Способ испытания изделия на герметичность



Способ испытания изделия на герметичность

 


Владельцы патента RU 2515218:

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ "ГЕРМЕС" (RU)

Изобретение относится к области машиностроения, а именно к испытательной технике, и позволяет выполнять полный комплекс испытания изделий на герметичность. Изобретение расширяет технологические возможности испытания за счет использования различных контрольных газовых и жидких сред, а также повысить чувствительность и надежность контроля изделий с особо высокими требованиями по герметичности. Предложен способ испытания изделия на герметичность, заключающийся в том, что изделие 6 помещают в герметичную испытательную камеру 1, оснащенную системами охлаждения 3 и нагрева 4. После вакуумирования полости изделия 6 в нее подают контрольную среду, повышением температуры приводят контрольную среду в состояние сверхкритического флюида, затем выполняют операции регистрации и измерения потока проникающей в сквозных микронеплотностях изделия контрольной среды. Контрольную среду в виде газовой фазы сжиженного газа или в виде жидкости подают в полость изделия для испытания в количестве , где V - объем полости изделия, л; ρкр - критическая плотность вещества контрольной среды, кг/л; Рфл - необходимое давление сверхкритического флюида в полости изделия при испытании в диапазоне значений Ркр≤Рфл≤3Ркр, кгс/см2; Ркр - критическое давление вещества контрольной среды, кгс/см2; Ткр - абсолютное значение критической температуры вещества контрольной среды, К; Тфл - абсолютная температура сверхкритического флюида в полости изделия при испытании в диапазоне значений Ткр≤Тфл≤2Ткр, К. Подачу газовой фазы сжиженного газа с общим количеством Mo производят в полость изделия 6, предварительно охлажденного до температуры , при работающей системе теплосъема, при этом расход подаваемого газа: , где NQ - тепловая мощность системы съема тепла с поверхности изделия, кДж/с; tu - температура изделия при заполнении полости газом, °C; tпл - температура затвердевания контрольной среды в жидкой фазе; Clq - теплоемкость конденсированной контрольной среды при температуре , кДж/кг·град; r - теплота конденсации газовой фазы контрольной среды при температуре , кДж/кг; to - температура окружающей среды при испытании,°C. 1 з.п. ф-лы, 2 табл., 1 ил.

 

Изобретение относится к области машиностроения, а именно к испытательной технике, и позволяет выполнять полный комплекс испытания изделий на герметичность. Изобретение должно расширить технологические возможности испытания за счет использования различных контрольных газовых и жидких сред, а также повысить чувствительность и надежность контроля изделий с особо высокими требованиями по герметичности.

Известны технологические способы контроля герметичности и испытательные комплексы, в которых для контроля герметичности применяются масс-спектрометрические течеискатели при использовании в качестве контрольной среды гелия или аргона (см. ОСТ 92-1527-89 «Изделия отрасли. Методы испытания на герметичность с применением масс-спектрометрических течеискателей»). Основным недостатком таких способов является недостаточная надежность выявления неплотностей в связи возможностью закупорки микроканалов разнообразными технологическими жидкостями и загрязняющими веществами, с которыми осуществляется контакт поверхностей изделий в процессе изготовления. Контрольный газ не в состоянии разрушить или вытолкнуть из микроканалов сквозных неплотностей закупоривающие «пробки», поэтому транспирация его через закупоренные микроканалы невозможна и при испытании дефекты негерметичности не выявляются. В процессе эксплуатации готовых изделий при физико-химическом воздействии жидких рабочих сред закупоривающие «пробки» разрушаются, при этом происходит «раскрытие» микронеплотности и появляются утечки рабочих веществ, что приводит к негативным последствиям вплоть до полного отказа от дальнейшей эксплуатации изделия.

Применение при испытаниях контрольных жидкостей в таком случае более предпочтительно, поскольку они также способны растворять и разрушать закупоривающие «пробки» загрязнений и различных технологических жидкостей.

Известны способы и необходимые испытательные средства контроля герметичности изделий при нагружении их давлением жидкостей (ГОСТ 24054-80. «Изделия машиностроения и приборостроения. Методы испытания на герметичность. Общие требования»).

Однако при использовании жидкостей в качестве контрольной среды следует учитывать следующее:

- проникновение жидкой среды в микроканалы сквозных неплотностей достаточно малых размеров связано с необходимостью преодоления т.н. капиллярного сопротивления, обусловленного поверхностными силами, проявляющегося в наибольшей степени при несмачивании жидкостью поверхности микроканала в какой-либо зоне по его длине; при достаточно малых размерах сечения микроканала для преодоления капиллярного сопротивления требуются перепады давления, часто не совместимые с прочностными параметрами изделий;

- повышенная по сравнению с газами вязкость жидкости оказывает большое сопротивление ее течению в микропорах;

- на особо узких участках микроканала большое сопротивление течению жидкости оказывают структурные аномалии жидкости, вызываемые полем твердого тела (граничные эффекты).

Применение жидкостей в состоянии сверхкритического флюида позволяет исключить перечисленные недостатки.

