Сферическая гидроакустическая антенна



Сферическая гидроакустическая антенна
Сферическая гидроакустическая антенна
Сферическая гидроакустическая антенна

 


Владельцы патента RU 2515133:

Открытое Акционерное Общество "НИИ гидросвязи "Штиль" (RU)

Использование: изобретение относится к гидроакустической технике. Сущность: антенна содержит тонкостенную полую сферическую оболочку, пьезоэлектрические преобразователи, опору для крепления антенны к носителю. Сферическая оболочка выполнена акустически прозрачной из пластика с равномерно расположенными отверстиями для заполнения оболочки водой при погружении антенны в воду, пьезоэлектрические преобразователи установлены на внутренней поверхности сферической оболочки. Преобразователи являются всенаправленными в рабочем диапазоне длин волн антенны и расположены двенадцатью группами таким образом, что центры групп находятся в вершинах вписанного в сферу икосаэдра на расстояниях, меньших либо равных 1,5 длинам волн максимальной частоты полосы принимаемого сигнала, каждая из двенадцати групп образована тремя преобразователями так, что акустический центр каждого преобразователя группы находится в вершине равностороннего треугольника с длиной стороны, равной половине длины волны максимальной частоты полосы принимаемого сигнала. Преобразователи расположены таким образом, что ось опоры антенны располагается перпендикулярно одной из граней икосаэдра и проходит через центр равностороннего треугольника, образуемого этой гранью. Технический результат: обеспечение защиты пьезоэлектрических преобразователей от внешнего механического воздействия, снижение массы антенны, возможно определение направления на источники гидроакустических сигналов с высокой точностью и разрешающей способностью при небольших размерах апертуры антенны. 2 ил.

 

Изобретение относится к области гидроакустики и может быть использовано преимущественно в качестве пеленгационной антенны для гидроакустических систем подводной навигации с ультракороткой базой.

При разработке систем гидроакустической навигации с ультракороткой базой, выполняющих определение местоположения объекта навигации по угловым измерениям направления на гидроакустический маяк-ответчик из одной точки, в которой устанавливается пеленгационная антенна малых волновых размеров, основной является задача достижения наибольшей точности угловых измерений при стремлении к уменьшению массы, габаритов и сложности антенны.

В качестве способа повышения точности оценки горизонтального и вертикального угла прихода навигационного сигнала можно использовать методы сверхразрешения (Ратынский М.В. Адаптация и сверхразрешение в антенных решетках. - М.: Радио и связь, 2003), позволяющие оценивать направления на источники сигналов с угловым разрешением, большим чем ширина основного лепестка диаграммы направленности антенны, и заключающиеся в применении спектральных методов анализа корреляционной матрицы сигналов, принятых преобразователями антенны. Одним из методов сверхразрешения является метод MUSIC (Multiple Signal Classification) - метод многосигнальной классификации, позволяющий оценивать направления на несколько источников сигналов, принятых антенной одновременно. Результатом работы такого метода является пеленгационный рельеф (Малышкин Г.С. Оптимальные и адаптивные методы обработки гидроакустических сигналов. - СПб.: ОАО «Концерн ЦНИИ «Электроприбор», 2011) - функция двух переменных (в случае определения направления в пространстве): горизонтального и вертикального углов направления на источник сигнала, имеющая максимумы соответствующие направлению на источники сигналов.

Однако, применение указанных методов анализа многомерного сигнала, принимаемого антенной, приводит к необходимости расстановки приемных преобразователей на поверхности антенны с расстояниями между соседними преобразователями, как можно более близкими к половине длины волны принимаемого сигнала. В случае если преобразователи в антенне находятся на расстояниях, больших чем указанные, в пеленгационном рельефе возникают ложные максимумы, не соответствующие направлениям на источники сигналов, что может привести к неверному определению направления на источник сигнала. В то же время для снижения взаимодействия элементов антенны по полю необходимо использовать преобразователи и элементы конструкции, имеющие малые волновые размеры, расстояния между центрами соседних элементов должно быть больше длины волны (Смарышев М.Д., Добровольский Ю.Ю. Гидроакустические антенны. - Л.: Судостроение, 1984). Однако может быть достигнут компромисс в стремлении сократить количество преобразователей и получить пеленгационный рельеф без ложных максимумов. Данный компромисс заключается в подборе такого разреженного размещения преобразователей, которое дает приемлемое соотношение уровней истинных и ложных максимумов пеленгационного рельефа или диаграммы направленности антенны.

