Способ и устройство для получения сырьевого синтез-газа

Авторы патента:


Способ и устройство для получения сырьевого синтез-газа
Способ и устройство для получения сырьевого синтез-газа
Способ и устройство для получения сырьевого синтез-газа

 


Владельцы патента RU 2515325:

СИМЕНС ФАИ МЕТАЛЗ ТЕКНОЛОДЖИЗ ГМБХ (AT)

Изобретение относится к области химии. Для получения газа, содержащего водород и моноксид углерода, источник отгружаемого газа с металлургических процессов трубопроводом соединен с конвертером 7, чтобы по меньшей мере часть отгружаемого газа можно было подвергнуть конверсии CO при добавлении водяного пара с образованием сырьевого синтез-газа. Источник отгружаемого газа, кроме того, трубопроводом соединен с парогенератором 10, чтобы следующую часть отгружаемого газа можно было по меньшей мере частично сжигать в парогенераторе 10 с образованием водяного пара. Образованный водяной пар по линии пара 9a подводят в конвертер 7. Для промежуточного хранения части отгружаемого газа перед его сжиганием в парогенераторе 10 предусмотрен резервуар 22, чтобы можно было компенсировать колебания количества и/или теплоты сгорания в отгружаемом газе. Изобретение позволяет утилизировать отгружаемый газ и использовать его как исходное сырье для процессов химического синтеза. 2 н. и 29 з.п. ф-лы, 3 ил.

 

Изобретение относится к способу и устройству для получения газа, содержащего водород (H2) и моноксид углерода (CO), как исходного материала для химической утилизации в процессах синтеза на основе отгружаемого газа с металлургического процесса, причем по меньшей мере часть отгружаемого газа в конвертере подвергается конверсии CO при добавке водяного пара, и образуется сырьевой синтез-газ с определенным количественным отношением H2 к CO.

Из уровня техники известно, что отгружаемый газ с металлургических установок можно подавать на утилизацию, причем, в частности, может применяться термическая утилизация, например сжигание, или его давление может использоваться в турбодетандере. Далее отгружаемый газ после подготовки может применяться, например, для прямого восстановления оксидных материалов.

Однако при этом возникает проблема, что эффективность термической утилизации является низкой, или что требуются затратные процессы обработки отгружаемого газа или продуктов сгорания.

Поэтому задачей изобретения является разработать способ и устройство, которые позволяют химически утилизовать отгружаемый газ и тем самым могут предоставить в распоряжение отгружаемый газ как ценный материал и как исходное сырье для процессов химического синтеза.

Согласно изобретению эта задача решена способом по п.1 и устройством по п.25 формулы изобретения.

Благодаря способу по изобретению способность отгружаемого газа к воспламенению и тем самым теплосодержание, выраженное в теплоте сгорания, используются для создания водяного пара, причем водяной пар используется для регулирования количественного отношения H2 к CO в конвертере. Водяной пар, требующийся для конверсии CO, может по меньшей мере частично создаваться в самом процессе, в по меньшей мере одном парогенераторе. Таким образом, отгружаемый газ с металлургического процесса может использоваться для химической утилизации, так как он имеет высокое содержание CO и H2. При соответствующих условиях реакции целенаправленным добавлением водяного пара можно устанавливать желательное отношение CO к H2. Для этого используется известный принцип конверсии CO, при которой оказывается воздействие на химическое равновесие реакции водяного пара между CO+H2O и CO2+H2.

Согласно одному выгодному воплощению способа по изобретению металлургический способ является способом восстановительной плавки, который работает с доменной печью или плавильным газификатором, соединенным с по меньшей мере одним восстановительным агрегатом, в частности восстановительной шахтой или реактором с псевдоожиженным слоем, причем содержащее оксид железа сырье, в частности железная руда, окатыши или спек, и добавки восстанавливаются с образованием восстановительного газа и впоследствии выплавляются с получением жидкого чугуна.

Способы восстановительной плавки создают в процессе восстановительный газ, который используется для восстановления сырья, здесь, в частности: для восстановления в основном оксидных руд, как, например, железные руды. Для этого в процессе газифицируется, например, уголь или кокс и образуется восстановительный газ. Газификация угля может проходить в доменной печи или в плавильном газификаторе, причем в последнем случае восстановительный газ, при необходимости после очистки, втекает в восстановительный агрегат, и при прямом контакте с сырьем идет процесс восстановления. Помимо способа с единственным восстановительным агрегатом может применяться также несколько соединенных последовательно восстановительных агрегатов, например несколько реакторов с псевдоожиженным слоем. Здесь восстановительный газ движется от одного реактора с псевдоожиженным слоем к другому в направлении, противоположном направлению течения сырья.

Согласно изобретению отгружаемый газ берется из колошникового газа доменной печи или восстановительной шахты, или из отходящего газа реактора с псевдоожиженным слоем, или из избыточного газа плавильного газификатора, или из смесей этих газов. Под колошниковым газом понимается восстановительный газ после его прямого контакта с сырьем и прошедшего при этом непрямого восстановления. Отходящим газом специалист обозначает восстановительный газ, который отбирается из реактора с псевдоожиженным слоем, в частности из последнего в ряду соединенных последовательно реакторов с псевдоожиженным слоем. Благодаря обычно высокому содержанию CO и H2 в колошниковом газе или отходящем газе он годится для применения в процесса синтеза. Так как количество восстановительного газа, образующегося в плавильном газификаторе, не постоянно во времени, в отгружаемый газ нужно добавлять так называемый избыточный газ. Количество избыточного газа определяется на основе требующегося в восстановительном агрегате количества восстановительного газа и на основе регулирования давления в системе плавильного газификатора.

Согласно одному особенному выгодному воплощению способа по изобретению водяной пар образуется в парогенераторе в результате сжигания по меньшей мере одной следующей части отгружаемого газа, и/или в результате использования отходящего тепла с металлургического процесса, и/или с конверсии CO, и/или с процессов синтеза. Водяной пар, требующийся для конверсии CO, можно получить, с одной стороны, сжиганием отгружаемого газа, а с другой стороны, использованием отходящего тепла. В результате по меньшей мере частичного сжигания отгружаемого газа можно существенно сэкономить при получении водяного пара. Кроме того, выгодно, что токсичные фракции в отгружаемом газе разлагаются при сжигании. При этом, в частности, применение отходящего тепла может осуществляться, например, с помощью теплообменника с металлургического процесса, с конверсии CO или можно использовать тепло образованного при этом сырьевого синтез-газа или тепло с процессов синтеза, чтобы образование водяного пара могло протекать с высокой эффективностью использования энергии. При этом можно использовать один или несколько парогенераторов, причем в случае использования отходящего тепла они могут быть выполнены, например, как теплообменники.

Далее имеется возможность перед использованием отгружаемого газа в конвертере добавлять в него, в так называемом сатураторе, воду, предпочтительно горячую, и при этом повышать содержание водяного пара в отгружаемом газе. Предпочтительно, для этого может использоваться конденсат из конвертера или теплообменников за конвертером. Благодаря применению сатуратора можно заметно снизить необходимое количество подачи пара.