Выполнение операции контроля герметичности при условии приведения контрольной среды в состояние сверхкритического флюида обеспечивает следующие преимущества:

- благодаря пониженной вязкости контрольной среды в сверхкритическом состоянии в сочетании с достаточно высокой ее плотностью чувствительность контроля герметичности повышается почти на порядок в сравнении контролем при использовании жидкой фазы контрольной среды; благодаря более высокому давлению флюида при испытании давлением паровой фазы сжиженного газа повышается также чувствительность (в ряде случаев очень значительно) в сравнении с вариантом применения в качестве контрольной среды ее паровой фазы;

- сверхкритический флюид имеет практически нулевое значение поверхностного натяжения, что облегчает его проникновение в микронеплотности предельно малых размеров;

- сверхкритический флюид обладает исключительно высоким растворяющим действием, что важно для эффективного разрушения маскирующих «пробок» в каналах сквозных микронеплотностей (остатки различных технологических веществ, жировые загрязнения, потовые загрязнения и т.п.), часто являющихся основной причиной не выявления дефектов герметичности газовыми методами (воздух, гелий, аргон, фреоны и т.п.).

В качестве иллюстрации в таблице 1 приведена обобщенная сравнительная информация о физико-технических качествах контрольных сред в состоянии газа, жидкости и сверхкритического флюида (см. «Сверхкритическая флюидная хроматография» под. ред. Р.Смита, М.: Мир, 1991).

Таблица 1
Проникающая контрольная среда в различных фазовых состояниях Плотность, г/л Вязкость, пуаз Коэффициент диффузии. см2
Газ ~1 (0,5…3,5)·10-4 0,01…1,0
Жидкость 800…1500 (0,3…2,4)·10-2 (0,5…2,0)·10-5
Сверхкритический флюид 200…900 (0,2…1,0)·10-3 (3,3…0,1)·10-4

Наиболее близким к предлагаемому может служить способ контроля герметичности по патенту РФ на изобретение №2386937, G01M 3/02, 2009 г., заключающийся в размещении изделия в герметичной испытательной камере, заполнении контролируемых элементов жидкостью, повышении ее температуры и давления до значений, приводящих жидкость в сверхкритическое состояние, выдержки, обнаружении утечки жидкости и измерения ее величины регистрацией содержания паров контрольной жидкости в объеме испытательной камеры сквозных микронеплотностях изделия контрольной среды.

Однако указанный способ не предлагает конкретных технических мер и рекомендаций по условиям достижения необходимого давления контрольной среды в сверхкритическом состоянии: количество контрольной среды, подаваемой в полость испытуемого изделия и температура нагрева должны быть вполне достаточными для получения сверхкритического флюида требуемого испытательного давления; не определены также метод и режимы перевода контрольной среды в полость изделия в газовой фазе, в результате возможны случаи недостаточного для перевода в состояние сверхкритического флюида количества контрольной среды, а также случаи, при которых давление среды после нагрева до и выше критической точки много превысит значение допустимого испытательного.

Кроме того, в отличие от ближайшего аналога реализуемая предлагаемым техническим решением схема заправки полости из газовой фазы сжиженного газа с последующей конденсацией в полости изделия обеспечивает наибольшую чистоту подаваемой контрольной среды от загрязнений, всегда присутствующих в сжиженном газе, что исключительно важно для достижения надежного выявления сквозных микродефектов на испытуемых изделиях.

Задачей предлагаемого изобретения является разработка способа испытания на герметичность изделий с условием использования в качестве контрольной среды жидкостей и сжиженных газов, приведенных в сверхкритическое состояние, определяющего необходимые режимы, параметры и условия осуществления испытания, обеспечивающего возможность достижения и контроля требуемого для испытания давления сверхкритической среды и повышение чувствительности и надежности контроля изделий с особо высокими требованиями по герметичности.

Задача решается за счет того, что в предлагаемом способе испытаний изделий на герметичность, заключающемся в том, что изделие помещают в герметичную испытательную камеру, оснащенную системами охлаждения и нагрева, подключают к магистралям подачи контрольной среды, после вакуумирования полости изделия в нее подают контрольную среду, повышением температуры приводят контрольную среду в состояние сверхкритического флюида, затем выполняют операции регистрации и измерения потока проникающей в сквозных микронеплотностях изделия контрольной среды, согласно изобретению контрольную среду в виде газовой фазы сжиженного газа или в виде жидкости подают в полость изделия для испытания в количестве Mo:

M o = V ρ к р Р ф л Р к р Т к р Т ф л , к г

где V - объем полости изделия, заполняемой контрольной средой, л;

ρкр - критическая плотность вещества контрольной среды, кг/л;

Рфл - необходимое давление сверхкритического флюида в полости изделия при испытании в диапазоне значений Ркр≤Рфл≤3Ркр, кгс/см2;

Ркр - критическое давление вещества контрольной среды, кгс/см2;

Ткр - абсолютное значение критической температуры вещества контрольной среды, К;

Тфл - абсолютная температура сверхкритического флюида в полости изделия при испытании в диапазоне значений Ткр≤Тфл<1,2Ткр, К.

Подачу газовой фазы сжиженного газа производят в полость изделия, предварительно охлажденного до температуры , при работающей системе теплосъема, при этом расход подаваемого газа:

G N Q r + C l q ( t o t u ) , к г / с , ( 1 )

где NQ - тепловая мощность системы съема тепла с поверхности изделия, кДж/с;

tu - температура изделия при заполнении полости газом, °C;

tпл - температура затвердевания контрольной среды в жидкой фазе;

Clq - теплоемкость конденсированной контрольной среды при температуре t = t o + t u 2 , кДж/кг·град;

r - теплота конденсации газовой фазы контрольной среды при температуре t = t o + t u 2 , кДж/кг;

to - температура окружающей среды при испытании, °C.

