этилиденгидразида 2-[6-метил-1-(тиетан-3-ил)урацил-3-ил]уксусной кислоты в мольном соотношении 3,5:1 общей формулы: . Технический результат: получена новая смесь изомеров, проявляющих гипотензивную активность. 1 з.п. ф-лы, 4 табл., 4 пр.

Изобретение относится к области органической химии, а именно к новым производным хинолин-4-она формулы (1) или к его фармацевтически приемлемой соли, где R1 представляет собой: (1) водород, (2) С1-С6 алкил, (35) карбамоил-С1-С6 алкил, необязательно содержащий морфолинил-С1-С6 алкил, или (36) фосфонокси-С1-С6 алкил, необязательно содержащий одну или две С1-С6 алкильные группы на фосфоноокси группе; R2 представляет собой: (1) водород или (2) С1-С6 алкил; R3 представляет собой фенил, тиенил или фурил, где фенильное кольцо, представленное R3, может быть замещено одной С1-С6 алкоксигруппой; R4 и R5 связаны с образованием группы, представленной любой из следующих формул: ,,,,,, или группы, представленной следующей формулой: группы, необязательно содержащей один или более заместителей, выбранных из группы, состоящей из С1-С6 алкильных групп и оксогрупп; R6 представляет собой водород; и R7 представляет собой С1-С6 алкоксигруппу. Также изобретение относится к фармацевтической композиции на основе соединения формулы (1), профилактическому и/или терапевтическому средству на основе соединения формулы (1), применению соединения формулы (1), способу получения соединения формулы (1b), а также к конкретным соединениям. Технический результат: получены новые производные хинолин-4-она, полезные при лечении нейродегенеративных заболеваний, заболеваний, вызванных неврологической дисфункцией, или заболеваний, вызванных нарушением функции митохондрий. 12 н. и 6 з.п. ф-лы, 1 табл., 257 пр. ,
Наверх