Для систем гидроакустической навигации с ультракороткой базой требуется как можно больший охват возможных направлений прихода навигационного сигнала от маяка-ответчика. Даже, если объект навигации и маяк-ответчик имеют близкую глубину погружения, из-за гидроакустической рефракции и отражений от дна и поверхности воды (Урик Р.Дж. Основы гидроакустики. - Л.: Судостроение, 1978) навигационный сигнал может прийти к антенне под значительным углом в вертикальной плоскости. Поэтому требуется антенна, способная охватить весь диапазон углов, не только в горизонтальной, но и вертикальной плоскости, при этом характеристика направленности антенны должна быть постоянна для всех направлений прихода сигнала. Всем указанным выше требованиям наилучшим образом удовлетворяет сферическая антенна.

Известна сферическая гидроакустическая антенна тракта шумопеленгования, содержащая сферический каркас, на который нанесено звукоизолирующее покрытие с равномерно размещенными на нем и жестко скрепленными каркасом гидроакустическими приемниками, количество которых достигает нескольких тысяч (см. описание изобретения к патенту США №4207621, МПК G01S 3/80, публикация 10.06.1980).

Недостатком известной антенны является зависимость чувствительности приемников от изменения гидростатического давления. Кроме того, изготовление такой антенны технологически сложно, поскольку требует закрепления на каркасе большого количества приемных элементов.

Известна сферическая гидроакустическая антенна, имеющая сферический корпус, покрытый пластинами, на котором расположены гидрофоны. Пластины имеют форму равнобедренных трапеций и расположены в полосах, параллельных экватору сферического корпуса антенны. Антенна крепится к корпусу судна и имеет технологический вырез, предназначенный для постановки устройства крепления и лишенный преобразователей. Также лишена преобразователей часть сферического корпуса, диаметрально противоположная технологическому вырезу (см. описание изобретения к патенту Франции №2709909, МПК H04R 1/44, публикация 17.03.1995).

Недостатком известной антенны является высокий уровень бокового поля и неравномерность характеристик направленности в плоскостях, перпендикулярных экватору сферического корпуса антенны.

Известна сферическая дифракционная гидроакустическая антенна, содержащая тонкостенную полую сферическую оболочку из металла и шести пьезоэлектрических преобразователей, расположенных снаружи на поверхности сферической оболочки, равномерно удаленных друг от друга по ее поверхности и прикрепленных к ней клеем по трем взаимно перпендикулярным осям с одновременным получением трехмерного пространства измерений и возможностью получить пеленг минимумом датчиков - пьезоэлектрических преобразователей (см. описание свидетельства РФ на полезную модель №4863, МПК H01Q 1/04, публикация 16.08.1997).

Недостатками известной антенны является невозможность различить направления прихода сигналов от нескольких источников, воздействующих на антенну одновременно в одном и том же частотном диапазоне, а также ухудшение характеристик при многолучевом распространении гидроакустического, кроме того, использование клея для крепления пьезоэлектрических преобразователей снаружи корпуса антенны может привести к потере преобразователя при внешних механических воздействиях или температурных перепадах во время погружения антенны в воду.

Известна сферическая гидроакустическая антенна для гидролокатора, содержащая сферический корпус, имеющий круглое отверстие для крепления к носителю гидролокатора, на котором установлены пьезоэлектрические преобразователи по спирали, закрученной по часовой стрелке и начинающейся от точки А пересечения осью, проходящей через центр круглого отверстия и центр сферического корпуса, его наружной поверхности, а первый по порядку пьезоэлектрический преобразователь расположен вблизи точки А (см. описание изобретения к патенту РФ №2460092, МПК G01S 15/00, публикация 27.08.2012).