Причем после подачи газа контролируют его конденсацию по снижению давления в полости изделия до уровня P(tu), где

P(tu) - давление газа на линии насыщения при температуре изделия tu, кгс/см2.

Подачу контрольной жидкости с общим количеством подаваемой жидкости Mo производят при температуре изделия, равной температуре окружающей среды tu=to.

Отличительными признаками предлагаемого способа контроля герметичности являются следующие:

- для испытания изделия в его полость подают вполне определенное количество контрольной среды (газовой фазы сжиженного газа, жидкости) - M o = V ρ к р Р ф л Р к р Т к р Т ф л , к г , которое при повышении температуры до и выше критического значения Ткр≤Тфл≤1,2Ткр обеспечивает возможность перевода среды в состояние сверхкритического флюида с требуемым для испытания давлением Рфл в диапазоне значений Ркр≤Рфл≤3Ркр;

- подачу в полость изделия газовой фазы конденсированной контрольной среды с общим количеством Mo производят в полость изделия, предварительно охлажденного до температуры , при работающей системе теплосъема, при этом расход подаваемого газа:

G N Q r + C l q ( t o t u ) , к г / с , ( 2 )

где NQ - тепловая мощность системы съема тепла с поверхности изделия, кДж/с;

tu - температура изделия при заполнении полости газом, °C;

tпл - температура затвердевания контрольной среды в жидкой фазе;

Clq - теплоемкость конденсированной контрольной среды при температуре t = t o + t u 2 , кДж/кг·град;

r - теплота конденсации газовой фазы контрольной среды при температуре t = t o + t u 2 , кДж/кг;

tu - температура изделия при подаче в его полость контрольной среды.

to - температура окружающей среды при испытании,°C.

Пониженная температура изделия обеспечивает возможность конденсации подаваемого в полость изделия газа; понижение температуры изделия ниже температуры затвердевания контрольной среды tпл нежелательно, т.к. замороженный газ может перекрыть каналы его подачи в полость изделия; понижение температуры вполне возможно при использовании доступных средств охлаждения.

В сравнении с ближайшим аналогом (способ контроля герметичности по патенту РФ №2386937) предлагаемый способ определяет возможность применения при испытании дополнительно к контрольным жидкостям также и газовой фазы сжиженных контрольных газов, определяет количество заполняющей контрольной среды.

Сравнение заявляемого технического решения - способа контроля герметичности - с уровнем техники по научно-технической литературе и патентным источникам показывает, что совокупность существенных признаков заявленного решения не была известна. Следовательно, оно соответствует условию патентоспособности - «новизна».

Заявляемое решение может быть промышленно применимо, т.к. может быть изготовлено промышленным способом, осуществимо и воспроизводимо, следовательно, оно соответствует условию патентоспособности - «промышленная применимость».

Анализ известных технических решений в данной области техники показывает, что предлагаемые способ и устройство имеют признаки, которые отсутствуют в известных технических решениях, а использование их в заявленной совокупности признаков дает возможность получить новый технический эффект: обоснование вполне контролируемой по режиму проведения, надежной и высокочувствительной технологии испытания изделий на герметичность, следовательно, предлагаемое техническое решение имеет изобретательский уровень по сравнению с существующим уровнем техники.

Схема устройства для практической реализации предлагаемого способа контроля герметичности приведена на чертеже.

Устройство испытания изделий на герметичность включает герметичную испытательную камеру 1 с открывающейся крышкой 2 и снабжено системами охлаждения 3 и нагревания 4 испытуемого изделия. Охлаждение и нагревание изделия осуществляются циркуляцией в камере 1 охлажденного или подогретого газа (сухого воздуха), дополнительно может выполняться подогрев корпуса камеры термоэлектронагревателями 5. Контроль температуры изделия выполняется датчиками, закрепленными на его поверхности (на схеме не показаны). Контроль давления контрольной среды выполняется датчиком, подключенным к его полости, - мановакуумметром M1. Устройство обеспечено аппаратурой регистрации и измерения проникающей в объем испытательной камеры через неплотности изделия контрольной среды (на схеме не показаны). Перед началом испытания в испытательной камере устанавливается контролируемое изделие 6, полость его подключается к магистрали подачи контрольной среды 7, а также к магистрали измерения давления среды мановакуумметром M1. На магистрали 7 установлены фильтр Ф1, клапаны B1, В2 и В3, обратный клапан OKI, компрессор подачи газа 9 из батареи баллонов 10, а также устройство контроля расхода подаваемого газа 8. Манометры М2 и М3 предназначены для контроля давления на линии напуска контрольного газа. Клапаны В4, В5, В6 используются при замене баллонов сжиженного контрольного газа. Для подогрева баллонов с целью компенсации тепловых потерь при испарении сжиженного газа служит теплокалорифер 11 с вентилятором 12. Вакуумный насос 13 предназначен для удаления из полости изделия атмосферного воздуха перед заполнением ее контрольной средой. На линии откачки установлены клапан В7 и клапан 14, предохраняющий от попадания в насос высокого давления среды. Емкость 17 содержит жидкую контрольную среду, подаваемую в полость изделия через магистраль 18 с клапаном В8 и обратным клапаном ОК2. Уровнемер 16 предназначен для определения количества подаваемой в полость изделия контрольной жидкости. Магистраль 19 с клапаном В9 предназначена для слива из полости изделия контрольной жидкости по окончании испытания. Магистраль 20 с установленными на ней насосом 22 и клапанами В10 и B11 предназначена для перекачки из полости изделия использованного контрольного газа в баллонную батарею 10. Манометр М4 предназначен для контроля напора насоса при перекачке в баллоны сжиженного контрольного газа. Клапаны В16 и В17 предназначены для сброса давления газовой фазы контрольной среды в дренажную магистраль из полости изделия до атмосферного значения и напуска атмосферного газа в полость после удаления вакуумным насосом остатков контрольной среды.