Согласно следующему выгодному воплощению способа по изобретению колошниковый газ и/или отходящий газ, в частности сухой, обеспыленный и/или очищенный путем мокрого обеспыливания, охлаждают, при необходимости в парогенераторе, работающем на отходящем тепле, или в теплообменнике, или в устройствах кондиционирования (например, распылением воды через сопла, распыляющие два вещества) и предоставляют в распоряжение как отгружаемый газ. Теплосодержание отгружаемого газа можно использовать посредством теплообменника, чтобы можно было предоставить для конверсии CO горячий или же по существу холодный отгружаемый газ. При применении обеспыленного сухим способом и тем самым горячего колошникового газа и/или горячего отходящего газа его теплосодержание можно использовать для конверсии CO, чтобы перед конверсией СО не могло происходить никакого нагревания или происходило лишь незначительное нагревание.

Согласно одному особому воплощению способа по изобретению отгружаемый газ перед его подачей в конвертер или после его вывода из конвертера сжимается в устройстве сжатия, при необходимости после отделения полиароматических углеводородов от отгружаемого газа. Сжатием задается давление для конверсии CO или для возможных следующих обработок образующегося при конверсии CO сырьевого синтез-газа. При сжатии происходит повышение температуры сжимаемого газа, причем в большинстве способов конверсии CO это выгодно, так как уже разогретый газ больше не нужно так сильно нагревать. Благодаря отделению полиароматических углеводородов из отгружаемого газа удаляются смоляные компоненты, так что можно избежать вредного влияния на сжатие и конверсию CO.

Согласно одному подходящему воплощению способа по изобретению конверсия CO проводится при необходимости после нагрева отгружаемого газа, в частности, при температурах 300-450°C. Горячая конверсия CO (например, с применением катализаторов на основе железа, хрома или кобальта) дает то преимущество, что она не имеет высокой чувствительности к сере или соединениям серы, таким, например, как H2S, так что может содержаться до 100 в.ч./млн серы, и, кроме того, поэтому годятся также обычно имеющиеся в отгружаемых газах соединения серы.

Преимуществом отгружаемого газа с процесса восстановительной плавки в отличие от отгружаемого газа с обычных процессов газификации угля в стационарном слое, в потоке или в превдоожиженном слое является то, что он имеет очень низкое содержание серы. Сера, вводимая с сырьем и добавками, в основном удаляется посредством добавок и через шлаки установки восстановительной плавки отводится с процесса получения железа. Таким образом, содержание серы в отгружаемом газе, обычно в связанном виде, как H2S и COS, заметно меньше, чем в известных процессах газификации угля. Поэтому перед конверсией CO не нужно проводить отдельного обессеривания, так как отгружаемый газ уже содержит достаточно малое количество серы, иногда меньше 100 ч/млн по объему.

Согласно одному выгодному воплощению способа по изобретению сырьевой синтез-газ охлаждается в одном или нескольких теплообменниках, работающих как подогреватели, и/или с помощью радиатора водяного охлаждения, и/или работающего на отходящем тепле парогенератора, для установки температуры. После окончания конверсии CO отходящее тепло сырьевого синтез-газа, который теперь уже находится при желаемом количественном отношении H2 к CO, может использоваться в обычных теплообменниках, а также для получения водяного пара.

Согласно изобретению сырьевой синтез-газ сначала охлаждают и затем проводят процесс разделения, в частности процесс абсорбции, предпочтительно физической абсорбции, или химической абсорбции, или физико-химической абсорбции, где из сырьевого синтез-газа удаляются сера и CO2, по меньшей мере частично, в частности по существу полностью.

Известными физическими способами абсорбции являются процесс Rectisol® или Selexol, известными химическими способами абсорбции являются промывка аминами или процесс Бенфилда, а в качестве физико-химической абсорбции известен процесс "Сульфинол".

Для химической утилизации в процессах синтеза, как, например, получение аммиака, метанола, метана, или при производстве оксо-спиртов требуется получить как можно более чистую смесь CO-H2 при определенном отношении H2/CO. Реализуя известные способы, можно почти полностью удалить CO2 и серу, так что можно установить содержание H2S, в расчете на объем, до 1 ч/млн. Обычно такие способы работают при низких температурах, чтобы охлаждением можно было установить требующуюся для процесса температуру газа. Способы разделения в большинстве случаев требуют сжатия, чтобы установить необходимые для процесса разделения парциальные давления, в частности достаточно высокое парциальное давление CO2. Например, в процессе Rectisol требуется минимальное парциальное давление CO2 pCO2=6 бар. Для этого сырьевой синтез-газ сжимают до примерно 10-35 бар(м). Под бар(м) понимается относительная единица давления "бар по манометру".

Согласно одному особому воплощению способа по изобретению обработанный в процессе разделения сырьевой синтез-газ нагревают, в частности до температуры 200-400°C, и обессеривают, при необходимости на следующей ступени тонкого обессеривания, в частности с помощью оксида цинка или активированного угля. Дополнительная ступень тонкого обессеривания позволяет дополнительно снизить содержание серы в сырьевом синтез-газе до очень низкого остаточного содержания, ниже 0,02 ч/млн H2S, в расчете на объем, как это требуется, например, для получения метанола с <0,1 ч/млн. Благодаря нагреванию устанавливается оптимальная для обессеривания температура процесса, примерно 200-400°C. В качестве ступени тонкого обессеривания можно использовать, например, способ абсорбции на оксиде цинка или активированном угле и т.д.

Согласно одному особому воплощению способа по изобретению отходящее тепло, аккумулированное при охлаждении сырьевого синтез-газа в теплообменнике, можно использовать для нагрева обработанного в процессе разделения сырьевого синтез-газа. Благодаря использованию отходящего тепла можно осуществить эффективный нагрев обработанного сырьевого синтез-газа.

Один особенно выгодный вариант способа по изобретению предусматривает, чтобы водяной пар, получаемый при охлаждении в парогенераторе на отходящем тепле, подавался в конвертер для использования в конверсии CO. Этим можно снизить потребность в энергии для получения водяного пара.

Одно особое воплощение способа по изобретению предусматривает, чтобы сырьевой синтез-газ, в частности обработанный в процессе разделения, нагревался в теплообменнике до температуры 200-450°C. При этом с выгодой можно использовать тепло, которое скапливается при охлаждении сырьевого синтез-газа в теплообменнике перед его обработкой в процессе разделения. При этом сырьевой синтез-газ нагревается до температуры, необходимой для дальнейшего процесса синтеза.

Согласно одному предпочтительному воплощению способа по изобретению сырьевой синтез-газ при необходимости перед следующей ступенью тонкого обессеривания и/или перед процессом синтеза сжимается в компрессоре. Сжатие осуществляется до уровня давления, требующегося в соответствующем процессе синтеза. Происходящий при сжатии сырьевого синтез-газа нагрев снижает необходимость в подводе энергии, чтобы довести сырьевой синтез-газ до температуры процесса, требующейся на ступени тонкого обессеривания и/или в последующем процессе синтеза.

Согласно одному особому воплощению способа по изобретению выделенная сера отделяется от выделенного CO2 в устройстве регенерации серы, причем оставшийся CO2 можно использовать в металлургическом процессе вместо азота, в частности как затворный газ от атмосферы. Чтобы CO2, выделенный из сырьевого синтез-газа, можно было технически неограниченно применять, нужно его обессерить. При этом можно применять, например, способ окисления сероводорода (LO-CAT II), причем сера отделяется в виде осадка на фильтре. Обессеренный CO2 можно теперь использовать в технических приложениях, например, как затворный газ для уплотнения технологических агрегатов от атмосферы или же выпускать в атмосферу.

