Способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением


 


Владельцы патента RU 2515174:

Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") (RU)

Изобретение относится к области металлургии, конкретнее к контролю стойкости трубных сталей, предназначенных для эксплуатации в агрессивных (водородсодержащих) средах, оказывающих коррозионное воздействие на материалы. Способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением заключается в том, что из сталей изготавливают образцы, в которых определяют общее содержание водорода в исходном состоянии, в состоянии после искусственного старения в течение 10-40 часов при температурах 50-300°C и после дополнительной термической обработки при температуре 850-1000°C в течение 10-60 минут в печи в воздушной атмосфере с последующим охлаждением на воздухе, а перед термической обработкой обеспечивают влажность атмосферы в рабочем пространстве печи не менее 50%. При этом о стойкости стали против коррозионного растрескивания судят по изменению содержания водорода в процессе старения и термической обработки по сравнению с его содержанием в исходном состоянии. Техническим результатом является обеспечение информативности при небольшой длительности проведения контроля на стойкость против коррозионного растрескивания с учетом химического состава и микроструктуры, наличия и распределения неметаллических включений, являющихся ловушками водорода.

 

Изобретение относится к области металлургии, конкретнее к контролю стойкости трубных сталей, предназначенных для эксплуатации в агрессивных (водородсодержащих) средах, оказывающих коррозионное воздействие на материалы.

Одним из наиболее повреждаемых в результате коррозионного воздействия объектов является оборудование, подвергающееся воздействию агрессивных сред, составной частью которых являются ионы водорода (свободный, несвязанный) и др. агрессивные компоненты. К такому оборудованию относятся нефтепромысловые трубопроводы, резервуары, скважинное оборудование, трубы для добычи и транспортировки нефти и газа, элементы трубных колонн и др. виды оборудования (в том числе, для химической и нефтеперерабатывающей промышленности).

Главным видом коррозионного разрушения является коррозионное растрескивание под напряжением (КРН, стресс-коррозия).

В развитии стресс-коррозии важную роль играет формирование неблагоприятного структурного состояния стали. Однако механизмы деградации металла при эксплуатации различаются. Традиционным является представление, что причиной охрупчивания металла при эксплуатации являются исключительно процессы старения, приводящие к формированию карбидной сетки по границам зерен. С другой стороны, деградация металла может происходить из-за совмещения процессов старения с водородным охрупчиванием, приводящем к формированию карбогидридных сегрегации. Тем не менее четкая корреляция между состоянием стали и ее стойкостью против стресс-коррозии не установлена. Большая часть трубных сталей, исследованных на стойкость против КРН, имеет в качестве основной структурной составляющей феррит, который при содержании углерода в твердом растворе всего на уровне 20 ppm проявляет склонность к старению.

Деградация металла труб в процессе эксплуатации трубопровода связана также с формированием областей с повышенным содержанием водорода в молекулярной форме или в виде соединений в области присутствия неметаллических включений, являющихся эффективными ловушками или коллекторами водорода. Высокое содержание такой фракции водорода может быть причиной стресс-коррозионного разрушения, в первую очередь, по транскристаллитному механизму.

Методика оценки стойкости против КРН должна включать методы испытаний, которые позволят оценить стойкость стали против разрушения с учетом деградации металла в процессе эксплуатации.

Анализ существующих методов коррозионно-механических испытаний на стойкость трубных сталей против КРН показывает, что основные отличия методов, приводящие, в ряде случаев, к получению результатов, неадекватно отражающих поведение металла в эксплуатационных условиях, связаны не только с типом и способом создания напряженного состояния в испытуемых образцах, но и с отсутствием учета деградации стали в процессе эксплуатации. При этом наиболее опасным с точки зрения коррозионного растрескивания является высокая насыщаемость водородом при неблагоприятных характеристиках химического состава, микроструктурного состояния и присутствии в металле определенных типов неметаллических включений, являющихся ловушками для водорода.

Известен способ оценки стойкости стали против коррозионного растрескивания под напряжением, заключающийся в том, что от изделий отбирают пробы, изготавливают образцы цилиндрической формы, к которым прикладывают напряжение и подвергают воздействию агрессивной среды. Образец выдерживают в агрессивной среде под постоянной нагрузкой в течение 720 часов. Уровень приложенного напряжения находится в интервале от 0,6 до 0,95 от предела текучести стали, в зависимости от требований нормативной документации. Критерием стойкости стали может быть максимальное значение приложенного напряжения, при котором образец не разрушился в течение 720 часов, или сам факт отсутствия разрушения при определенной фиксированной нагрузке (чаще всего 0,8 от предела текучести стали) также после выдержки в агрессивной среде в течение 720 часов. (Метод по NACE Standard ТМ 0198-98. Standard Test Method Slow Strain Rate Test Method for Screening Corrosion-Resistant Alloys (CRAs) for Stress Corrosion Cracking in Sour Oilfield Service, p.1-16).