Испытание на герметичность по предлагаемому способу с использованием описанного устройства выполняется следующим образом.

Испытываемое изделие 6 при открытой крышке 2 испытательной камеры 1 устанавливают в камере на специальной подставке (на схеме не показана), герметизируют заглушками все его отверстия (не показаны), затем с нижней части изделия через специальные переходники (не показаны) подключают полость изделия к магистрали 7 подачи контрольной среды, а также сообщают полость изделия с мановакуумметром M1. Крышку камеры закрывают и герметизируют.

Предварительно включают вакуумный насос 13, открывают клапан В7 и производят удаление атмосферного воздуха из полости изделия и достижение остаточного давления в полости не более 10-1 мм рт.ст. Клапан В7 закрывается, насос 13 выключается.

Перед подачей в полость изделия контрольного газа включают устройство охлаждения 3, открывают клапаны В12 и В13 и производят циркуляцию в объеме испытательной камеры охлажденного воздуха. Температура охлаждающего воздуха не должна быть ниже значения tпл для применяемого контрольного газа: при более низкой температуре возможно намораживание контрольного газа на внутренних поверхностях полости изделия и подающего трубопровода, в результате возможно полное перекрытие каналов его прохождения. Производят охлаждение контролируемого изделия до температуры охлаждающего газа. Контроль за температурой осуществляют с помощью термодатчиков, закрепленных на поверхности изделия.

При работающей непрерывно системе охлаждения выполняют операцию заполнения полости изделия конденсирующимся газом:

- открывают клапаны В4, В5 и В6 и контролируют давление газовой фазы манометром М3 (все клапаны до начала работы закрыты);

- включают калорифер 11 и вентилятор 12;

- открывают клапан В3, включают компрессор 9, открывают клапаны В2 и В1;

- клапаном В2 устанавливают расход газа, соответствующий тепловой мощности отбора тепла от изделия (см. соотношение 2), контроль расходомерным устройством 8;

- контролируют конденсацию газа в полости изделия по датчику давления M1, если давление в полости изделия не повышается более значения давления насыщения при температуре изделия, процесс перевода газовой фазы в жидкую осуществляется;

- подачу контрольного газа продолжают в течение времени, достаточного для заполнения полости изделия конденсатом в количестве Мо;

- по окончании подачи и конденсации контрольного газа закрывают клапаны B1, В2, В3, выключают компрессор 9;

- закрывают клапаны В12 и В13, выключают устройство охлаждения 3;

- выключают калорифер 11 и вентилятор 12.

Подачу в полость изделия контрольной жидкости выполняют при температуре окружающей среды. Для этого открывают последовательно клапаны В8 и В1, и контрольная жидкость начинает поступать в полость изделия, из которой предварительно удален воздух, под действием атмосферного давления. Контроль количества заправленной жидкости производят по показаниям уровнемера 16. При заполнении полости жидкостью в количестве Мо закрывают клапаны В8 и В1.

Для перевода среды в состояние сверхкритического флюида включают устройство нагрева 4, открывают клапаны В14 и В15, включают электротермонагреватели 5 и производят нагрев изделия до температуры в диапазоне Ткр≤Tu≤1,2Ткр. При этом сочетание установленных значений Tu и Mo обеспечивает достижение требуемой величины давления сверхкритического флюида Рфл. При достижении требуемой величины испытательного давления Рфл прекращают нагрев, закрывают клапаны В14 и В15.

После выдержки изделия в достигнутом сверхкритическом состоянии заполняющей контрольной среды в течение времени, достаточного для совершения процесса экстракции закупоривающих загрязнений из глубины микронеплотностей, приступают к операции собственно контроля герметичности. Выполняют операции по регистрации и измерению величины потока контрольной среды (газа или жидкости), истекающей через неплотности изделия. В продолжение выполнения операций контроля герметичности постоянство температуры изделия поддерживается благодаря теплоизоляции корпуса испытательной камеры, при значительной продолжительности испытаний возможна компенсация тепловых потерь функционированием системы наружного подогрева корпуса испытательной камеры нагревателями 5.

Метод и аппаратура контроля и измерения парциального давления паров контрольных жидкостей (концентрации паров или накопленного их количества) должны быть подобраны индивидуально для каждого из потенциально возможных вариантов, также должна быть проведена отработка соответствующей методики регистрации и измерения потоков проникающих контрольных сред.

Операции, выполняемые после проведения испытаний контрольными газами.

Включается устройство охлаждения 3, открываются клапаны В12 и В13, и производится охлаждение изделия циркулирующим холодным воздухом до первоначального значения. Включается насос 22, открываются клапаны В10 и B11, открываются клапаны В4, В5, В6, и производится перекачка сжиженного контрольного газа из полости изделия в баллонную батарею. По завершении процесса удаления жидкой фазы контрольного газа из полости изделия клапаны В4, В5, В6, В10 и B11 закрываются. Выключается насос 22. Остаточный газ при избыточном давлении из полости изделия сбрасывается в дренажную магистраль открытием клапана В16 до достижения атмосферного давления. Полное удаление остатков газа производится откачкой вакуумным насосом 13, после чего полость заполняется сухим инертным газом через клапан В17 и фильтр Ф2.