Согласно следующему выгодному особому воплощению способа по изобретению следующая часть отгружаемого газа перед его сжиганием в парогенераторе временно хранится в резервуаре для газа для компенсации колебаний количества и/или теплоты сгорания отгружаемого газа. Для максимально равномерной работы парогенератора требуется предоставить отгружаемый газ, который имеет по существу постоянную теплоту сгорания и присутствует в постоянном количестве. Чтобы можно было удовлетворить этим условиям, отгружаемый газ временно хранится в резервуаре для газа, при этом можно компенсировать колебания теплоты сгорания и объема. Благодаря достаточно большому объему резервуара для газа можно достичь по существу постоянного снабжения парогенератора.

Согласно изобретению часть отгружаемого газа отводится в другие нагревательные устройства для применения в качестве горючего газа. Благодаря этому можно применять оставшееся количество отгружаемого газа, которое не используется для получения водяного пара или для конверсии CO, причем наряду с термической утилизацией возможно также использование кинетической энергии газа.

Согласно одному выгодному оформлению способа по изобретению количественное отношение H2 к CO, и/или давление, и/или температура сырьевого синтез-газа устанавливаются в зависимости от процесса синтеза, в котором обрабатывается синтез-газ. Процессы синтеза работают при очень разных давлениях, температурах и с разными количественными отношениями H2 к CO. При этом, например, при получении метанола требуется количественное отношение H2 к CO от 2,0 до 2,3, или, по-другому, отношение (H2-CO2)/(CO+CO2), равное 2,03, а например, при синтезе спирта требуется количественное отношение от 1,0 до 1,2. Поэтому благодаря гибкости способа можно точно подстраивать сырьевой синтез-газ к соответствующему процессу синтеза.

Согласно одному выгодному оформлению способа по изобретению по меньшей мере часть образованного в парогенераторе водяного пара подается как энергоноситель на процесс разделения, причем проводится термическое удаление абсорбированного CO2 из применяемой в процессе разделения поглощающей жидкости. Благодаря использованию водяного пара из парогенератора процесс разделения можно осуществлять с очень высокой эффективностью по энергии. При этом термическое удаление представляет собой один возможный способ отделения CO2.

Согласно одному особенно выгодному воплощению способа по изобретению на количественное отношение H2 к CO в отгружаемом газе воздействуют добавкой воды и/или водяного пара в металлургическом процессе и тем самым подстраивают к последующему процессу синтеза. Этими мерами можно целенаправленно влиять уже на состав отгружаемого газа и тем самым уже перед конверсией CO. Благодаря этому можно использовать, в частности, H2 и/или водяной пар с металлургического процесса и тем самым согласовывать состав отгружаемого газа с запланированной химической утилизацией.

Согласно изобретению хвостовой газ устройства удаления CO2 в металлургическом процессе смешивается со следующей частью отгружаемого газа и сжигается в парогенераторе. Таким образом, для получения водяного пара можно использовать также другие технологические газы, какие возникают в устройствах удаления CO2.

Согласно изобретению промывочный газ с процесса синтеза смешивается со следующей частью отгружаемого газа и сжигается в парогенераторе. Промывочный газ образуется при рецикле газов в процессах синтеза. В процессе синтеза в большинстве случаев можно конвертировать лишь часть сырьевого синтез-газа, так как затем достигается термодинамическое равновесие. Поэтому для повышения степени превращения требуется технологический режим с циркуляцией, причем технологическая вода и, например, метанол конденсируются и отделяются. Непрореагировавший синтез-газ возвращается в реактор синтеза. Чтобы избежать нежелательной концентрации нежелательных газовых компонентов, часть их нужно выводить из контура циркуляции как промывочный газ, который вместе с отгружаемым газом можно утилизовать термически.

Согласно одному особому воплощению способа по изобретению отходящее тепло с металлургического процесса используется для получения водяного пара, и образованный при этом водяной пар проводится на конвертер и/или процесс разделения. Тем самым отходящее тепло с самого металлургического процесса и полученный при этом водяной пар можно использовать для конверсии CO или для регенерации, применяющейся в процессе разделения поглотительной жидкости, насыщенной CO2, чтобы можно было достичь дальнейшего повышения эффективности. Отходящее тепло можно получить, например, из горячего колошникового газа, отходящего газа или избыточного газа.

Металлургический процесс в большинстве случае требует дополнительных вспомогательных процессов, которые, например, предоставляют технологические материалы для металлургического процесса. Одним примером является получение кислорода, которое обычно сочетается с металлургическим процессом. Поэтому отходящее тепло можно использовать также из таких вспомогательных процессов или установок, как, например, получение кислорода или же подготовка синтез-газа для получения пара.

Одно особое воплощение способа согласно изобретению предусматривает, что дополнительно или вместо отгружаемого газа могут применяться частично окисленные углеводороды, в частности природный газ, асфальт, уголь или нафта. Благодаря этим другим газам, вместо или в дополнение к отгружаемому газу, можно достичь избыточного процесса, так что и при запланированном простое металлургического процесса или при нарушениях можно выдерживать неизменный режим процесса синтеза.

Устройство согласно изобретению предусматривает, что источник отгружаемого газа трубопроводом соединен с конвертером, так что по меньшей мере часть отгружаемого газа может подвергаться в конвертере конверсии CO при добавлении водяного пара. При этом образуется сырьевой синтез-газ с определенным количественным отношением H2 к CO. Для получения необходимого для конверсии CO водяного пара источник отгружаемого газа трубопроводом соединен с парогенератором, чтобы следующая часть отгружаемого газа по меньшей мере частично сжигалась в парогенераторе с образованием водяного пара и образованный водяной пар можно было по линии пара подавать в конвертер. Альтернативно допустимо также, чтобы конвертер мог снабжаться водяным паром из установки рекуперации отходящего тепла.

Один возможный вариант устройства по изобретению предусматривает наличие сепаратора для выделения серы и CO2 из сырьевого синтез-газа, который соединен с конвертером через линию сырьевого газа. В качестве сепаратора могут применяться известные устройства, которые, например, образованы из абсорбционной и отпарной колонны. Такие устройства выбираются из устройств уровня техники.

Согласно одному особому воплощению устройства по изобретению предусмотрена линия пара, которая идет от парогенератора или установки рекуперации отходящего тепла к сепаратору, чтобы в сепаратор можно было подвести водяной пар или альтернативно также энергию в форме горячего газового потока. Энергию, необходимую для удаления CO2 в большинстве случаев термического, можно ввести через подачу водяного пара или через отходящее тепло, так что дополнительного источника энергии не требуется.

Согласно следующему воплощению устройства по изобретению для охлаждения отводимого из конвертера сырьевого синтез-газа в линии сырьевого газа предусмотрен(ы) теплообменник, и/или подогреватель, и/или радиатор водяного охлаждения, и/или парогенератор, работающий на отходящем тепле. Для дальнейшей обработки сырьевого синтез-газа требуется охлаждение, причем отведенное при этом тепло отводится в теплообменник или же может использоваться для создания пара. При этом могут использоваться теплообменник газ-газ или же теплообменник газ-жидкость, причем последний позволяет более сильно охладить синтез-газ.