Недостатком способа является недостаточная чувствительность, большая длительность испытаний и невозможность ранжировать близкие по механическим характеристикам стали, содержащие разные по эффективности ловушки водорода, которые во многом определяют стойкость стали против стресс-коррозии.

Известен способ испытания трубных сталей на стойкость против коррозионного растрескивания под напряжением, включающий воздействие на испытуемый образец коррозионной среды, приложение нагрузки с последующей катодной поляризацией образца, при этом перед воздействием на образец коррозионной среды на него наносят ободок из коррозионно-стойкого материала для инициирования локального анодного растворения, а катодную поляризацию образца осуществляют током плотностью 40 -500 мА/см2 в момент активного анодного растворения до разрушения образца.

(патент РФ №2160894, МПК G01N 17/00 опубл. 20.12.2000 г.)

Способ осуществляют следующим образом: круглые образцы из трубных сталей помещают в коррозионную среду, например, в 3% р-р NaCl с постоянным барботажем СО2, нагружают в пределах 50-90% от предела текучести. Процесс коррозионного растрескивания под напряжением протекает следующим образом: на начальной стадии преобладает механизм анодного растворения в поверхностном слое, поэтому для инициирования анодного растворения используют метод щелевой коррозии, заключающийся в том, что на образец наносят ободок из коррозионно-стойкого материала. Затем на последующей стадии создают условия для локального наводороживания, поэтому в момент активного анодного растворения образец катодно поляризуется при плотности тока в пределах от 40-500 мА/см2. Время до разрушения образца является критерием оценки склонности материала образца к коррозионному растрескиванию под напряжением (стресс-коррозия).

Использование данного способа позволяет сократить время испытаний и повысить чувствительность к изменению физико-химического состояния образца.

Недостаток этого способа состоит в том, что он не учитывает исходный уровень механических характеристик испытываемой стали, который однозначно влияет на время до разрушения, а также не учитывает возможность деградации стали в процессе эксплуатации в результате старения с образованием карбидных или карбогидридных выделений и сегрегации и/или насыщение стали водородом вблизи определенных типов дефектов структуры и неметаллических включений.

Способы контроля стойкости сталей против коррозионного растрескивания под напряжением, учитывающие количество содержания водорода и/или изменение его содержания во времени, приводящие к деградации металла и к снижению его стойкости против коррозионного растрескивания, неизвестны.

Задача, на решение которой направлено изобретение, заключается в создании способа контроля стойкости против коррозионного растрескивания под напряжением сталей, предназначенных для труб магистральных газопроводов и других видов оборудования, эксплуатирующегося в условиях, приводящих к поступлению в металл водорода.

Техническим результатом настоящего изобретения является обеспечение информативности при небольшой длительности проведения контроля на стойкость против коррозионного растрескивания с учетом химического состава и микроструктуры, наличия и распределения неметаллических включений, являющихся ловушками водорода.

Указанный технический результат достигается тем, что способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением заключается в том, что из сталей изготавливают образцы, в которых определяют общее содержание водорода в исходном состоянии, в состоянии после искусственного старения в течение 10-40 часов при температурах 50-300°С и после дополнительной термической обработки при температуре 850-1000°С в течение 10-60 минут в печи в воздушной атмосфере с последующим охлаждением на воздухе, а перед термической обработкой обеспечивают относительную влажность атмосферы в рабочем пространстве печи не менее 50%, при этом о стойкости стали против коррозионного растрескивания судят по изменению содержания водорода в процессе старения и термической обработки по сравнению с его содержанием в исходном состоянии.

Сущность изобретения заключается в следующем.

Структурное состояние стали, приводящее к ускоренному развитию стресс-коррозионных трещин и к сквозным стресс-коррозионным разрушениям, зачастую возникает при эксплуатации из-за совмещения процессов старения и водородного охрупчивания или из-за насыщения стали водородом вблизи определенных типов дефектов структуры и неметаллических включений.

Искусственное старение в течение 10-40 часов при температуре в интервале 50-300°C и дополнительная термическая обработка при температуре 850-1000°C в течение 10-60 минут в печи в воздушной атмосфере при повышенной влажности с последующим охлаждением на воздухе имитируют поведение трубных сталей в реальных условиях эксплуатации, что может приводить к насыщению стали водородом и к развитию стресс-коррозионных разрушений.

Искусственное старение в течение 10-40 часов при температурах 50-300°С приводит к изменению состояния границ структуры стали и, как следствие, к аномально ускоренному развитию стресс-коррозии.