Операции, выполняемые после проведения испытаний контрольными жидкостями

Включается устройство охлаждения 3, открываются клапаны В12 и В13, и производится охлаждение изделия циркулирующим холодным воздухом до первоначального значения. Открывается клапан В9, и производится выпуск контрольной жидкости в емкость 17. По завершении процесса удаления жидкости из полости изделия клапан В9 закрывается. Остаточный пар при избыточном давлении из полости изделия сбрасывается в дренажную магистраль открытием клапана В16 до достижения атмосферного давления. Полное удаление газа производится откачкой вакуумным насосом 13, после чего полость заполняется сухим инертным газом через клапан В17 и фильтр Ф2.

В таблице 2 представлена информация по значениям температуры, измеряемой датчиками температуры (на схеме не показаны) и значениям давления среды в полости изделия (датчик давления M1) для различных применяемых контрольных сред. Достижение указанных значений свидетельствует о завершении процесса перевода контрольной среды в состояние сверхкритического флюида.

Таблица 2
Применяемая контрольная среда Температура изделия, °C Давление среды, кгс/см2
1 2 3
Этан C2H6 30,0…38,0 50,0…70,0
Пропан C2H8 100,0…125,0 42,0…58.0
Аммиак NH3 130,0…160,0 114,0…155,0
Гексафторид серы SF6 45,0…55,0 37.0…50.0
Хладон 113-C2F3Cl3 200,0…230,0 35.0…50,0
Хладон 141b-C2FCl2H3 200,0…220,0 40,0…50,0
Этанол (спирт этиловый) - C2H5OH 240,0…250,0 65,0…80,0
Изооктан - C8H18 270,0…300,0 25,0…35,0

Практическое применение предлагаемого устройства обеспечит высокую эффективность испытания герметичности изделий, например, ракетно-космической техники. Применение заявляемого устройства позволяет значительно расширить технологические возможности испытаний изделий, т.к. обеспечивает повышенный уровень надежности обнаружения сквозных микродефектов и повышает уровень чувствительности применяемых методов контроля герметичности.

1. Способ испытания изделия на герметичность, заключающийся в том, что изделие помещают в герметичную испытательную камеру, оснащенную системами охлаждения и нагрева, подключают к магистралям подачи контрольной среды, после вакуумирования полости изделия в нее подают контрольную среду, повышением температуры приводят контрольную среду в состояние сверхкритического флюида, затем выполняют операции регистрации и измерения потока проникающей в сквозных микронеплотностях изделия контрольной среды, отличающийся тем, что контрольную среду в виде газовой фазы сжиженного газа или в виде жидкости подают в полость изделия для испытания в количестве Мо:
M o = V ρ к р Р ф л Р к р Т к р Т ф л , к г , где
V - объем полости изделия, л;
ρкр - критическая плотность вещества контрольной среды, кг/л;
Рфл - необходимое давление сверхкритического флюида в полости изделия при испытании в диапазоне значений Ркр≤Рфл≤3Ркр, кгс/см2;
Ркр - критическое давление вещества контрольной среды, кгс/см2;
Ткр - абсолютное значение критической температуры вещества контрольной среды, К;
Тфл - абсолютная температура сверхкритического флюида в полости изделия при испытании в диапазоне значений Ткр≤Тфл≤1,2Ткр, К.

2. Способ по п.1, отличающийся тем, что подачу газовой фазы сжиженного газа с общим количеством Mo производят в полость изделия, предварительно охлажденного до температуры , при работающей системе теплосъема, при этом расход подаваемого газа:
G N Q r + C l q ( t o t u ) , к г / с , где
NQ - тепловая мощность системы съема тепла с поверхности изделия, кДж/с;
tu - температура изделия при заполнении полости газом, °C;
tпл - температура затвердевания контрольной среды в жидкой фазе;
Clq - теплоемкость конденсированной контрольной среды при температуре t = t o + t u 2 , кДж/кг град;
r - теплота конденсации газовой фазы контрольной среды при температуре t = t o + t u 2 , кДж/кг;
to - температура окружающей среды при испытании, °C.



 

Похожие патенты:

Изобретение относится к области диагностической техники и может быть использовано для систематического дистанционного контроля состояния магистральных газопроводов и хранилищ, а именно для раннего обнаружения нарушений герметичности, повреждений и утечки в газопроводе, и направлено на обеспечение улучшение условий выполнения мониторинга, повышение оперативности и достоверности измерения параметров состояния газовых трубопроводов, обеспечение возможности для мягкой посадки дистанционно-пилотируемого летательного аппарата путем автономного определения его модуля вектора скорости и угла сноса, что обеспечивается за счет того, что согласно изобретению дистанционно-пилотируемый летательный аппарат снабжен корреляционным измерителем скорости, подключенным к радиостанции радиотелеметрической системы, связанным с блоком управления бортовыми системами и выполненным в виде передатчика с передающей антенной и трех приемников с приемными антеннами, причем к выходу первого приемника последовательно подключены первый перемножитель, второй вход которого через первый блок регулируемой задержки соединен с выходом второго приемника, первый фильтр нижних частот и первый экстремальный регулятор, выход которого соединен с вторым входом первого блока регулируемой задержки, к второму выходу которого подключен первый индикатор скорости, к выходу первого приемника послендовательно подключены второй перемножитель, второй вход которого через второй блок регулируемой задержки соединен с выходом третьего приемника, второй фильтр нижних частот, и второй экстремальный регулятор, выход которого соединен с вторым входом второго блока регулируемой задержки, к второму выходу которого подключен второй индикатор скорости, передающая и приемные антенны выполнены рупорными, диаграмма направленности передающей рупорной антенны направлена вертикально вниз, диаграммы направленности приемных рупорных антенн несколько смещены, для того, чтобы все антенны освещали один и тот же участок на земной поверхности, вдоль продольной базы на борту размещены на расстоянии d0/2 первая приемная антенна и передающая антенна, где d0 - длина продольной базы, первой и второй приемными антеннами образована первая приемная база, первой и третьей приемными антеннами образована вторая приемная база, приемные базы развернуты на угол 2α, где α - угол между продольной базой и приемной базой, вторая и третья приемные антенны размещены на расстоянии b, где b - поперечная база.