Согласно одному особому воплощению устройства по изобретению предусмотрена ступень тонкого обессеривания, в частности на основе оксида цинка или активированного угля, для отделения остаточной серы от уже обработанного в сепараторе сырьевого синтез-газа. Такие ступени тонкого обессеривания могут быть разработаны как способ адсорбции на оксиде цинка или активированном угле, который протекает в адсорбционных колоннах.

Одно выгодное воплощение устройства согласно изобретению предусматривает наличие по меньшей мере одного устройства сжатия, в частности одно- или многоступенчатого компрессора, для сжатия отгружаемого газа перед вводом в конвертер, и/или устройство сжатия для сжатия сырьевого синтез-газа перед вводом в сепаратор или на ступень обессеривания. Многоступенчатые компрессоры используются прежде всего там, где требуются высокие сжатия. При сжатии сжимаемый газ нагревается. Преимущество разделения на два устройства сжатия заключается в том, что после отделения CO2 и серы лишь часть сырьевого синтез-газа (например, около 55% для получения метанола) должна сжиматься до давления, необходимого для процесса синтеза, так как большая часть синтез-газа уже отделена в форме CO2 в сепараторе (например, около 45% для получения метанола).

Согласно одному особому воплощению устройства по изобретению сепаратор соединен трубопроводом со ступенью тонкого обессеривания, причем это соединение при необходимости идет через подогрев, чтобы сырьевой синтез-газ перед его вводом на ступень обессеривания можно было нагреть. В теплообменнике сырьевой синтез-газ можно довести до оптимальной температуры для ступени обессеривания и/или процесса синтеза, причем в результате использования отходящего тепла происходит энергоэкономичный нагрев газа.

Согласно следующему выгодному особому воплощению устройства по изобретению предусмотрено устройство регенерации серы для регенерации серы из отделенной в сепараторе смеси серы и CO2. При этом сера отделяется как фильтровальный кек, сепаратор может работать, например, как процесс окисления сульфида водорода (LO-CAT II).

Согласно одному особому воплощению устройства по изобретению источник отгружаемого газа является установкой восстановительной плавки, которая включает, в частности, доменную печь или плавильный газификатор с по меньшей мере одним восстановительным агрегатом. Такие металлургические агрегаты создают отгружаемый газ с достаточными для химической утилизации количеством и качеством, причем применяется способ согласно изобретению. Благодаря возможности регулирования состава отгружаемого газа такие установки особенно хорошо подходят в качестве источника отгружаемого газа.

Согласно одному выгодному оформлению устройства по изобретению восстановительный агрегат выполнен как доменная печь, или как восстановительная шахта, или как реактор с псевдоожиженным слоем, или как по меньшей мере два соединенные последовательно реактора с псевдоожиженным слоем. Образованные в восстановительных агрегатах восстановительные газы после их реакции выводятся из агрегатов вместе с сырьевыми материалами, которые требуется восстановить. При этом в зависимости от способа образуется газ, обогащенный CO и H2, который после обеспыливания и/или промывки можно использовать как отгружаемый газ.

Один возможный вариант устройства согласно изобретению предусматривает наличие резервуара для газа для промежуточного хранения следующей части отгружаемого газа перед его сжиганием в парогенераторе, чтобы можно было компенсировать колебания количества и/или теплоты сгорания отгружаемого газа. Объем резервуара для газа выбирается так, чтобы несмотря на обусловленные установкой колебания количества отгружаемого газа или его состава можно было гарантировать по существу постоянное снабжение парогенератора.

Согласно одному особому варианту осуществления устройства по изобретению предусмотрено устройство обессмоливания для удаления полиароматических углеводородов из отгружаемого газа, которое установлено в соединительной линии между источником отгружаемого газа и конвертером. В результате можно удалить нежелательные компоненты, которые могут негативно повлиять на газоподготовку (например, сжатие) и химическую утилизацию.

Согласно одному особому варианту осуществления устройства по изобретению для получения водяного пара предусмотрены рекуперация отходящего тепла, и/или теплообменник, и/или подогреватель, которые соединены трубными линиями с конвертером, чтобы в конвертер можно было подавать образованный водяной пар. Благодаря этому можно использовать отходящее тепло для создания пара. Равным образом установки синтеза можно оборудовать парогенератором, работающим на отходящем тепле (например, при изотермическом режиме процесса синтеза), чтобы отходящее тепло процесса синтеза также можно было использовать для создания водяного пара.

Далее изобретение будет более подробно пояснено на примерах с обращением к фиг. 1 и 2.

Фиг. 1: схема способа согласно изобретению на основе установки восстановительной плавки типа "COREX®".

Фиг. 2: схема способа согласно изобретению на основе установки восстановительной плавки типа "FINEX®".

Фиг. 3: схема способа согласно изобретению на основе доменной печи.

Фиг. 1 показывает схему технологического процесса или установки для обработки отгружаемого газа с металлургического процесса или металлургической установки, как, например, установка восстановительной плавки по типу "COREX®". Часть А установки содержит установку восстановительной плавки, часть B содержит установку для получения сырьевого синтез-газа и продукты синтеза, а часть C относится к генерации пара.

В плавильном агрегате, как, например, плавильный газификатор 1, из восстановленного в восстановительном агрегате 2 сырья выплавляется чугун RE при образовании восстановительного газа. Восстановительный газ вводится в восстановительный агрегат 2, где в прямом контакте восстановительного газа с сырьем происходит по меньшей мере частичное восстановление до губчатого железа. На дальнейших деталях обработки восстановительного газа перед его введением в восстановительный агрегат 2 подробнее останавливаться не будем, так как это относится к уровню техники и специалисту хорошо известно.

Восстановительный газ после восстановления в восстановительном агрегате 2 отводится как колошниковый газ TG из восстановительного агрегата 2 и проводится по меньшей мере на одно сухое обеспыливание 3 или же на мокрое обеспыливание 4 и очищается. Можно также комбинировать предварительную очистку сухим обеспыливанием 3 с последующим мокрым обеспыливанием 4. Чтобы можно было использовать теплосодержание колошникового газа, колошниковый газ проводится также на рекуперацию отходящего тепла 5, как, например, теплообменник или парогенератор, работающий на отходящем тепле, и при этом охлаждается. Очищенный и при необходимости охлажденный колошниковый газ доступен как отгружаемый газ для части B установки. Часть А установки служит источником отгружаемого газа. В дополнение к этому источнику отгружаемого газа в качестве источников газа могут служить также следующие такие же или другие металлургические установки или же камеры сгорания для парциального окисления природного газа, парового риформинга, базирующегося на природном газе, или газогенератор с газификацией в потоке для газификации угля.

Здесь отгружаемый газ сначала сжимают в устройстве сжатия 6, таком, например, как компрессор, причем устанавливается давление, необходимое для конвертера 7 или для конверсии CO. Перед сжатием можно с помощью устройства обессмоливания 8 удалить из отгружаемого газа полиароматические углеводороды. После факультативного нагрева сжатого отгружаемого газа в теплообменнике 11, в условиях добавлении пара, который подается по линии пара 9 из парогенератора 10 в конвертер 7, идет конверсия CO, при которой происходит сдвиг количественных долей CO и H2. Реакцией можно целенаправленно управлять через количество добавляемого водяного пара, температуру и давление, причем образуется сырьевой синтез-газ.