Дополнительная термическая обработка при температуре 850-1000°C в течение 10-60 минут в печи с воздушной атмосферой при относительной влажности не менее 50% с последующим охлаждением на воздухе провоцирует насыщение стали водородом в случае формирования неблагоприятного состояния границ в процессе старения или при наличии определенных типов дефектов структуры и неметаллических включений.

Температурные и временные значения старения, дополнительной термической обработки и требуемая влажность атмосферы в рабочем пространстве печи установлены экспериментально.

Примеры конкретного выполнения способа.

Были отобраны 5 вариантов труб с различными сроками эксплуатации до разрушения, из металла которых были изготовлены образцы в форме кубиков со стороной 5 мм. Для всех вариантов из аварийного запаса были взяты трубы тех же партий в исходном состоянии, из металла которых также были изготовлены образцы. Часть образцов была подвергнута искусственному старению - выдержке при температуре 200°C в течение 30 часов. Далее часть состаренных образцов подвергли термической обработке, которая заключалась в нагреве до 900°C и выдержке в течение 30 минут с последующим охлаждением на воздухе, при этом перед термической обработкой обеспечивали относительную влажность атмосферы в рабочем пространстве печи 65%. В одном варианте (2*) относительная влажность атмосферы в рабочем пространстве печи составила 41%.

Образцы во всех трех состояниях (исходном, состаренном и после старения и термической обработки) были проанализированы на содержание водорода. Определили относительное изменение содержания водорода в процессе старения и термической обработки по отношению к исходному содержанию водорода

Стар+Т/О-НИсх)/НИсх)·100%.

Срок эксплуатации трубопроводов до разрушения, влажность, а также результаты определения содержания водорода приведены в таблице.

Таблица
Вариант
Срок эксплуатации, лет Относительная
влажность воздуха в печи
перед термической обработкой, %
Содержание водорода Относительное изменение содержания водорода, %
НИсх, ppm НСтар, ppm НСтар+Т/О, ppm
1 30 65 3,8 4,6 4,9 29
2 17 65 5,0 6,6 9,2 84
2* 17 41 5,0 6,5 6,7 34
3 26 65 4,3 5,1 6,0 40
4 33 65 6,1 6,9 7,6 25
5 22 65 3,2 4,3 4,9 53

При несоблюдении требования к величине относительной влажности атмосферы в рабочем пространстве печи перед термической обработкой (не менее 50%) получают недостоверные данные. В варианте 2* (относительная влажность 41%) содержание водорода после термической обработки меняется незначительно, при этом полученное небольшое относительное изменение содержания водорода (34%) неправильно характеризует короткий срок эксплуатации трубы до разрушения (17 лет).

Как следует из приведенных в таблице данных, наименьшее значение относительного изменения содержания водорода (29%) соответствует наибольшему сроку эксплуатации трубы до разрушения (33 года), а наибольшее значение относительного изменения содержания водорода (84%) соответствует наименьшему сроку эксплуатации трубы до разрушения (17 лет).

При необходимости обеспечения срока безаварийной эксплуатации трубопровода не менее 30 лет, относительное изменение содержания водорода должно быть не более 30%.

Способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением, заключающийся в том, что из сталей изготавливают образцы, в которых определяют общее содержание водорода в исходном состоянии, в состоянии после искусственного старения в течение 10-40 часов при температурах 50-300°C и после дополнительной термической обработки при температуре 850-1000°C в течение 10-60 минут в печи в воздушной атмосфере с последующим охлаждением на воздухе, а перед термической обработкой обеспечивают относительную влажность атмосферы в рабочем пространстве печи не менее 50%, при этом о стойкости стали против коррозионного растрескивания судят по изменению содержания водорода в процессе старения и термической обработки по сравнению с его содержанием в исходном состоянии.



 

Похожие патенты:

Изобретение относится к контролю протекания коррозионных процессов и может быть применено для определения степени опасности проникновения локальной коррозии, в частности питтинговой коррозии, в металлические конструкции (реакторы, теплообменники, емкости, трубопроводы и т.д.), контактирующие с электропроводными коррозионными средами.

Способ прогнозирования аварийного технического состояния трубопровода канализационной системы применяют в канализационной системе мегаполиса или крупного промышленного района и могут использовать для диагностики технического состояния водоочистных сооружений и трубопроводов со сточными водами.

Изобретение относится к испытательной технике, предназначенной для определения влияния агрессивных сред на коррозионные свойства материалов и может быть использовано при разработке мероприятий по антикоррозионной защите оборудования в нефтяной, газовой, нефтехимической и других отраслях промышленности.

Изобретение относится к системе контроля эффективности электрохимической защиты подземных трубопроводов, находящихся под катодной поляризацией. .