Изобретение относится к области контроля герметичности изделий и направлено на повышение стабильности калибровки газоаналитических течеискателей за счет использования частотных методов управления молекулярным расходом, что обеспечивается за счет того, что измерительный объем заполняют пробным газом под испытательным давлением и соединяют с камерой сброса давления.

Изобретение относится к области применения беспилотных летательных аппаратов (БПЛА) и может быть использовано для систематического дистанционного контроля состояния нефте- и газопроводов, хранилищ, высоковольтных ЛЭП и других протяженных объектов.

Изобретение относится к области испытаний ракетно-космической техники, может быть использовано для контроля герметичности корпуса космического аппарата и поиска места течи из отсеков космического аппарата в условиях орбитального полета или в процессе вакуумных испытаний и направлено на упрощение диагностики негерметичности корпуса космического аппарата, повышение ее точности и сокращение времени поиска места течи, что обеспечивается за счет того, что создают давление воздуха внутри корпуса космического аппарата и вывод о наличии локальной негерметичности делают с использованием чувствительной среды, в качестве чувствительной среды применяют индикаторные дискретные частицы, запускаемые с заданным шагом вдоль поверхности его корпуса и меняющие свои траектории под воздействием газового потока из течи, производят измерение отклонения положения мест ударов этих частиц о чувствительный экран-мишень, устанавливаемый под заданным углом для отражения их в ловушку, и регулируют чувствительность измерений изменением начальных скоростей индикаторных дискретных частиц и расстояния между источником, запускающим индикаторные дискретные частицы, и экраном-мишенью.

Изобретение относится к области испытательной техники и может быть использовано в наземных испытаниях изделий на прочность и герметичность, а также в качестве контрольной операции подтверждения качества изготовления крупногабаритных криогенных емкостных конструкций, преимущественно топливных баков ракет-носителей, спроектированных с учетом криогенного упрочнения и нагруженных внутренним давлением в условиях криогенного захолаживания.

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники.

Изобретение относится к области испытательной техники и направлено на создание простого и безопасного для операторов, работающих в герметично изолированных от внешних сред обитаемых помещениях, оперативного способа определения местонахождения негерметичного участка гидравлической магистрали системы терморегулирования объекта после установления факта негерметичности, что обеспечивается за счет того, что при осуществлении способа определения местоположения негерметичного участка замкнутой гидравлической магистрали, снабженной побудителем расхода и гидропневматическим компенсатором температурного изменения объема рабочего тела, снижают давление среды в газовой полости гидропневматического компенсатора до уровня стабилизации этого давления в пределах погрешности измерения.

Изобретение относится к области приборостроения и может быть использовано для дистанционного контроля состояния магистральных газопроводов и хранилищ с помощью диагностической аппаратуры, установленной на носитель - дистанционно-пилотируемый летательный аппарат (ДПЛА).

Изобретение относится к области испытательной техники и может быть использовано для определения значения негерметичности агрегатов при воздействии вибрации, в том числе при резонансах его подвижных элементов, и направлено на повышение точности определения значения негерметичности агрегатов, что обеспечивается за счет того, что определяют негерметичность с использованием показаний датчика перепада давления, при этом согласно изобретению момент начала работы датчика перепада давления и момент начала работы программы вибростенда по вибровоздействию на агрегат синхронизируют по времени, выбирают показания перепада давления в условиях изменения перегрузок от начала и до конца повышения давления и судят о негерметичности агрегата по величине расхода газа, используя для определения расхода газа среднее значение его в диапазоне виброперегрузок за выбранный промежуток времени.

Изобретение относится к области тестирования на герметичность и может быть использовано для тестирования на герметичность фильтрованного устройства (2) для сепарации аэрозолей и пылей из объемного потока газа. Сущность: посредством загрузочного устройства (16) тестовый аэрозоль подают, если смотреть в направлении потока, до фильтрующего элемента (9) в поток неочищенного газа. Осуществляют замер числа частиц и/или определяют концентрацию частиц, если смотреть в направлении потока, в очищенном потоке газа после фильтрующего элемента (9). При этом в загрузочное устройство (16) подают первый смешанный объемный поток из тестового аэрозоля и сжатого воздуха, который формирует аэрозольный генератор (37). Произведенный при помощи аэрозольного генератора (37) первый смешанный объемный поток смешивают с объемным потоком воздуха для получения второго, более разреженного смешанного объемного потока. Подают второй, более разреженный смешанный объемный поток на загрузочное устройство (16). Технический результат: минимизация расхода сжатого воздуха. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к способам теплового контроля герметичности и может быть использовано для контроля герметичности крупногабаритных сосудов, например котлов железнодорожных цистерн. Сущность: непрерывно подают в сосуд водяной пар (рабочее тело), поддерживая постоянство уровней внутреннего давления и температуры рабочего тела. Сканируют поверхность сосуда с регистрацией температурного контраста теплочувствительным устройством. Причем ось визирования теплочувствительного устройства устанавливают наклонно к контролируемой поверхности. Рассчитывают изменение температуры в зависимости от установленного допустимого размера течи. Сравнивают значения изменений измеренной температуры контролируемой поверхности с расчетным значением изменения температуры. При превышении расчетного значения температуры над измеренным значением судят о наличии дефекта и его местоположении на поверхности. Технический результат: повышение достоверности обнаружения течи. 2 ил.