Сначала сырьевой синтез-газ охлаждается с помощью теплообменника 11, 12 и подогревателя 13, который также может быть выполнен как теплообменник, и при необходимости с помощью следующего радиатора водяного охлаждения 14, причем эти агрегаты расположены в линии 19 сырьевого газа. Факультативно можно охлаждать горячий сырьевой синтез-газ в работающем на отходящем тепле парогенераторе 15 и при этом использовать для получения водяного пара. Теперь охлажденный сырьевой синтез-газ подается на сепаратор 16 для выделения серы и CO2 из синтез-газа, причем отделенные сера и CO2 подаются на ступень обессеривания 17. Здесь сера отделяется от CO2 с образованием серного кека SK. Теперь почти не содержащий серы CO2 можно применять как технологический газ в металлургическом процессе, например в затворных газах, или же выпускать в атмосферу.

Теперь после сжатия в устройстве сжатия 18 очищенный синтез-газ проводится на подогрев 13, при этом очищенный сырьевой синтез-газ нагревается с использованием отходящего тепла синтез-газа после выхода из конвертера 7. После этого нагретый сырьевой синтез-газ при необходимости подается на ступень тонкого обессеривания 20, причем в адсорбционных колоннах, основанных на процессах адсорбции оксида цинка или активированного угля отделяются сера или сероводород (H2S). Обычно эта адсорбционная обработка проводится при температурах примерно от 200 до 400°C. Обессеренный и горячий сырьевой синтез-газ можно при необходимости дополнительно нагреть в теплообменнике 12, причем устанавливается благоприятная для последующей химической утилизации температура примерно 200-450°C. Для целей регулирования можно сжатый отгружаемый газ провести по байпасной линии 21 мимо конвертера или теплообменника 11.

Как конвертер 7, так и сепаратор 16 для своей работы нуждаются в больших количествах водяного пара. Для этого источник отгружаемого газа соединен трубной линией также с парогенератором 10. В парогенераторе благодаря теплоте сгорания отгружаемого газа создается водяной пар, который подается по линиям пара 9a и 9b в конвертер 7 или сепаратор 16. Факультативно линии пара 9a и 9b могут питаться также по дополнительной линии пара 9c, причем она относится к водяному пару, который происходит из отходящего тепла с металлургического процесса, газоочистки или процесса синтеза и был получен, например, с помощью работающего на отходящем тепле парогенератора при использовании горячих технологических сред.

Часть C установки помимо парогенератора 10 охватывает также резервуар для газа 22 для промежуточного хранения части отгружаемого газа, которую предусматривается сжечь в парогенераторе 10, при этом можно компенсировать колебания количества и/или теплоты сгорания отгружаемого газа. Для случая когда нужно иметь избыточный отгружаемый газ, его посредством отводящей линии 23 можно использовать и для других целей, например в установках сушки угля, установках сушки угольной мелочи или установках сушки руды. Конденсаты, образованные в сепараторе 16, можно возвращать по линии конденсата 24 в парогенератор 10.

Очищенный и нагретый сырьевой синтез-газ можно использовать, например, как исходный материал для получения метана, метанола, оксо-спиртов или же как топливо в процессах Фишера-Тропша для химического синтеза SP1-SP4, причем всякий раз сырьевой синтез-газ приводится в соответствие с процессом синтеза. Для этого помимо давления и температуры регулируется прежде всего количественное отношение CO к H2.

По линии продувочного газа 30 можно смешивать продувочный газ с процесса синтеза со следующей частью отгружаемого газа и подавать в резервуар для газа 22 и впоследствии сжигать в парогенераторе 10.

Фиг. 2 показывает установку, похожу на установку с фиг. 1, причем участок A образован установкой восстановительной плавки согласно способу FINEX®. Образованный в плавильном газификаторе восстановительный газ проводится через реакторы с псевдоожиженным слоем R1, R2, R3 и R4 и движется при этом в направлении, противоположном направлению течения железной руды, которая восстанавливается в реакторах с псевдоожиженным слоем R1, R2, R3 и R4 и затем выплавляется в плавильном газификаторе 1. Восстановительный газ отбирается из реактора с псевдоожиженным слоем R4 как отходящий газ OG, охлаждается в теплообменнике 29 и после обеспыливания становится доступным как отгружаемый газ. Хвостовой газ установки 28 удаления CO2, как, например, установка короткоцикловой адсорбции (установка PSA или VPSA), может вместе с отгружаемым газом проводиться в резервуар для газа 22 и использоваться для создания водяного пара в парогенераторе 10.

Фиг. 3 показывает в принципе такую же установку, причем участок A установки образован доменной печью с сопряженной системой снабжения. Колошниковый газ из доменной печи 25 сначала обеспыливается в устройстве сухого обеспыливания 26, затем при необходимости дополнительно очищается в устройстве мокрого обеспыливания 27 и становится доступным как отгружаемый газ для части B или C установки. Кроме того, остаточный газ установки удаления CO2 28 можно также вместе с отгружаемым газом подавать в резервуар для газа 22 и использовать для получения водяного пара в парогенераторе 10.

Список позиций для ссылки

1 плавильный газификатор

2 восстановительный агрегат

3 сухое обеспыливание

4 мокрое обеспыливание

5 рекуперация отходящего тепла

6 устройство сжатия

7 конвертер

8 устройство обессмоливания

9 линия пара

10 парогенератор

11 теплообменник

12 теплообменник

13 подогрев

14 радиатор водяного охлаждения

15 парогенератор, работающий на отходящем тепле

16 сепаратор

17 ступень обессеривания

18 устройство сжатия

19 линия сырьевого газа

20 ступень тонкого обессеривания

21 байпасная линия

22 резервуар для газа

23 отвод

24 линия конденсата

25 доменная печь

26 сухое обеспыливание

27 мокрое обеспыливание

28 установка удаления CO2

29 теплообменник

30 линия продувочного газа

1. Способ получения газа, содержащего водород (H2) и моноксид углерода (CO) в качестве сырья для химической утилизации в процессах синтеза на основе отгружаемого газа с металлургического процесса, причем отгружаемый газ получен из колошникового газа доменной печи или восстановительной шахты, или из отходящего газа реактора с кипящим слоем, или из избыточного газа плавильного газификатора, или из смесей этих газов, причем по меньшей мере часть отгружаемого газа подвергается в конвертере конверсии CO при добавке водяного пара из парогенератора, и образуется сырьевой синтез-газ, отличающийся тем, что на количественное отношение H2 к CO в отгружаемом газе воздействуют еще до конверсии CO добавлением воды и/или водяного пара в металлургическом процессе и тем самым подгоняют к последующему процессу синтеза, причем следующая часть отгружаемого газа перед его сжиганием в парогенераторе временно хранится в резервуаре для газа в целях компенсации колебаний количества и/или теплоты сгорания отгружаемого газа, и водяной пар в парогенераторе создается в результате сжигания по меньшей мере следующей части отгружаемого газа.

2. Способ по п.1, отличающийся тем, что металлургический процесс является процессом восстановительной плавки, который функционирует с доменной печью или плавильным газификатором, соединенным с по меньшей мере одним восстановительным агрегатом, в частности восстановительной шахтой или реактором с кипящим слоем, причем содержащие оксиды железа сырьевые материалы, в частности железная руда, окатыши или спек, и добавки восстанавливаются с образованием восстановительного газа и в дальнейшем выплавляются в жидкий чугун.

