Способ измерения линейных перемещений

Способ заключается в формировании подаваемого на поверхность исследуемого объекта потока светового излучения, регистрации в фиксированной точке отраженного света и преобразовании его в электрический сигнал, величину которого используют для определения расстояния от поверхности исследуемого объекта по формуле: Δ x = x 0 x 0 2 U 0 U , где х0 - начальное расстояние от светоотражающей поверхности исследуемого объекта до фотоприемника; U0 - амплитуда выходного сигнала с фотоприемника, соответствующая х0; U - амплитуда выходного сигнала с фотоприемника, соответствующая Δх. Технический результат - возможность определения перемещения в любой момент времени за счет измерения уровня выходного сигнала с фотоприемника. 2 ил.

 

Изобретение относится к измерительной технике и предназначено для измерения линейных перемещений.

Известен способ измерения линейных перемещений («Волоконно-оптические измерительные преобразователи скорости и давления», М., Энергоатомиздат, 1987 г., стр.15), заключающийся в том, что направляют излучение на объект, измеряют отраженный поток излучения и по величине этого потока судят о перемещении.

Недостатком данного способа является относительно низкая точность измерений и недостаточный диапазон измеряемых перемещений.

Известен также способ измерения линейных перемещений, реализуемый устройством, описанным в а.с. №1767327, МПК G01B 21/00, опубл. 07.10.1992 г. под названием «Оптический датчик перемещений», выбранный в качестве прототипа и включающий формирование подаваемого на поверхность исследуемого объекта потока светового излучения, регистрацию в фиксированной точке отраженного света, преобразование его в электрический сигнал, величину которого используют для определения расстояния от поверхности исследуемого объекта.

К недостаткам данного технического решения относится малый диапазон измеряемых перемещений, решения предназначены для измерения перемещений вблизи контролируемой поверхности, где амплитуда выходного сигнала с фотоприемника пропорциональна расстоянию до поверхности исследуемого объекта.

Целью изобретения является расширение диапазона измерений линейных перемещений.

Это достигается тем, что в способе измерения линейных перемещений, заключающемся в формировании подаваемого на поверхность исследуемого объекта потока светового излучения, регистрации в фиксированной точке отраженного света, преобразовании его в электрический сигнал, величину которого используют для определения перемещения контролируемой поверхности Δx, согласно изобретению это перемещение определяют по формуле:

Δ x = x 0 x 0 2 U 0 U ,  (1)

где x0 - начальное расстояние от поверхности исследуемого объекта до фотоприемника;

U0 - амплитуда выходного сигнала с фотоприемника, соответствующая x0;

U - амплитуда выходного сигнала с фотоприемника, соответствующая Δx.

Технический результат заключается в том, что удалось определить перемещение контролируемой поверхности в любой момент времени по выведенной формуле, для этого необходимо лишь измерить уровень выходного сигнала U с ФЭУ при помощи осциллографа, подав импульс с генератора на светодиод.

Наличие в заявляемом изобретении признаков, отличающих его от прототипа, позволяет считать его соответствующим условию «новизна».

Новые признаки (определение линейного перемещения, осуществляемое по формуле:

Δ x = x 0 x 0 2 U 0 U ,

где x0 - начальное расстояние от поверхности исследуемого объекта до фотоприемника;

U0 - амплитуда выходного сигнала с фотоприемника, соответствующая x0;

U - амплитуда выходного сигнала с фотоприемника, соответствующая Δx) не выявлены в технических решениях аналогичного назначения. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».

На фиг.1 представлена блок-схема устройства, с помощью которого реализуется данный способ;

На фиг.2 представлена общая зависимость напряжения с фотодетектора от расстояния до поверхности исследуемого объекта.

Предлагаемый способ измерения линейных перемещений осуществляется с помощью устройства, состоящего из источника излучения по импульсной схеме, включающей генератор импульсов 1 и импульсный светодиод 2, осветительный световод 3 и приемный световод 4, связанные с импульсным светодиодом 2 и фотоприемником 7, предназначенным для работы в импульсном режиме и имеющим широкий диапазон линейности световой характеристики в импульсе, поверхности исследуемого объекта 5, интерференционного светофильтра 6, фотоприемника 7 и регистрирующего устройства 8 (например, осциллограф).

Способ осуществляется с помощью описанного устройства следующим образом.