Изобретение относится к газодобывающей промышленности. Техническим результатом является упрощение контроля герметичности, что приводит к повышению надежности и безопасности эксплуатации подземных хранилищ газа (ПХГ). В предлагаемом способе осуществляют циклическое воздействие на пласт, при котором каждый цикл включает закачку газа в пласт с последующим отбором газа. Воздействие на пласт осуществляют, по меньшей мере, в течение 10 циклов. В каждом цикле периодически одновременно измеряют текущее пластовое давление ( P t ф ) и объем отбора (или закачки) газа. С учетом измеренных параметров определяют расчетное давление в ПХГ ( P t Р ) для режима эксплуатации хранилища без утечек газа и для режима эксплуатации хранилища с утечками газа. Затем определяют функцию (F) как среднеарифметическое значение отклонений ( P t Р ) от ( P t ф ) , полученных при каждом i-м измерении, для режима эксплуатации хранилища без утечек газа и функцию (Fy) для режима эксплуатации хранилища с утечками газа и при выполнении неравенства Fy<F делают вывод о наличии утечек газа в хранилище. 1 табл.

Изобретение относится к измерительной технике. Предназначено для исследования способов восстановления трубопроводов преимущественно внутренними рукавными (трубчатыми) покрытиями, наносимыми пневматическим или гидравлическим давлением. Заявленный стенд для исследования оборудования и процессов бестраншейного ремонта трубопроводов включает установленные на основании исследуемую трубу, в которой расположен исследуемый гибкий сложенный вдвое выворотом рукав, внешняя кромка которого закреплена на трубе, систему создания давления на рукав и динамический механизм в виде подвижного груза на блоке и динамометра растяжения, установленных съемно с возможностью автономного соединения с внутренней кромкой рукава, при этом источник давления на рукав представляет собой компрессионную цилиндрическую камеру, смонтированную с возможностью автономного соединения с компрессором и с гидравлической рециркуляционной системой и соединенную с исследуемой трубой в месте крепления внешней кромки рукава посредством сменной насадки, а также оборудованную соединенным с компрессором пневматическим затвором, состоящим из корпуса и внутренней эластичной манжеты с возможностью перемещения в ней рукава, внутренняя кромка которого присоединена к динамическому механизму, кроме того, компрессионная камера оборудована укрепленными неподвижно на центральном валу, перпендикулярном центральной оси исследуемой трубы, намоточными катушками - внутренней, с возможностью намотки рукава его внутренней кромкой, и внешней, с возможностью автономного соединения с подвижным грузом или с динамометром растяжения динамического механизма. Технический результат заключается в обеспечении многовариантного определения напора и средней скорости течения воды, потери напора, поправочного коэффициента Кориолиса, коэффициента гидравлического трения при различных сочетаниях нагрузок на различных моделях труб и рукавов. 9 з.п. ф-лы, 4 ил.

Изобретение относится к газодобывающей промышленности. Техническим результатом является упрощение контроля герметичности, что приводит к повышению надежности и безопасности эксплуатации ПХГ, созданных в водоносных пластах. В предлагаемом способе осуществляют циклическое воздействие на пласт, при котором каждый цикл включает закачку газа в пласт с последующим отбором газа. Воздействие на пласт осуществляют, по меньшей мере, в течение 10 циклов. В каждом цикле периодически одновременно измеряют текущее пластовое давление в газовой ( P t ф ) и водоносной ( P t ф в ) зоне хранилища, а также объем отбора (или закачки) газа, затем с учетом измеренных параметров определяют расчетное давление в ПХГ ( P t P ) для режима эксплуатации хранилища без утечек газа и для режима эксплуатации хранилища с утечками газа. Затем определяют функцию (F), как среднеарифметическое значение отклонений ( P t P ) от ( P t ф ) , полученных при каждом i-м измерении, для режима эксплуатации хранилища без утечек газа и функцию (Fy) для режима эксплуатации хранилища с утечками газа и при выполнении неравенства Fy<F делают вывод о наличии утечек газа в хранилище. 1 табл.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для контроля герметичности корпуса космического аппарата (КА) и поиска места течи из его отсеков в условиях орбитального полета или в процессе вакуумных испытаний. Сущность: создают давление воздуха внутри корпуса КА. Обдувают части корпуса КА пробным мелкодисперсным веществом с малым временем полной сублимации в условиях испытаний (например, углекислым газом в твердой форме). Обнаруживают локальную негерметичность корпуса КА посредством регистрации изменения линий тока полностью испаряющегося после испытаний пробного мелкодисперсного вещества под воздействием выходящего из корпуса газа. Технический результат: повышение точности и оперативности поиска места течи. 1 ил.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для определения герметичности работающих под внешним давлением изделий, в частности изделий космической техники. Сущность: вакуумируют внутреннюю полость изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе. Отсоединяют изделие от испытательной системы, продолжая вакуумировать испытательную систему. Измеряют первое установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы. Подсоединяют к испытательной системе калиброванную течь. Измеряют установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы и потока газа от калиброванной течи. Отсоединяют от испытательной системы калиброванную течь. Соединяют изделие с испытательной системой. Измеряют установившееся равновесное давление, соответствующее поступлению в испытательную систему потока от негерметичности изделия и собственного потока газоотделения и натекания испытательной системы. Отсоединяют изделие от испытательной системы. Измеряют второе установившееся равновесное давление, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы. Определяют величину негерметичности изделия на основании величины потока газа от калиброванной течи и величин упомянутых давлений. При этом после вакуумирования внутренней полости изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе и отсоединения изделия от испытательной системы отсоединяют от средств вакуумирования сообщающийся с калиброванной течью участок испытательной системы известного объема. Причем калиброванную течь подсоединяют к участку испытательной системы известного объема. Измеряют поток газа от калиброванной течи по создаваемой им скорости нарастания давления в участке испытательной системы известного объема. Отсоединяют калиброванную течь от участка испытательной системы известного объема. После этого подсоединяют к средствам вакуумирования участок испытательной системы известного объема и захолаживают охлаждаемую ловушку средств вакуумирования. При этом измерения всех установившихся равновесных давлений, подсоединение и отсоединение калиброванной течи и изделия осуществляют после захолаживания охлаждаемой ловушки средств вакуумирования. Причем температура охлаждаемой ловушки средств вакуумирования должна быть равной температуре на рабочем месте. Технический результат: повышение точности определения герметичности изделий, повышение долговечности изделий при эксплуатации. 1 ил.