3. Способ по одному из предыдущих пунктов, отличающийся тем, что водяной пар создается в парогенераторе в результате сжигания по меньшей мере следующей части отгружаемого газа, и/или в результате использования отходящего тепла с металлургического процесса или конверсии CO, и/или процессов синтеза.

4. Способ по п.1, отличающийся тем, что колошниковый газ и/или отходящий газ, в частности сухой, обеспыленный и/или очищенный посредством мокрого обеспыливания, при необходимости охлаждается в парогенераторе, работающем на отходящем тепле, или в теплообменнике и становится доступен как отгружаемый газ.

5. Способ по п.1, отличающийся тем, что отгружаемый газ перед его подачей в конвертер или после его вывода из конвертера сжимают посредством устройства сжатия, при необходимости после отделения полиароматических углеводородов из отгружаемого газа.

6. Способ по п.1, отличающийся тем, что конверсия CO при необходимости проводится после нагрева отгружаемого газа, в частности, до 300-450°C.

7. Способ по п.1, отличающийся тем, что сырьевой синтез-газ для установки температуры охлаждают с помощью одного или нескольких теплообменников, работающих как подогреватель, и/или с помощью радиатора водяного охлаждения, и/или с помощью работающего на отходящем тепле парогенератора.

8. Способ по п.1, отличающийся тем, что сырьевой синтез-газ сначала охлаждают и затем проводят процесс разделения, в частности процесс абсорбции, предпочтительно физической абсорбции, или химической абсорбции, или физико-химической абсорбции, в котором сера и CO2 по меньшей мере частично, в частности по существу полностью, отделяются от сырьевого синтез-газа.

9. Способ по п.8, отличающийся тем, что обработанный в процессе разделения сырьевой синтез-газ нагревают, в частности, до температуры 200-400°C и обессеривают на ступени тонкого обессеривания, в частности, посредством оксида цинка или активированного угля.

10. Способ по п.7, отличающийся тем, что отходящее тепло, аккумулированное в теплообменнике при охлаждении сырьевого синтез-газа, используется для нагревания сырьевого синтез-газа, обработанного в процессе разделения.

11. Способ по п.10, отличающийся тем, что водяной пар, образующийся при охлаждении в работающем на отходящем тепле парогенераторе, проводится в конвертер для использования в конверсии CO.

12. Способ по п.10, отличающийся тем, что сырьевой синтез-газ, в частности, обработанный в процессе разделения, с помощью теплообменника нагревается до температуры 200-450°C.

13. Способ по п.10, отличающийся тем, что сырьевой синтез-газ при необходимости сжимается в компрессоре перед следующей ступенью тонкого обессеривания и/или перед процессом синтеза.

14. Способ по п.1, отличающийся тем, что количественное отношение H2 к CO, и/или давление, и/или температура сырьевого синтез-газа устанавливаются в сырьевом синтез-газе в зависимости от процесса синтеза.

15. Способ по п.1, отличающийся тем, что по меньшей мере часть образованного в парогенераторе водяного пара проводится на процесс разделения как энергоноситель, причем происходит термическое удаление CO2 из применяющейся в процессе разделения поглотительной жидкости.

16. Способ по п.1, отличающийся тем, что в металлургическом процессе удаление CO2 проводят в устройстве удаления CO2 с образованием остаточного газа, где остаточный газ устройства удаления CO2 в металлургическом процессе смешивается со следующей частью отгружаемого газа и сжигается в парогенераторе.

17. Способ по п.1, отличающийся тем, что в процессе синтеза образуется продувочный газ, и его смешивают со следующей частью отгружаемого газа и сжигают в парогенераторе.

18. Способ по п.1, отличающийся тем, что в металлургическом процессе образуется отходящее тепло, которое используется для получения водяного пара, и образованный при этом водяной пар подается на конвертер и/или процесс разделения.

19. Способ по п.1, отличающийся тем, что в дополнение к отгружаемому газу используются частично окисленные углеводороды, в частности природный газ, асфальт, уголь или нафта.

20. Устройство для получения газа, содержащего водород (H2) и моноксид углерода (CO), в качестве сырья для химической утилизации в процессах синтеза, на основе отгружаемого газа с металлургического процесса, содержащее по меньшей мере один конвертер (7), по меньшей мере один парогенератор (10) и по меньшей мере один источник отгружаемого газа, отличающееся тем, что источник отгружаемого газа трубопроводом соединен с конвертером (7), чтобы по меньшей мере часть отгружаемого газа в конвертере (7) можно было подвергнуть конверсии CO при добавлении водяного пара с образованием сырьевого синтез-газа, и источник отгружаемого газа, кроме того, трубопроводом соединен с парогенератором (10), чтобы следующую часть отгружаемого газа можно было по меньшей мере частично сжигать в парогенераторе (10) с образованием водяного пара, и образованный водяной пар можно подводить по линии пара (9a) в конвертер (7), причем предусмотрен резервуар для газа (22) для промежуточного хранения следующей части отгружаемого газа перед его сжиганием в парогенераторе (10), чтобы можно было компенсировать колебания количества и/или теплоты сгорания в отгружаемом газе.

21. Устройство по п.20, отличающееся тем, что предусмотрен сепаратор (16) для отделения серы и CO2 из сырьевого синтез-газа, который по линии сырьевого газа (19) соединен с конвертером (7).

22. Устройство по п.20 или 21, отличающееся тем, что предусмотрена линия пара (9b), которая идет от парогенератора (10) к сепаратору (16), чтобы на сепаратор (16) можно было подавать водяной пар.

23. Устройство по п.21, отличающееся тем, что для охлаждения отводимого из конвертера (7) сырьевого синтез-газа в линии сырьевого газа (19) предусмотрены теплообменник (12), и/или подогреватель (13), и/или радиатор водяного охлаждения (14), и/или работающий на отходящем тепле парогенератор (15).

24. Устройство по п.21, отличающееся тем, что предусмотрена ступень тонкого обессеривания (20), в частности, на базе оксида цинка или активированного угля для отделения остаточной серы от уже обработанного в сепараторе (16) сырьевого синтез-газа.

25. Устройство по п.24, отличающееся тем, что предусмотрены по меньшей мере одно устройство сжатия (6), в частности одно- или многоступенчатый компрессор, для сжатия отгружаемого газа перед его введением в конвертер (7), и/или устройство сжатия (18) для сжатия сырьевого синтез-газа перед вводом в сепаратор (16) или на ступень обессеривания (20).

26. Устройство по п.24, отличающееся тем, что сепаратор (16) трубопроводом соединен со ступенью тонкого обессеривания (20), причем это соединение при необходимости идет через подогреватель (13), чтобы сырьевой синтез-газ перед его вводом на ступень тонкого обессеривания (20) можно было нагреть.

27. Устройство по п.21, отличающееся тем, что предусмотрено устройство регенерации серы (17) для регенерации серы из отделенной в сепараторе смеси серы и CO2.

28. Устройство по п.20, отличающееся тем, что источником отгружаемого газа является установка восстановительной плавки и, в частности, доменная печь (25) или плавильный газификатор (1) с по меньшей мере одним восстановительным агрегатом (2, R1, R2, R3, R4).