Недостатком известной антенны, принятой за прототип, с точки зрения ее угловой разрешающей способности является то, что в режиме приема при формировании веера диаграмм направленности задействуется только часть преобразователей антенны, а размером плоского раскрыва, эквивалентного задействованной при приеме поверхности сферы, определяется ширина основного лепестка веера характеристик направленности, следовательно, для того, чтобы добиться высокого углового разрешения, необходимо увеличить размер антенны, а значит использовать в указанной конструкции большое количество преобразователей, что повышает конструктивную сложность антенны и ее массу.

Задачей заявляемого изобретения является создание сферической гидроакустической антенны, конструкция которой позволяет защитить пьезоэлектрические преобразователи от внешнего механического воздействия при небольшой массе антенны и получить пеленгационную характеристику, позволяющую определять направление на источник гидроакустического сигнала с высокой точностью при небольших размерах апертуры антенны.

Сущность заявляемого изобретения заключается в следующем.

Сферическая гидроакустическая антенна содержит тонкостенную полую сферическую оболочку, пьезоэлектрические преобразователи, опору для крепления антенны к носителю. Сферическая оболочка выполнена акустически прозрачной из пластика с равномерно расположенными отверстиями для заполнения оболочки водой при погружении антенны в воду, пьезоэлектрические преобразователи установлены на внутренней поверхности сферической оболочки.

Преобразователи являются всенаправленными в рабочем диапазоне длин волн антенны и расположены двенадцатью группами таким образом, что центры групп находятся в вершинах вписанного в сферу икосаэдра на расстояниях, меньших либо равных 1,5 длинам волн максимальной частоты полосы принимаемого сигнала, каждая из двенадцати групп образована тремя преобразователями так, что акустический центр каждого преобразователя группы находится в вершине равностороннего треугольника с длиной стороны, равной половине длины волны максимальной частоты полосы принимаемого сигнала. Преобразователи расположены таким образом, что ось опоры антенны располагается перпендикулярно одной из граней икосаэдра и проходит через центр равностороннего треугольника, образуемого этой гранью.

Это позволяет защитить пьезоэлектрические преобразователи от внешнего механического воздействия, снизить массу антенны, определять направления на источники гидроакустических сигналов с высокой точностью и разрешающей способностью при небольших размерах апертуры антенны.

Защита пьезоэлектрических преобразователей от внешнего механического воздействия достигается благодаря заявленной схеме размещения гидроакустических преобразователей внутри оболочки антенны. Размещение преобразователей внутри сферической оболочки позволяет использовать оболочку в качестве обтекателя антенны. Применение акустически прозрачной оболочки позволяет избавиться от затенения оболочкой преобразователей, находящихся на стороне антенны, противоположной источнику сигнала, и тем самым при приеме сигнала с любого направления задействовать все преобразователи антенны. Расположение центров групп преобразователей в вершинах икосаэдра позволяет добиться такого размещения групп, что соседние группы преобразователей находятся на поверхности сферической оболочки на одинаковых расстояниях, что позволяет получить равномерную характеристику направленности. Расположение преобразователей такими группами, что внутри каждой группы акустические центры преобразователей находятся в вершинах равносторонних треугольников с длиной стороны, равной половине длины волны максимальной частоты полосы принимаемого сигнала, а расстояние между соседними центрами групп не превышает 1,5 длин волн максимальной частоты полосы принимаемого сигнала, позволяет не допустить ложных максимумов в пеленгационном рельефе при низких отношениях сигнал/шум. Расположение преобразователей антенны таким образом, что ось опоры антенны располагается перпендикулярно одной из граней икосаэдра, и проходит через центр равностороннего треугольника, образуемого этой гранью, совпадая с осью антенны, являющейся диагональю куба, на котором построен икосаэдр, позволяет при креплении опоры к сферическому корпусу антенны не удалять преобразователи, мешающие креплению опоры к оболочке, и обеспечить равномерность характеристики направленности антенны. Акустическая прозрачность антенны и заявленная схема размещения преобразователей позволяют добиться эффективного применения метода MUSIC для анализа сигналов, принятых антенной, и тем самым определять направления на источники гидроакустических сигналов с высокой точностью и разрешающей способностью.