Прямоугольный электрический импульс с генератора импульсов 1 подается на импульсный светодиод 2. Излучение от светодиода 2 по осветительному световоду 3 подается для освещения поверхности исследуемого объекта 5. Отраженный от исследуемой поверхности 5 сигнал по приемному световоду 4 поступает на фотоприемник 7, электрический сигнал с которого регистрируется осциллографом 8. Форма зарегистрированного осциллографом 8 импульса также прямоугольная. Для уменьшения паразитирующего внешнего сигнала, поступающего на фотоприемник 7, в линию световода 4 может устанавливаться интерференционный светофильтр 6, максимум пропускания которого совпадает с длиной волны максимума излучения светодиода

Предполагается, что в процессе проведения измерений коэффициент отражения поверхности исследуемого объекта 5 не меняется. Общая зависимость напряжения с фотоприемника от расстояния до поверхности исследуемого объекта 5 имеет вид, показанный на фиг.2, здесь: OA - участок зависимости, на котором уровень сигнала пропорционален расстоянию до поверхности исследуемого объекта 5 - на данном участке работают рассмотренные аналоги; AB - участок зависимости с переходной характеристикой; BC - участок зависимости, на котором уровень сигнала обратно пропорционален квадрату расстояния до поверхности исследуемого объекта 5 - на данном участке работает описанное устройство для реализации способа.

Если рассматривать поверхность исследуемого объекта как вторичный излучатель, то в этом случае справедливо следующее соотношение:

Φ = τ × L × A и к а × A в х x 2 ,                                                   (2)

где Ф - поток, падающий на фотоприемник;

τ - коэффициент пропускания приемного волокна;

L - яркость источника излучения - поверхности исследуемого объекта;

Aи-ка - площадь источника излучения;

Aвх - площадь приемного световода;

x - расстояние от поверхности до приемного световода.

Яркость вторичного источника

L = E × k ,                                                                        (3)

где E - освещенность зондируемого участка;

k - коэффициент, учитывающий закон излучения для поверхности [1/ср]. Так для источника, излучающего по закону Ламберта, k=1/π.

Освещенность заданного участка

Е = Ф и з л / А ,                                                                            (4)

где Физл - поток излучения на выходе осветительного световода - величина, зависящая в первом приближении только от мощности первичного излучателя и коэффициента пропускания осветительного световода;

A - площадь освещаемой поверхности исследуемого объекта, в данном случае эта площадь равна площади вторичного источника излучения A=Аи-ка.

Подстановка полученных данных в формулу (2) дает следующее выражение

Ф = τ о с × k × Ф и з л × А в х x 2 .                                                            (5)

Из формулы (5) следует, что при постоянной мощности первичного излучателя Физл, неизменных параметрах оптической системы τ и Авх, а также при постоянных оптических характеристиках поверхности исследуемого объекта (коэффициент отражения ρ и коэффициент, учитывающий закон излучения k) поток, падающий на фотоприемник, зависит только от квадрата расстояния от излучателя до приемника.

В свою очередь, амплитуда выходного электрического сигнала с фотоприемника также обратно пропорциональна x2 (в области линейности световой характеристики фотоприемника), т.к. является реакцией фотоприемника на данный поток и зависит только от чувствительности приемника

U = Ф × S ,                                                                                 (6)

где Ф - поток, падающий на фотоприемник; S - чувствительность фотоприемника.

В случае линейного перемещения поверхности исследуемого объекта 5 в направлении, параллельном оптической оси системы, расстояние от поверхности исследуемого объекта 5 до торцов световодов 3 и 4 в каждый момент времени будет рассчитываться по формуле:

x = x 0 2 Δ U ,                                                                                      (7) ,

где x0 - начальное расстояние от поверхности исследуемого объекта 5 до торцов световодов 3 и 4; ΔU=U/U0 - отношение амплитуд выходных сигналов с фотоприемника 7, соответствующих искомому и начальному моменту времени t0.

Пройденное поверхностью исследуемого объекта 5 расстояние

Δ x = x 0 x = x 0 x 0 2 U 0 U .                                                   (8)

До проведения измерений при помощи измерительных средств (например, линейки, штангенциркуля, плиток) определяется начальное расстояние x0 от поверхности исследуемого объекта 5 до торцов приемного и осветительного световодов 3, 4. При помощи осциллографа 8 определяется уровень выходного сигнала U0 с ФЭУ 7, соответствующего данному расстоянию x0.

При проведении измерений в любой момент времени перемещение поверхности исследуемого объекта 5 может быть определено по формуле (1), необходимо лишь измерить уровень выходного сигнала U с ФЭУ 7 при помощи осциллографа 8, подав импульс с генератора 1 на светодиод 2.

Были проведены лабораторные исследования, показавшие работоспособность способа измерения линейных перемещений.

Состав лабораторной установки, представленной на фиг.1:

- генератор импульсов Tabor Electonics 8551, параметры импульса: U=3 B, τ=50 мкс;

- светодиод синий λmax=450 нм, Фλmax=40 мВт;

- световоды кварц-полимерные, ⌀жилы=0,65 мм, Na=0,3;

- ФЭУ СНФТ-3, линейность импульсной характеристики 1,5 А (RH=75 Ом);

- осциллограф Tektronix TDS 2024.