29. Устройство по п.28, отличающееся тем, что восстановительный агрегат выполнен как доменная печь (25), или как восстановительная шахта (2), или как реактор с псевдоожиженным слоем (R1), или как по меньшей мере два соединенные последовательно реактора с псевдоожиженным слоем (R1, R2, R3, R4).

30. Устройство по п.20, отличающееся тем, что предусмотрено устройство обессмоливания (8) для удаления полиароматических углеводородов из отгружаемого газа, которое установлено в соединительную линию между источником отгружаемого газа и конвертером (7).

31. Устройство по п.20, отличающееся тем, что для создания водяного пара предусмотрен парогенератор, работающий на отходящем тепле (5), и/или теплообменник (12), и/или подогреватель (13), которые соединены трубопроводами с конвертером (7), чтобы образованный водяной пар можно было подавать на конвертер (7).



 

Похожие патенты:

Изобретение относится к области химии. Метан-водяную смесь разделяют на два потока.

Способ получения синтез-газа для производства аммиака, в котором сырьевой природный газ конвертируют в установке первичной конверсии и в установке вторичной конверсии при давлении по меньшей мере 35 бар; продуктовый синтез-газ на выходе из установки вторичной конверсии охлаждают и подвергают каталитической среднетемпературной конверсии, превращая СО в СО2 и Н2, и ниже по потоку от реактора среднетемпературной конверсии из синтез-газа удаляют диоксид углерода с помощью физической абсорбции.

Изобретение относится к водородной энергетике и может быть использовано для получения водорода. Устройство содержит нижнюю реакционную камеру (1) с гидрореакционной гетерогенной композицией, состоящей из алюминиевой пудры (2) и воды (12), верхнюю камеру (3), сочлененную с нижней камерой (1), которую через заливочное окно (6) заполняют водным раствором кристаллогидрата метасиликата натрия (5).

Изобретение относится к области химии. Горячий водород, образующийся в результате реакции термохимического окисления алюминия водой, пропускают через слой пленки сверхвысокомолекулярного полиэтилена при давлении 1 атм.

Настоящее изобретение относится к системе и способу производства химической потенциальной энергии и может быть использовано в производстве эффективного топлива, которое можно было бы использовать в чистых энергетических процессах, при которых не образуются и не выделяются парниковые газы и другие загрязнители окружающей среды.

Изобретение относится к области химии. Способ получения водорода включает получение синтез-газа в установке парового риформинга углеводородной загрузки, паровую конверсию полученного синтез-газа с получением потока водорода, содержащего метан и диоксид углерода, улавливание диоксида углерода, присутствующего в потоке, улавливание и возврат на паровой риформинг метана, CO и CO2, присутствующих в потоке водорода.

Изобретение относится к области химии. Согласно первому варианту для получения водорода железные стержни изолируют от стенок реактора 1 и подают на них высоковольтный потенциал от трансформатора Тесла 14.

Изобретение относится к способу и установке для получения синтез-газа (S) из твердых частиц (C) углерода, причем указанные частицы (C) углерода получают посредством пиролиза, газификация частиц (C) углерода происходит в результате непрямого нагрева частиц (C) углерода в присутствии технологического газа (P) в том же самом пространстве реактора, где находятся частицы (C) углерода, при этом непрямой нагрев осуществляют с помощью теплового излучения от горелок (Br1-Brn), расположенных в реакторе (1), а синтез-газ (S), образовавшийся во время газификации, выпускают из указанного пространства.

Изобретение может быть использовано для систем подъема затонувших объектов, в средствах дистанционного экстренного перекрытия нефте- и газопроводов, в средствах выброса и распыления специальных жидкостей при нейтрализации аварийных выделений газов и веществ на производствах, приведения в действие различных пневматических устройств, для средств пожаротушения.

Настоящее изобретение относится к получению водородсодержащего газа и может быть использовано в промышленности при переработке отходящих продуктов процесса Фишера-Тропша в присутствии пористой мембранно-каталитической системы.

Изобретение относится к области химического машиностроения и может быть использовано в химической, нефтехимической и энергетической промышленностях. Конвертор включает реактор, форсуночную головку для ввода дизельного топлива и кислорода с системой поджига, установленные в верхней части корпуса реактора, систему водяного охлаждения. Причем реактор выполнен в виде камеры сгорания для проведения термоокислительной реакции, совмещенной с щелевым реактором с катализатором для высокотемпературной стадии паровой конверсии дизельного топлива через теплопередающую стенку корпуса камеры сгорания. А также соединены с камерой смешения компонентов синтез-газа термоокислительной и паровой конверсии, которая соединена с камерой подготовки синтез-газа для паровой конверсии оксида углерода, стенки которой выполнены в виде щелевого реактора с катализатором для низкотемпературной стадии паровой конверсии дизельного топлива. На выходе конвертора выполнен канал с рубашкой для смешения дизельного топлива с парами воды, система водяного охлаждения выполнена в виде системы охлаждения форсуночной головки и подачи паров воды в камеру подготовки синтез-газа для паровой конверсии оксида углерода. Изобретение позволяет получить концентрацию водорода в полученном синтез-газе более чем на 10% выше в сравнении с другими известными схемами конверторов.

Изобретение относится к области химии. Водород получают в комбинированном трубчатом каталитическом реакторе с распределенными в реакционном объеме зонами эндотермических и экзотермических реакций получения водорода и теплоты, необходимой для проведения каталитических эндотермических реакций получения водорода. В трубном пространстве проводят эндотермические реакции паровой конверсии диметилового эфира и/или метанола. В межтрубное пространство реактора подводят синтез-газ, полученный в энергетических машинах и/или каталитических реакторах, для проведения экзотермической реакции паровой конверсии оксида углерода, содержащегося в синтез-газе. Продуктовые потоки межтрубного и трубного пространства объединяют, объединенный поток, содержащий оксид углерода, направляют на селективное гидрирование с получением метана, а водородсодержащий газ подвергают концентрированию. Изобретение позволяет получать водород высокой чистоты. 6 з.п. ф-лы, 1 ил., 2 пр.
Изобретение относится к способу получения богатой водородом газовой смеси из галогенсодержащей газовой смеси, включающей водород и по меньшей мере 50 об.% монооксида углерода, в пересчете на сухую массу, путем взаимодействия галогенсодержащей газовой смеси с водой, имеющей температуру от 150 до 250°C, чтобы получить газовую смесь, бедную галогеном и имеющую мольное отношение пара к монооксиду углерода от 0,2:1 до 0,9:1, и подвергают указанную газовую смесь, бедную галогеном, реакции сдвига водяного газа, в котором часть или весь монооксид углерода конвертируют с паром до водорода и диоксида углерода в присутствии катализатора, который присутствует в одном реакторе с неподвижным слоем или в каскаде из более чем одного реактора с неподвижным слоем, и в котором температура газовой смеси, которая поступает в реактор или реакторы, равна от 190 до 230°C. Использование предлагаемого способа позволяет добавлять меньше пара. 6 з.п. ф-лы, 1 пр., 2 табл.