Сущность заявляемого изобретения поясняется чертежами, где на фиг.1 приводится изображение конструкции заявленной антенны с диаметром сферы, равным 160 мм, длиной ребра икосаэдра 84,1 мм, расстояниями между акустическими центрами пьезоэлектрических преобразователей, равными 25 мм, что соответствует половине длины волны акустического сигнала на частоте 30 кГц при скорости распространения звука в воде, равной 1500 м/с, оболочка для наглядности показана полупрозрачной, линиями условно показаны ребра икосаэдра, в вершинах которого находятся центры групп преобразователей, где цифрой 1 обозначена полая тонкостенная сферическая акустически прозрачная заполняемая водой оболочка; 2 - цилиндрические пьезоэлектрические преобразователи; 3 - отверстия для заполнения антенны водой; 4 - опора для крепления антенны к носителю; 5 - группа преобразователей, акустические центры которых расположены в вершинах равностороннего треугольника;

на фиг.2 приводится пеленгационный рельеф, построенный с помощью анализа методом MUSIC (Multiple Signal Classification) сигналов, одновременно принятых моделью заявленной антенны от трех источников, имеющих одинаковую мощность излучения в полосе 25-30 кГц в условиях воздействия пространственно-изотропной помехи в виде белого гауссового шума с отношением сигнал/шум -10 дБ в полосе частот полезных сигналов, где цифрой 6 обозначен локальный максимум, соответствующий источнику сигнала с угловыми координатами 40° в горизонтальной плоскости и -50° в вертикальной плоскости; 7 - локальный максимум, соответствующий источнику сигнала с угловыми координатами 120° в горизонтальной плоскости и 40° в вертикальной плоскости; 8 - локальный максимум, соответствующий источнику сигнала с угловыми координатами 300° в горизонтальной плоскости и 10° в вертикальной плоскости.

Сферическая гидроакустическая антенна содержит: полую тонкостенную сферическую акустически прозрачную заполняемую водой оболочку 1, пьезоэлектрические преобразователи 2, отверстия 3 для заполнения корпуса водой, опору 4 для крепления антенны к носителю.

Антенна работает следующим образом: звуковые волны от М источников сигналов возбуждают механические колебания N=36 пьезоэлектрических преобразователей 2 антенны, на выходах которых возникают электрические сигналы. Из-за акустической прозрачности сферического корпуса 1 антенны в формировании электрических сигналов, содержащих информацию о направлении на конкретный источник акустического сигнала, участвуют все преобразователи антенны.

Ввиду пространственного разнесения преобразователей сигналы связанных с ними каналов антенны имеют фазовые задержки, на основе которых оцениваются направления на источники сигналов, для чего сигналы преобразователей антенны усиливают, оцифровывают, вычисляют их комплексную огибающую и заносят в память вычислительной машины блоками, из каждого блока оцифрованных сигналов преобразователей формируют матрицу Xfr размером N×L, где N - количество преобразователей в антенне, L - длина блока с сигналом, по матрице X строят выборочную оценку корреляционной матрицы R ^ X X сигналов, принятых антенной, путем усреднения по поступающим блокам по следующей формуле:

R ^ X X = 1 K f r f r = 1 N f r X f r X f r H ,

где fr - номер блока, Kfr - количество блоков сигнала, участвующих в усреднении.

С антенной связывают трехмерную прямоугольную систему координат OXYZ, ориентированную таким образом, что ее центр О совмещен с центром сферической антенны, ось OZ направлена вниз. Направление на каждый источник сигнала задают горизонтальным и вертикальным углами α и ε соответственно. Горизонтальный угол α отсчитывается от положительного направления оси ОХ по часовой стрелке, если смотреть на плоскость OXY сверху. Вертикальный угол 8 отсчитывается от плоскости OXY вниз.

Принимая допущение, что помеха пространственно изотропна и является белым Гауссовым шумом с нулевым средним, выполняют вычисление матрицы собственных векторов U и матрицы собственных значений Λ оценочной корреляционной матрицы R ^ X X сигналов, принятых антенной. На основе N-M - наименьших собственных значений матрицы Λ из матрицы U формируют матрицу UN собственных векторов, задающих подпространство помехи. На основе полученной таким образом матрицы UN строят пеленгационный рельеф методом MUSIC, вычисляя следующую функцию по всем пространственным направлениям, задаваемым горизонтальным углом α и вертикальным углом ε:

P ( α , ε ) = 1 / | D H ( α , ε ) U H U N H D ( α , ε ) | ,

где D ( α , ε ) = [ s ν 1 ( α 1 , ε 1 ) s ν M ( α M , ε M ) ] - направляющая матрица антенны

для М - источников сигналов, имеющих горизонтальные и вертикальные углы направления в пространстве: α11,…,αMM, Н - символ Эрмитова сопряжения комплекснозначной матрицы,

s ν ( α , ε ) = [ exp ( j 2 π f 0 c ( cos ( ε ) cos ( α ) x i + cos ( ε ) sin ( α ) y i + sin ( α ) z i ) exp ( j 2 π f 0 c ( cos ( ε ) cos ( α ) x N + cos ( ε ) y N + sin ( α ) z N ) ]

- направляющий вектор антенны, характеризующий воздействие сигнала одного источника на несущей частоте f0 с направления, задаваемого горизонтальным углом α и вертикальным углом ε на N преобразователей антенны.

Для подтверждения работоспособности заявленной антенны указанным методом был построен пеленгационный рельеф для сигналов, одновременно принятых моделью заявленной антенны от трех источников, имеющих одинаковую мощность излучения в полосе 25-30 кГц. Первый источник сигнала с угловыми координатами α=40° в горизонтальной плоскости и ε=-50° в вертикальной плоскости; второй источник сигнала с угловыми координатами α=120° в горизонтальной плоскости и ε=40° в вертикальной плоскости; третий источник сигнала с угловыми координатами α=300° в горизонтальной плоскости и ε=10° в вертикальной плоскости. Сигналы принимались в условиях воздействия пространственно-изотропной помехи в виде белого Гауссового шума с отношением сигнал/шум - 10 дБ в полосе частот полезных сигналов. Результат моделирования показан на фиг.2, где цифрой 6 обозначен локальный максимум, соответствующий первому источнику сигнала, 7 -локальный максимум, соответствующий второму источнику сигнала, 8 -локальный максимум, соответствующий третьему источнику сигнала. По графику на фиг.2 видно, что пеленгационный рельеф не имеет ложных максимумов, локальные максимумы точно соответствуют направлениям на источники сигналов.

Таким образом, задачу изобретения можно считать решенной.

Заявленное изобретение позволяет защитить пьезоэлектрические преобразователи от внешнего механического воздействия, снизить массу антенны, определять направления на источники гидроакустических сигналов с высокой точностью и разрешающей способностью при небольших размерах апертуры антенны.

Сферическая гидроакустическая антенна, содержащая тонкостенную полую сферическую акустически прозрачную оболочку, выполненную из пластика с равномерно расположенными отверстиями для заполнения оболочки водой при погружении антенны в воду, всенаправленные в рабочем диапазоне длин волн антенны пьезоэлектрические преобразователи, установленные на внутренней поверхности сферической оболочки, опору для крепления антенны к носителю, отличающаяся тем, что преобразователи расположены двенадцатью группами таким образом, что центры групп находятся в вершинах вписанного в сферу икосаэдра на расстояниях, меньших либо равных 1,5 длинам волн максимальной частоты полосы принимаемого сигнала, каждая из двенадцати групп образована тремя преобразователями так, что акустический центр каждого преобразователя группы находится в вершине равностороннего треугольника с длиной стороны, равной половине длины волны максимальной частоты полосы принимаемого сигнала, ось опоры антенны располагается перпендикулярно одной из граней икосаэдра и проходит через центр равностороннего треугольника, образуемого этой гранью.



 

Похожие патенты:

Изобретение относится к области судостроения и судовождения. Способ обеспечения безаварийного движения надводного или подводного судна при наличии подводных и надводных потенциально опасных объектов включает постоянный прием спутниковых навигационных данных, данных от радиолокационной станции, автоматической идентификационной системы, определение местоположения судна, вычисление скорости судна, глубины под килем.

Изобретение относится к гидрографии, в частности к способам и техническим средствам определения глубин акватории фазовым гидролокатором бокового обзора, и может быть использовано для выполнения съемки рельефа дна акватории.

Использование: изобретение относится к области гидроакустики и может быть использовано для построения гидроакустических систем, содержащих навигационную станцию освещения ближней обстановки (НГАС ОБО) и самоходный необитаемый подводный аппарат (СНПА).