Установка была собрана на стенде, имеющем независимую отсчетную шкалу в миллиметрах и позволяющем контролировать расстояние от поверхности исследуемого объекта 5 до торцов световодов 3 и 4.

Торцы осветительного и приемного световодов 3 и 4 были размещены на расстоянии от поверхности исследуемого объекта 5, равном 30 мм. В процессе исследований расстояние между световодами 3 и 4 и поверхностью исследуемого объекта 5 последовательно уменьшалось. При помощи шкалы измерялось расстояние от поверхности исследуемого объекта 5 до световодов 3 и 4. Соответствующий этому расстоянию уровень выходного напряжения с ФЭУ измерялся осциллографом 8.

Перемещение поверхности исследуемого объекта 5 Δx определялось двумя способами:

- при помощи шкалы, расположенной на стенде Δxстенд;

- по формуле (1) Δxрасчет.

Рассчитывалась погрешность измерений Δ по формуле

Δ = | Δ x с т е н д Δ x р а с ч е т Δ x с т е н д | × 100 % .

В области работы устройства (участок BC на фиг.2) отличия в измерении перемещений абсолютным методом (при помощи шкалы) от предложенного расчетного способа (по формуле (1)) не превышали 3%.

Заявляемый способ позволил добиться расширения диапазона измеряемых перемещений благодаря новому алгоритму расчетов и использованию импульсной системы измерений.

Для заявленного изобретения в том виде, как оно охарактеризовано в формуле изобретения, подтверждена возможность осуществления способа измерения линейных перемещений и способность обеспечения достижения усматриваемого заявителем технического результата. Следовательно, заявленное изобретение соответствует условию «промышленная применимость».

Способ измерения линейных перемещений, заключающийся в формировании подаваемого на поверхность исследуемого объекта потока светового излучения, регистрации в фиксированной точке отраженного света, преобразовании его в электрический сигнал, величину которого используют для определения расстояния от поверхности исследуемого объекта, отличающийся тем, что это расстояние определяют по формуле:
Δ x = x 0 x 0 2 U 0 U ,
где x0 - начальное расстояние от светоотражающей поверхности исследуемого объекта до фотоприемника;
U0 - амплитуда выходного сигнала с фотоприемника, соответствующая x0;
U - амплитуда выходного сигнала с фотоприемника, соответствующая Δx.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для измерения геометрических параметров нанообъектов. Оптическая измерительная система содержит модуль изменения и контроля параметров оптической схемы и условий освещения; модуль освещения; модуль построения оптического изображения; модуль дефокусирования; модуль регистрации ряда изображений с различной степенью дефокусирования; модуль расчета ряда изображений с различной степенью дефокусирования; модуль сравнения зарегистрированных дефокусированных изображений с рассчитанными изображениями; модуль пользовательского интерфейса.

Способ заключается в том, что изображение объекта фокусируют объективом в плоскости приемника, сканируют его возвратно-поступательно вдоль линейки элементов приемника, предварительно определяют номер N облучаемого элемента приемника, выключают выходы остальных элементов, осуществляют периодическое равномерное возвратно-поступательное сканирование изображения объекта облучаемым элементом с амплитудой, равной ширине элемента b, формируют опорные импульсы в середине каждого полупериода сканирования, измеряют временные интервалы Δt1 и Δt2 между фронтами сигналов и опорными импульсами в каждом полупериоде сканирования и измеряют их разность Δt=Δt2-Δt1.

Устройство содержит неподвижную часть, подвижную часть с установленным на ней объектом, источник монохроматического излучения, одномодовый световод, формирующий точечный источник, совмещенный с передним фокусом оптической системы, две параллельные прозрачные пластины, установленные перпендикулярно оптической оси.

Устройство содержит источник монохроматического излучения, выход которого совмещен с входом одномодового световода, формирующего на выходе точечный источник монохроматического излучения, совмещенный с передним фокусом оптической системы, формирующей параллельный пучок света.

Изобретение относится к электротехнике, в частности к измерению воздушного зазора электрической машины, например гидрогенератора. .

Изобретение относится к контрольно-измерительной технике с применением видеотехнологий и может быть использовано для определения межэлектродного расстояния в системе расположенных на малом расстоянии один над другим по вертикали и полностью перекрывающихся электродов сложной геометрической формы для электронных ламп в случае отсутствия возможности наблюдения межэлектродного расстояния сбоку перпендикулярно нормали к плоскостям электродов.

Изобретение относится к устройству для определения расстояния между, по меньшей мере, одной рабочей лопаткой и окружающей, по меньшей мере, одну рабочую лопатку стенкой газовой турбины, а также к применению способа.