Изобретение относится к вакуумной технике, а именно к статическим магнитным масс- спектрометрическим анализаторам со 180-градусным поворотом и двойной магнитной фокусировкой, и может быть использовано в газовых течеискателях, в том числе гелиевых, предназначенных для испытания на герметичность различных систем и объектов, допускающих откачку внутренней полости до глубокого вакуума или заполнение ее гелийсодержащей смесью или другим пробным газом под избыточным давлением. Технический результат - повышение надежности и увеличение срока службы масс-спектрометрического анализатора; снижение вакуумных требований. Масс-спектрометрический анализатор газового течеискателя содержит вакуумную камеру с присоединительными фланцами, внутри которой размещены: источник ионов пробного газового вещества, состоящий из источника электронов и камеры ионизации; магнитная система, обеспечивающая разделение ионов по массам; приемник ионов. При этом в качестве источника электронов использован плазменный катод на основе плазмы тлеющего разряда, представляющий собой помещенную в аксиальное магнитное поле ячейку Пеннинга с эмиттером электронов, выполненным в виде щели для формирования ленточного электронного пучка в антикатоде ячейки, со стороны камеры ионизации. Предпочтительно, чтобы в центральной части анода ячейки Пеннинга были выполнены отверстия для «подкачки» остаточного газа из вакуумной камеры. 7 з.п. ф-лы, 4 ил.

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники. Сущность: устройство содержит корпус (1) с расточкой (3), сообщенной с внутренней полостью (4) корпуса (1). В уплотнительных канавках (8, 9) расточки (3) размещен палец (5), два радиальных уплотнительных кольца (6, 7) из эластомерного материала. На корпусе (1) размещен штуцер (11) подвода текучей среды с каналом (12), выходящим во внутреннюю полость расточки (3) на участке между уплотнительными канавками (8, 9). Палец (5) установлен с возможностью осевого перемещения относительно корпуса (1) и фиксации в двух положениях: в исходном - при котором канал (12) штуцера (11) сообщен с внутренней полостью (4) корпуса (1), и конечном - при котором канал (12) штуцера (11) изолирован от внутренней полости (4). Устройство содержит также упор (15) для ограничения осевого перемещения пальца (5) в его конечном положении. Вся наружная поверхность (10) пальца (5) выполнена цилиндрической. Упор (15) для ограничения осевого перемещения пальца (5) в его конечном положении выполнен в расточке (3) и размещен между первой (8) уплотнительной канавкой и внутренней полостью (4). Дальний от внутренней полости (4) конец (16) пальца (5) выполнен плоским и перпендикулярным цилиндрической поверхности (16) пальца (5). Технический результат: упрощение конструкции, уменьшение ее габаритов и массы. 2 ил.

Заявленное изобретение относится к аэрокосмической технике и, в частности, к современным летательным аппаратам, в которых используется поток горячего сжатого воздуха, отбираемого из двигателей для использования на борту в разных целях. Устройство обнаружения утечек для изолированного трубопровода, по которому проходит горячий воздух под давлением, причем устройство содержит: кожух, закрепленный над круговым вырезом в изоляции трубопровода или над соединением секций трубопровода, в результате чего формируется камера для газов, выходящих из трубопровода или из соединения; коллектор, в котором сформирован канал, сообщающийся с камерой, содержащей горячий воздух; и крышку для фиксации термочувствительных проволок на конце канала коллектора, так что горячий воздух, выходящий из камеры, попадает непосредственно на эти проволоки. Устройство обнаружение утечек содержит также механизм управления потоком в корпусе коллектора для предотвращения ложных тревог, которые могут возникать в результате допустимой утечки при штатной работе трубопровода. Технический результат - повышение достоверности определения утечек через трещину. 2 н. и 8 з.п. ф-лы, 16 ил.
Наверх