Использование: морские исследования посредством профилографов (станций) вертикального зондирования морской среды, в автоматизированных подводных аппаратах (зондах) заякоренного типа для проведения комплексных наблюдений за гидрологическими параметрами и за динамикой водной среды, а также для химико-биологического и экологического контроля и мониторинга акваторий.

Изобретение относится к области гидроакустики и может быть применено при изготовлении гидроакустических антенн и антенных модулей. Гидроакустический приемный блок состоит из системы крепления гидроакустического блока к формообразующему каркасу гидроакустической антенны, гидроакустического приемника и соединенного с ним гидроакустического экрана, причем гидроакустический экран жестко закреплен на тыльной стороне гидроакустического приемника.

Изобретение относится к области гидроакустики и может быть применено при разработке гидроакустических антенн различного назначения для коррекции выходных сигналов гидроакустических приемников с целью исключения составляющей, обусловленной вибрациями корпуса носителя.

Изобретение относится к области гидроакустики и может быть использовано для построения систем классификации, объектов, обнаруженных гидролокатором освещения ближней обстановки.

Изобретение относится к способам обнаружения движущихся в воде объектов в условиях мелководья, таких как прибрежные морские области, речные русла, каналы, озера. .

Изобретение относится к способу защиты водозаборов от попадания в них рыбы. .

Использование: в гидроакустике. Сущность: способ предназначен для определения ошибки оценки дистанции гидролокатором, установленным на подводном подвижном носителе относительно неподвижного отражателя. Для этого с помощью гидролокатора производят излучение зондирующих сигналов, определяют время излучения, определяют время приема эхосигнала, измеряют скорость звука, определяют разность между временем излучения и временем приема эхосигнала Т, вычисляют дистанцию, измеряют собственную скорость движения Vсоб, определяют угол q0 между положением неподвижного объекта и направлением движения носителя гидролокатора, определяют радиальную скорость объекта Vрад по двум следующим друг за другом посылкам зондирующего сигнала посылкам, а ошибку определения дистанции бД определяют по формуле: бД=0,5((Vрад/cosq0)-Vсоб)Т. Технический результат: обеспечение возможности определения ошибки оценки дистанции до неподвижного отражателя при движении носителя гидролокатора в подводном положении. 1 ил.

Использование: изобретение относится к вооружению подводных лодок, а именно к защите подводных лодок от торпед или мин, преимущественно от широкополосных мин-торпед. Сущность: способ защиты подводной лодки от широкополосной мины-торпеды содержит обнаружение и определение угловых координат в режиме шумопеленгования торпеды, вышедшей из стартового контейнера и наводящейся на подводную лодку, ее классификацию, выработку данных стрельбы, производство выстрела устройства, несущего реактивные снаряды, с приходом устройства в расчетную точку на пути его движения пуск реактивных снарядов, эпицентры взрывов которых, равномерно, исключая образование непораженных участков, распределяются в объеме ограниченного водного пространства, сформированного вокруг предварительно рассчитанной точки встречи устройства и торпеды, путем постановки завес из силового поля взрывов реактивных снарядов на пути движения торпеды в телесном угле, обращенном вершиной к подводной лодке и ограниченном усеченной конической поверхностью с осью симметрии, совпадающей с направлением на источник шума, при этом середина оси симметрии совпадает с расчетной точкой встречи устройства с торпедой. Определяется дистанция от подводной лодки до торпеды методом активной гидролокации, при этом излучение зондирующего сигнала и прием отраженного от торпеды (гидролокационного) сигнала осуществляется с помощью узконаправленных антенн, акустические оси которых устанавливаются в направлении на торпеду, предварительно определенном методом шумопеленгования. Технический результат: упрощение реализации способа и повышение эффективности защиты подводной лодки.1 ил.

Изобретение относится к морской технике, в частности к морскому подводному оружию. Устройство содержит захват и элемент сигнализации о местоположении мины, выполненный в виде гидроакустического маяка. Дополнительно установлен резак с приводом, управляемый по команде с обеспечивающего судна. Гидроакустический маяк содержит источник электропитания, каналы излучаемого и принимаемого сигналов, шифратор и датчик давления. Повышается эффективность уничтожения якорной мины за счет определения её местоположения после перерезания ее минрепа. 2 ил.

