Шихта электродного материала для электроискрового легирования деталей машин

Изобретение относится области порошковой металлургии, в частности к шихте электродного материала для электроискрового легирования деталей машин. Шихта содержит порошок карбида вольфрама и карбид титана. Порошок получен электродиспергированием отходов твердого сплава марки Т15К6 в керосине и имеет средний размер частиц 3-100 нм. В результате режущий инструмент, полученный электроискровым легированием этой шихтой, обладает высокой стойкостью при обработке им деталей. 4 пр., 4 табл.

 

Предлагаемое изобретение относится к области порошковой металлургии и может быть использовано для создания износостойких покрытий на деталях электроискровым легированием в условиях массового, серийного и единичного производства.

Состав шихты электродного материала для электроискрового легирования деталей, подверженных абразивному износу, состоит из порошков на основе карбида вольфрама. Свойства покрытий деталей машин, подверженных интенсивному изнашиванию, зависят прежде всего от твердости высокотвердых составляющих и от свойств матрицы [1].

Недостатком этого состава шихты электродного материала для электроискрового легирования является то, что износостойкость покрытий относительно невысока.

Результаты теоретических и практических изысканий [2] показывают, что значительное повышение износостойкости покрытий достигается при использовании порошков, в структуре которых содержатся нанодисперсные карбиды высокотвердые составляющие. Недостатки состава:

1. Получение таких порошков как в лабораторных условиях,

так и в промышленных трудоемко и дорого.

2. Неоднородность порошка по составу, наличие примесей. Задача предлагаемого изобретения состоит в удешевлении и улучшении качественного состава шихты электродного материала для электроискрового легирования.

Поставленная задача решается тем, что шихта электродного материала для электроискрового легирования представляет собой твердосплавный порошок, который является продуктом электроэрозионного диспергирования (ЭЭД) отходов твердого сплава марки Т15К6 в керосине со средним размером частиц 3-100 нм.

Технологическая установка для получения порошков из отходов твердых сплавов состоит из источника питания искровыми разрядами, реактора и системы управления. В реакторе между электродами находятся гранулы - куски сплава произвольной формы и размеров. Электроды изготавливаются из диспергируемого материала. Межэлектродный промежуток заполняется керосином так, что слой гранул погружен в эту жидкость.

Соприкасаясь, гранулы образуют множество электрических контактов, соединенных в межэлектродном промежутке последовательно-параллельно. Один разрядный импульс между электродами вызывает в слое гранул, погруженных рабочую жидкость, искрение во многих местах. В местах контакта материал гранул может быть не только расплавлен, но и доведен до более высоких температур, при которых возможно испарение и взрывное удаление материала. При этом частицы вещества отрываются от поверхности гранул и мгновенно охлаждаются жидкостью. В результате электрической эрозии возникают частицы преимущественно сферической формы.

Пример 1

На установке (Пат. РФ 2449859, МПК C22F 9/14, С23Н 1/02, B82Y 40/00. Установка для получения нанодисперсных порошков из токопроводящих материалов [Текст] /Агеев Е.В. и [др.]; заявитель и потентообладатель Юго-Зап. гос. ун-т. - №2010104316/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. №13) диспергировали твердый сплав марки Т15К6 в керосине при следующих режимах: напряжение на электродах U=100 В и емкость разрядных конденсаторов С=2,5 мкФ.

Полученные порошки из отходов твердого сплава марки Т15К6, содержащего 6% кобальта, 15% карбида титана и 79% карбида вольфрама, обладают хорошей текучестью и имеют в основном сферическую и эллиптическую форму. В своей структуре эти порошки содержат высокотвердые фазы - карбиды α-WC, W2C и TiC и химический состав, представленный в табл.1.