Изобретение относится к устройству для определения расстояния между, по меньшей мере, одной рабочей лопаткой и окружающей, по меньшей мере, одну рабочую лопатку стенкой машины для превращения кинетической энергии потока в механическую энергию, а также к применению устройства.

Изобретение относится к измерительной технике, в частности к технологическому оборудованию для определения предельных отклонений рельсовых путей, и может быть использовано преимущественно для периодических измерений пролета (сужения или уширения колеи рельсового пути) и разности отметок головок рельсов в одном поперечном сечении.

Устройство содержит закрепленное на основании (1) устройство (2) для регулировки и фиксации его положения относительно поверхности (12) объекта (13), соединенный с ним цилиндрический корпус (4), во внутренней полости (5) которого установлены источник (6) когерентного оптического излучения и фокусирующая излучение (31) на поверхность (12) объекта (13) оптическая система (8) с устройствами для регулировки и фиксации их положения (7) и (9), опорную балку (14), выполненную составной из однотипных цилиндрических элементов (28), светонепроницаемый защитный корпус (19) с окном (20), установленный с возможностью перемещения вдоль опорной балки (14), во внутренней полости (21) которого установлены светоделитель (22) и отражатель (23), жестко скрепленные между собой, и экран с устройствами для регулировки и фиксации их положения (24) и (26).

Способ заключается в том, что изображение объекта фокусируют объективом в плоскости приемника, сканируют его возвратно-поступательно вдоль линейки элементов приемника, предварительно определяют номер N облучаемого элемента приемника, выключают выходы остальных элементов, осуществляют периодическое равномерное возвратно-поступательное сканирование изображения объекта облучаемым элементом с амплитудой, равной ширине элемента b, формируют опорные импульсы в середине каждого полупериода сканирования, измеряют временные интервалы Δt1 и Δt2 между фронтами сигналов и опорными импульсами в каждом полупериоде сканирования и измеряют их разность Δt=Δt2-Δt1.

Устройство содержит неподвижную часть, подвижную часть с установленным на ней объектом, источник монохроматического излучения, одномодовый световод, формирующий точечный источник, совмещенный с передним фокусом оптической системы, две параллельные прозрачные пластины, установленные перпендикулярно оптической оси.

Устройство содержит источник монохроматического излучения, выход которого совмещен с входом одномодового световода, формирующего на выходе точечный источник монохроматического излучения, совмещенный с передним фокусом оптической системы, формирующей параллельный пучок света.

Изобретение относится к контрольно-измерительной технике и предназначено для измерения пространственного положения объекта посредством дистанционного измерения координат контрольных меток, закрепленных на нем.

Изобретение относится к области автоматизации производственных технологических процессов. .

Изобретение относится к станкостроению и предназначено для автоматического контроля линейных перемещений различных механизмов и узлов (контроль за перемещением по линейным осям станков с ЧПУ, контроль перемещения узлов роботов и манипуляторов, контроль перемещения измерительных наконечников в приборах активного контроля).

Изобретение относится к определению расположения материальных объектов в пространстве с помощью оптического измерительного оборудования и, более конкретно, к оптической системе для измерения геометрических параметров, характеризующих взаимное расположение элементов оборудования в пространстве, соответствующему способу определения взаимного расположения элементов в пространстве с помощью упомянутой системы и устройству регистрации оптического излучения для использования в упомянутой системе.

Изобретение относится к измерительной технике и предназначено для прецизионного измерения расстояний. .

Изобретение относится к средствам, предназначенным для прецизионных измерений линейных и угловых перемещений объекта, в частности к оптическим средствам данного назначения, в которых используются методы интерферометрии.

Изобретение относится к области измерительной техники, к измерительным устройствам, характеризующимся дистанционными оптическими средствами измерений, и может быть использовано при решении задач, требующих одновременного определения двух линейных и двух угловых координат объекта при постоянной дистанции до объекта. Предложено одноканальное двухкоординатное устройство измерения угловых и линейных координат объекта, работающее в большом диапазоне дистанций с высокой точностью и изменяемым диапазоном измерений. Такой технический результат достигнут нами, когда в устройстве измерения линейных и угловых координат объекта, содержащем осветитель, объектив с матричным фотоприемником, связанным с устройством обработки информации и установленным в плоскости, сопряженной с объектом, и измерительную марку, установленную на объекте, новым является то, что измерительная марка снабжена осветителем, включающим расположенные по ходу луча источник света, конденсор и рассеиватель, и двумя визирными элементами, образующими кольцевую и точечную структуры и разнесенными по оптической оси, за второй структурой по ходу луча установлен компенсатор оптического хода, при этом объектив выполнен с переменным фокусным расстоянием. 5 ил.
Наверх