Использование: гидроакустика, а именно в гидроакустических системах определения глубины, и может быть применен для автоматического адаптивного обнаружения эхо-сигналов от дна и автоматического измерения глубины в условиях, когда требуется механическая защита излучающей поверхности электроакустического преобразователя. Сущность: в эхолот вводят блок прямого цифрового синтезатора частоты, выход которого подключен к входу передатчика, а управляющий вход подключен к микроконтроллеру. Блок прямого цифрового синтезатора частоты позволяет путем регулировки частоты излучения исключить влияние изменяющихся параметров защитной пластины на максимально возможную измеряемую глубину эхолотом. Технический результат: исключение влияния изменяющихся параметров защитной пластины излучающей поверхности электроакустического преобразователя на максимально возможную измеряемую глубину эхолотом путем изменения частоты излучения эхолота. 2 ил.

Изобретение относится к области авиации, в частности к системам бортового оборудования вертолетов. Система обнаружения помех для посадки и взлета вертолета включает ультразвуковые устройства сканирования (1), каждое из которых состоит, по меньшей мере, из средств для передачи ультразвукового сигнала в направлении вниз и получения отраженного ультразвукового сигнала. Средства передачи и получения сигнала установлены, по меньшей мере, в лопастях (2) несущего винта вертолета (3) на удалении от оси его вращения или смежно их концам и связаны с бортовой вычислительной системой вертолета или с самостоятельной вычислительной системой для визуального отображения данных на доступном пилоту мониторе о рельефе расположенной под вертолетом поверхности и/или данных об опасных препятствиях. Повышается точность данных о рельефе поверхности под вертолетом на площади, необходимой для выполнения маневрирования при выполнении взлета и посадки. 4 з.п. ф-лы, 13 ил.

Изобретение относится к области гидролокации и предназначено для обнаружения газовой пелены и определения глубины местоположения начала утечек газа трубопроводов гидроакустическими средствами. Технический результат - обеспечение обнаружения и классификации источника утечки газа подводного газопровода и определения местоположения объекта утечки газа. Для этого излучают зондирующий сигнал, принимают эхосигнал статическим веером характеристик направленности в горизонтальной плоскости, производят многоканальную обработку по всем характеристикам направленности, выбирают порог в каждом канале, определяют времена начала Tмин и времена окончания эхосигнала Tмакс в каждом пространственном канале, выбирают канал, имеющий максимальное время задержки окончания эхосигнала Tмакс и соответствующее этому каналу минимальное время задержки начала эхосигнала Tмин, вычисляют дистанцию Днач=Tмин0,5C, вычисляют дистанцию по окончании эхосигнала Доконч=Tмакс0,5C, а глубину местоположения начала эхосигнала определяют по формуле H = Д о к о н ч . 2 − Д н а ч . 2 , где H - глубина местоположения начала газовой пелены; Доконч - дистанция, соответствующая максимальному времени окончания эхосигнала или выхода газовой пелены из трубы; Днач - дистанция, соответствующая минимальному времени начала эхо-сигнала или выхода газовой пелены на поверхность; C - скорость распространения звука в районе работы. 1 ил.

Использование: гидроакустическая техника, а именно область активной гидролокации, включая активные гидролокаторы, предназначенные для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов, классификации обнаруженных объектов. Технический результат: обеспечивается высокая вероятность правильной классификации обнаруженного объекта. Это достигается путем реализации возможности выработки класса обнаруженного объекта по совокупности посылок с идентификацией эхо-сигналов в серии посылок. 1 ил.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов, классификации обнаруженных объектов. Сущность: активный гидролокатор с классификацией объекта содержит последовательно соединенные устройство управления, устройство формирования зондирующего сигнала, генераторное устройство и излучающую акустическую антенну, последовательно соединенные приемную акустическую антенну, устройство обработки эхо-сигналов от объекта и устройство измерения классификационного параметра, а также индикатор. В него введены последовательно соединенные блок определения РапостN, где РапостN - апостериорная плотность вероятности класса объекта по текущей посылке N, блок определения РапостF, где РапостF - апостериорная плотность вероятности класса объекта по совокупности посылок F, и блок выработки решения о классе объекта по совокупности посылок, блок памяти Рапр, где Рапр - априорная плотность распределения величины классификационного параметра. Техническим результатом изобретения является повышение вероятности правильной классификации обнаруженного объекта путем обеспечения возможности определения класса обнаруженного объекта по совокупности посылок. 1 ил.