Изобретение относится к когенерационной установке на металлсодержащем горючем. Установка содержит по меньшей мере одну реакционную камеру, средства для ввода по меньшей мере одного жидкого окислителя на водной основе и средства для подачи по меньшей мере одного металлсодержащего топлива в камеру, при этом окислитель и топливо являются способными вызывать экзотермическую реакцию окисления для получения газообразного водорода и по меньшей мере одного оксида металла, средства для ввода выполнены с возможностью ввода в указанную камеру окислителя в количестве, которое значительно больше, чем стехиометрическое количество для образования пара, и содержит по меньшей мере один движущий блок на жидкостной основе, в который подается на входе, по меньшей мере, пар для приведения во вращательное движение приводного вала, средства отделения и извлечения для, по меньшей мере, пара, находящиеся между камерой и входом в движущий блок, и средства для отвода указанного водорода, подаваемого на хранение или потребителю. Использование изобретения обеспечивает непрерывность цикла действия и автономность установки, а также снижение загрязнения атмосферы. 2 н. и 22 з.п. ф-лы, 3 ил.

Изобретение относится к области химии. В первом реакторе производят экзотермически-генерированный продукт 4 синтез-газа, преобразуя первую часть потока углеводородного сырья. В теплообменной установке риформинга получают эндотермически-преобразованный продукт 7 синтез-газа, в котором, по меньшей мере, часть тепла используют от экзотермически-генерированного продукта синтез-газа. Поток 7 охлаждают. Охлажденный поток 8 пропускают через высокотемпературный реактор сдвига, в котором часть CO реагирует с паром, давая диоксид углерода и водород. Полученный поток 9 направляют в низкотемпературный реактор сдвига. Полученный поток 11 подают в сепаратор, который отделяет метан от комбинации экзотермически-генерированного продукта синтез-газа и эндотермически-преобразованного продукта синтез-газа, получая поток отходящего газа. При этом нагреватель сжигает, по меньшей мере, часть отходящего газа, используя выхлоп из газовой турбины в качестве окислителя, давая потоки перегретого пара и углеводородного сырья, используемые в экзотермически- и эндотермически-генерированном продукте синтез-газа. Генератор генерирует энергию, используя газовую турбину для приведения в действие установки по производству кислорода, обеспечивая кислород для генерирования синтез-газа. Изобретение позволяет получать водород высокой чистоты при высоком давлении. 3 н. и 26 з.п. ф-лы, 16 ил.

Изобретения могут быть использованы в энергетике и химическом синтезе. Способ получения синтез-газа с низким содержанием смол из биомассы включает разложение биомассы в первом реакторе кипящего слоя (3) на пиролизный газ и пиролизный кокс. Полученный пиролизный газ подают в качестве газа для образования кипящего слоя (5) в следующем реакторе кипящего слоя (11). Пиролизный кокс в виде мелких частиц выводят вместе с газом и подают в следующий реактор кипящего слоя (11) через сопловое днище (4). Изобретения позволяют получить синтез-газ с низким содержанием смол и азота при высоком кпд.2 н. и 35 з.п. ф-лы, 5 ил.
Изобретение касается улучшенного способа получения водорода путем реакции углеродсодержащего сырья с паром и/или кислородом. Способ обогащения синтез-газа по водороду, при этом синтез-газ содержит водород, монооксид углерода и пар, заключается в конверсии монооксида углерода и пара над катализатором. Причем синтез-газ имеет молярное соотношение кислорода и углерода от 1,69 до 2,25, а конверсия монооксида углерода и пара проводится в условиях высокотемпературной конверсии, где синтез-газ имеет температуру от 300°С до 400°С и давление составляет от 2,3 до 6,5 МПа. При этом катализатор содержит в своей активной форме смесь цинк-алюминийоксидной шпинели и оксида цинка в комбинации с промотором в виде щелочного металла, выбранного из группы, состоящей из Na, К, Rb, Cs и их смесей. При этом катализатор имеет молярное соотношение Zn/Al от 0,5 до 1,0 и содержание щелочного металла в пределах от 0,4 до 8,0 мас.% в пересчете на массу окисленного катализатора. Изобретение также относится к применению указанного катализатора при эксплуатации реактора для конверсии при условиях, в которых синтез-газ, поступающий в реактор, имеет молярное соотношение кислорода и углерода от 1,69 до 2,25, для подавления образования углеводородного побочного продукта. 2 н. и 2 з.п. ф-лы, 2 табл., 11 пр.
Изобретение относится к области химии. Метан подвергают конверсии с водяным паром на катализаторе, в качестве которого используют жидкий шлак медного производства, через который продувают парогазовую смесь в течение 1-1,5 с и температуре расплава 1250-1400°С с последующей регенерацией катализатора периодической продувкой его кислородом воздуха. Изобретение позволяет упростить процесс. 1 табл.

Изобретение может быть использовано в химической промышленности. Для получения синтез-газа из биомассы проводят предварительную обработку биомассы, включающую измельчение биомассы до получения частиц размером 1-6 мм и высушивание сырья до влажности 10-20 вес.%. Затем осуществляют пиролиз биомассы с помощью технологии быстрого пиролиза, при этом температура слоя пиролиза 400-600°C, а время пребывания газовой фазы на слое пиролиза 0,5-5 с. Продукт слоя пиролиза является пиролизным газом и угольным порошком. Отделяют пиролизный газ от угольного порошка и твердого теплоносителя с помощью циклонного сепаратора. Далее разделяют угольный порошок и твердый теплоноситель в сепараторе для разделения твердых фаз, загружают угольный порошок в бункер угольного порошка для накопления, нагревают твердый теплоноситель в камере нагревания кипящего слоя и подают твердый теплоноситель к слою пиролиза для повторного использования. После этого подают пиролизный газ к конденсатосборнику для конденсации аэрозоля и проводят конденсацию конденсируемой части пиролизного газа для образования бионефти, а затем нагнетание образовавшейся бионефти нефтяным насосом высокого давления и подачу к газификационной печи на газификацию. Одну часть неконденсируемого пиролизного газа подают на слой сжигания для сжигания с воздухом, а другую часть неконденсируемого пиролизного газа подают на слой пиролиза в качестве псевдоожижающей среды. Изобретение позволяет повысить эффективность газификации, стабильность и надежность установки для получения синтез-газа из биомассы. 2 н. и 7 з.п. ф-лы, 1 ил., 1 табл., 6 пр.

Изобретение может быть использовано в химической промышленности, в системах производства топлива для транспорта и в стационарных энергоустановках. Способ преобразования солнечной энергии в химическую и аккумулирования ее в водородсодержащих продуктах включает производство биомассы с использованием солнечной энергии, которую подвергают реакции парокислородной каталитической конверсии с получением продуктов реакции, содержащих водород и диоксид углерода. Полученные продукты направляют в высокотемпературный электрохимический процесс для получения синтез-газа и кислорода. Из полученного синтез-газа на катализаторе в процессе Фишера-Тропша получают углеводороды, а кислород возвращают в начало процесса на конверсию. В качестве рабочего тела используют воду, которую при нагреве синтез-газом испаряют при давлении в диапазоне от 0,1 до 7,0 МПа и направляют на турбину для выработки механической и/или электроэнергии и теплоносителя. Изобретение позволяет снизить тепловые затраты на процесс получения энергоносителей и эффективно производить энергоносители при отсутствии кислорода из атмосферы. 12 з.п. ф-лы, 1 ил., 3 табл.
Наверх