Таблица 1
Химический состав порошков, полученных из отходов
Т15К6 % масс. (остальное W)
Марка сплава Способ получения Со Собщ Ссвоб TiC
Т15К6 ЭЭД в керосине 5,4 9,5 6,21 5,1
По ГОСТ 882-74 6,0 5,95 0,15 15

После получения порошка на установке отгоняют нанодисперсную фракцию на центрифуге и его очищают от керосина бензином, а затем прокаливают в течение 20 минут в печи при 200°С. Полученный таким образом порошок со средним размером частиц 3-100 нм используется для получения электродного материала.

Электродный материал получали спеканием при следующих условиях:

- объемное холодное прессованием при давлении 400 МПа;

- спекание в среде водорода при температуре 1500°С.

Далее осуществлялось электроискровое легирование передней режущей поверхности сверл диаметром 12 мм ГОСТ 10903-78 на установке UR-121.

Испытания проводились согласно ГОСТ 2034-80 - «Сверла спиральные. Технические условия», оборудование - станок радиально-сверлильный 2М55, материал заготовки - сталь 45 ГОСТ 1050-88.

Фактическая стойкость до первой переточки сверла с электроискровым легированием составляет 17,6 мин до первой переточки, а без электроискрового легирования - 4,3 мин.

Пример 2

На установке (Пат. РФ 2449859, МПК C22F 9/14, С23Н 1/02, B82Y 40/00. Установка для получения нанодисперсных порошков из токопроводящих материалов [Текст] / Агеев Е.В. и [др.]; заявитель и потентообладатель Юго-Зап. гос. ун-т. - №2010104316/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. №13) диспергировали твердый сплав марки Т15К6 в дистиллированной воде при следующих режимах: напряжение на электродах U=120 В и емкость разрядных конденсаторов С=5 мкФ.

Полученные порошки из отходов твердого сплава марки Т15К6, содержащего 6% кобальта, 15% карбида титана и 79% карбида вольфрама, обладают хорошей текучестью и имеют в основном сферическую и эллиптическую форму. В своей структуре эти порошки содержат высокотвердые фазы - карбиды W2C и TiC и химический состав, представленный в табл.2.

Таблица 2
Химический состав порошков, полученных из отходов
Т15К6% масс. (остальное W)
Марка сплава Способ получения Со Собщ Ссвоб TiC
Т15К6 ЭЭД в воде 4,5 3,12 0,471 7,6
По ГОСТ 882-74 6,0 5,95 0,15 15

После получения порошка на установке отгоняют нанодисперсную фракцию на центрифуге и его очищают от оксидов 10-% НСl, а затем прокаливают в течение 20 минут в печи при 200°С.Полученный таким образом порошок со средним размером частиц 3-100 нм используется для получения электродного материала.

Электродный материал получали спеканием при следующих условиях:

- объемное холодное прессованием при давлении 400 МПа;

- спекание в среде водорода при температуре 1500°С.

Далее осуществлялось электроискровое легирование передней режущей поверхности сверл диаметром 12 мм ГОСТ 10903-78 на установке UR-121.

Испытания проводились согласно ГОСТ 2034-80 «Сверла спиральные. Технические условия», оборудование - станок радиально-сверлильный 2М55, материал заготовки - сталь 45 ГОСТ 1050-88. Фактическая стойкость до первой переточки сверла с электроискровым легированием составляет 16,8 мин до первой переточки, а без электроискрового легирования - 4,3 мин.

Пример 3

На установке (Пат. РФ 2449859, МПК C22F 9/14, С23Н 1/02, B82Y 40/00. Установка для получения нанодисперсных порошков из токопроводящих материалов [Текст] / Агеев Е.В. и [др.]; заявитель и потентообладатель Юго-Зап. гос. ун-т.- №2010104316/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. №13) диспергировали твердый сплав марки ВК8 в керосине при следующих режимах: напряжение на электродах U=100 В и емкость разрядных конденсаторов С=2,5 мкФ.