Использование: гидроакустика. Сущность: способ содержит излучение зондирующего сигнала, прием эхосигнала веером статических характеристик, набор временной реализации последовательно по всем пространственным каналам, обработку последовательно по всем пространственным каналам, определение уровня помехи, как результат суммирования всех отсчетов по первому циклу приема по всем пространственным каналам, вычисляют порог обнаружения по среднему значению всех отсчетов Аср, производят выбор минимального значения в каждом наборе временных отсчетов огибающей последовательно по всем пространственным каналам по правилу 0≤Амин<Аср, запоминают номера пространственных каналов, в которых обнаружены минимальные значения огибающих, производят выбор максимального отсчета Амакс в каждом наборе отсчетов огибающей по всем пространственным каналам, проводят прореживания с оставлением минимального отсчета по правилу п последовательных отсчетов выбирают наименьший, и максимального отсчета по правилу из n последовательных отсчетов выбирают максимальный, в каждом наборе временных отсчетов огибающей по всем пространственным каналам, производят автоматическое обнаружения превышения эхосигналами выбранного порога обнаружения Амакс>Апорог=кАср последовательно по всем пространственным каналам статического веера характеристик направленности, измеряют и запоминают амплитуды и номера отсчетов сигналов, превысивших порог обнаружения, измеряют и запоминают номера пространственных каналов, в которых произошло обнаружение сигнала, измеряют угловую протяженность УПмак объекта по количеству пространственных каналов, превысивших порог обнаружения, определяют номера отсчетов и пространственных каналов, в которых не произошло превышение выбранного порога и уровень сигнала в которых близок к 0, определяют угловую протяженность УПмин области минимальных отсчетов по числу пространственных каналов, в которых 0≤Амин<Аср, и при совпадении угловых протяженностей принимают решения о наличии тени объекта. Технический результат: повышение информативность входной информации за счет выделения тенеграфических особенностей эхосигнала от объекта.1 ил.

Использование: гидроакустика и может быть использовано для построения навигационных гидроакустических станций освещения ближней обстановки. Сущность: способ содержит излучение зондирующего сигнала, прием отраженного эхосигнала, формирование статического веера характеристик направленности, формирование цифрового массива данных с выхода тракта когерентной обработки по каждому пространственному каналу, последовательный вывод цифровых отсчетов на индикатор, определение порога автоматического обнаружения по среднему значению амплитуд цифровых отсчетов первого и второго циклов обработки по всем пространственным каналам, вывод цифровых отсчетов на индикатор осуществляется по правилу А=Аотсч/ (Г-К), где А амплитуда отсчета, выводимая на индикатор, Аотсч - амплитуда исходного цифрового отсчета, Г - параметр, определяемый оператором как глубина регулировки усиления, К - номер цикла обработки, порог автоматического обнаружения выбирается из условия минимума пропуска эхосигнала от цели, формирование общего цифрового массива данных с выхода тракта когерентной обработки по всем пространственным каналам от момента излучения до момента достижения зондирующим сигналом установленной шкалы работы, определение отсчетов, превысивших порог, определение номера пространственного канала М, определение временного положения отсчета Т, проведение классификации по цифровым отсчетам обнаруженной цели из общего цифрового массива по М пространственным каналам, средний канал из которых равен измеренному каналу, и во временном окне, равном Н циклам набора временной реализации, автоматическое определение классификационных признаков и автоматическое принятие решения о классе цели, вывод результата обработки по обнаруженной цели на индикатор с указанием номера цели, измеренных координат М и Т, классификационных признаков и класса обнаруженной цели, при очередном обнаружении превышения порога процедура повторяется до окончания шкалы дистанции и по совокупности всех обнаруженных целей формируется банк классификации. Технический результат: обеспечение обнаружения и классификации обнаруженных целей. 1 ил.
Наверх