Изобретение относится к системе контроля эффективности электрохимической защиты заглубленных, полузаглубленных (емкости) в грунт, под слоем бетона, а также морских стальных сооружений, находящихся под катодной защитой.

Изобретение относится к области защиты от коррозии и может быть использовано для контроля процесса коррозионной защиты и автоматической коррекции величины защитного потенциала по длине трубопровода для его эффективной защиты.

Изобретение относится к способам бесконтактного определения мест дефектов гидроизоляционного покрытия и коррозионных повреждений наружных поверхностей подземных и подводных катодно-защищенных трубопроводов с пленочной гидроизоляцией с помощью электрохимического анализа и может быть использовано в подземном трубопроводном транспорте.

Изобретение относится к области защиты подземных сооружений от коррозии и может быть использовано при выборе времени плановых отключений станций катодной защиты (СКЗ) трубопроводов и подземных металлических сооружений различного назначения.

Изобретение относится к способу предварительной обработки трубчатой оболочки топливного стержня для исследований материалов, в частности для исследований поведения в процессе коррозии.

Изобретение относится к области силовой лазерной оптики и касается способа определения плотности дефектов поверхности оптической детали. Способ включает в себя облучение участков поверхности оптической детали пучком импульсного лазерного излучения с гауссовым распределением интенсивности, регистрацию разрушения поверхности, наиболее удаленного от точки максимальной интенсивности пучка лазерного излучения, определение соответствующего этому разрушению значения интенсивности пучка εi, определение зависимости плотности вероятности f(ε) разрушения поверхности оптической детали от интенсивности излучения и выбор наименьшего значения интенсивности пучка εimin.

Изобретение относится к области исследования устойчивости металлов и сплавов к воздействию агрессивных сред и может быть использовано, в частности, для оценки надежности и долговечности сварных труб, предназначенных для строительства нефтегазопроводов.

Изобретение относится к области металлургии, конкретнее к контролю коррозионной стойкости против локальной коррозии стальных изделий, предназначенных для эксплуатации в агрессивных средах.

Способ управления является способом управления кондиционером воздуха, чтобы переводить состояние в замкнутом пространстве в предварительно определенное целевое состояние.

Изобретение относится к испытательной технике, а именно к устройствам для контроля процесса деградации защитных гальванических и лакокрасочных покрытий, находящихся в эксплуатационных условиях под действием внешней агрессивной среды.

Изобретение относится к машиностроению, а именно к способам оценки работоспособности сварных соединений в условиях одновременного воздействия циклических нагрузок и коррозионных сред, и может быть использовано для решения научно-исследовательских задач.

Изобретение относится к системе мониторинга коррозионных процессов на стальных подземных и подводных сооружениях, находящихся под слоем бетона, для определения опасности коррозии стали и контроля эффективности электрохимической защиты.

Изобретение относится к области химии урана, а именно к коррозионным исследованиям металлического урана в герметичных контейнерах, и может быть использовано для определения скорости коррозии урана в газообразных средах различного химического состава в различных условиях (различных по температуре и давлению газовой среды) с целью прогнозирования коррозионного состояния урановых деталей в условиях их реального использования или хранения.

Изобретение относится к текстильному материаловедению и предназначено для оценки устойчивости прочностных свойств материалов, эксплуатируемых на открытом воздухе и подверженных действию светопогодных факторов, по показателю поступившей в зону расположения образцов энергии суммарной, прямой и рассеянной/солнечной радиации, снижающей разрывную нагрузку материала на 35% от исходной.

Изобретение относится к области строительства, в частности к определению изменения длительной прочности бетона во времени эксплуатируемых под нагрузкой в условиях внешней агрессивной среды бетонных и железобетонных конструкций.

Изобретение относится к сельскому хозяйству, в частности к агропочвоведению, и может быть использовано для воспроизводства дождя в лабораторных и полевых условиях. Портативная лабораторно-полевая дождевальная установка включает горизонтальную раму с панелью, емкость для воды, фильтр, подающий и напорный водоводы с вентилем, дождеватель, состоящий из последовательно закрепленных ниппеля, толстой гибкой трубки с хомутами, втулки и закрепленного в ней пучка тонких гибких трубок. Емкость для воды закреплена выше рамы на вертикальных стойках с подвесной скобой. Между напорным водоводом и ниппелем установлен поплавковый механизм, состоящий из корпуса с закрепленной на нем сбоку на дренажной трубке резиновой грушей с дренажным отверстием и последовательно установленных в нем гнезда иглы, иглы и поплавка с направителем. Каплеобразующие концы тонких гибких трубок дождевателя закреплены на горизонтальной панели по спирали Архимеда с одинаковым шагом. Техническим результатом изобретения является повышение равномерности и стабильности распределения дождя по площади полива и упрощение конструкции установки. 4 з.п. ф-лы, 3 ил.
Наверх