Полученные порошки из отходов твердого сплава марки ВК8, содержащего 8% кобальта и 92% карбида вольфрама, обладают хорошей текучестью и имеют в основном сферическую и эллиптическую форму. В своей структуре эти порошки содержат высокотвердые фазы - карбиды α-WC и W2C и химический состав, представленный в табл.3.

Таблица 3
Химический состав порошков, полученных из отходов ВК8% масс. (остальное W)
Марка сплава Способ получения Со Собщ Ссвоб
ВК8 ЭЭД в керосине 8,32 5,89 2,13
По ТУ 49-19-10.4-73 6,0 5,95 0,15

После получения порошка на установке отгоняют нанодисперсную фракцию на центрифуге и его очищают от керосина бензином, а затем прокаливают в течение 20 минут в печи при 200°С. Полученный таким образом порошок со средним размером частиц 3-100 нм используется для получения электродного материала.

Электродный материал получали спеканием при следующих условиях:

- объемное холодное прессованием при давлении 400 МПа;

- спекание в среде водорода при температуре 1500°С.

Далее осуществлялось электроискровое легирование передней режущей поверхности сверл диаметром 12 мм ГОСТ 10903-78 на установке UR-121.

Испытания проводились согласно ГОСТ 2034-80 - «Сверла спиральные. Технические условия», оборудование - станок радиально-сверлильный 2М55, материал заготовки - сталь 45 ГОСТ 1050-88.

Фактическая стойкость до первой переточки сверла с электроискровым легированием составляет 14,3 мин до первой переточки, а без электроискрового легирования - 4,3 мин.

Пример 4

На установке (Пат. РФ 2449859, МПК C22F 9/14, С23Н 1/02, B82Y 40/00. Установка для получения нанодисперсных порошков из токопроводящих материалов [Текст] / Агеев Е.В. и [др.]; заявитель и потентообладатель Юго-Зап. гос. ун-т. - №2010104316/02; заявл. 08.02.2010; опубл. 10.05.2012, Бюл. №13) диспергировали твердый сплав марки ВК8 в дистиллированной воде при следующих режимах: напряжение на электродах U=120 В и емкость разрядных конденсаторов С=5 мкФ.

Полученные порошки из отходов твердого сплава марки ВК8, содержащего 8% кобальта и 92% карбида вольфрама, обладают хорошей текучестью и имеют в основном сферическую и эллиптическую форму. В своей структуре эти порошки содержат высокотвердые фазы - карбиды α-WC и W2C и химический состав, представленный в табл.4.

Таблица 4
Химический состав порошков, полученных из отходов
ВК8% масс. (остальное W)
Марка сплава Способ получения Со Собщ Ссвоб O2
ВК8 ЭЭД в воде 7,32 2,93 0,15 1,24
По ТУ 49-19-10.4-73 7,8-8,6 5,7-5,95 0,1 0,5

После получения порошка на установке отгоняют нанодисперсную фракцию на центрифуге и его очищают от оксидов 10-% НСl, а затем прокаливают в течение 20 минут в печи при 200°С. Полученный таким образом порошок со средним размером частиц 3-100 нм используется для получения электродного материала.

Электродный материал получали спеканием при следующих условиях:

- объемное холодное прессованием при давлении 400 МПа;

- спекание в среде водорода при температуре 1500°С.

Далее осуществлялось электроискровое легирование передней режущей поверхности сверл диаметром 12 мм ГОСТ 10903-78 на установке UR-121.

Испытания проводились согласно ГОСТ 2034-80 «Сверла спиральные. Технические условия», оборудование - станок радиально-сверлильный 2М55, материал заготовки - сталь 45 ГОСТ 1050-88. Фактическая стойкость до первой переточки сверла с электроискровым легированием составляет 12,4 мин до первой переточки, а без электроискрового легирования - 4,3 мин.

Таким образом, использование твердосплавного порошка, который является продуктом электроэрозионного диспергирования отходов твердого сплава со средним размером частиц 3-100 нм в качестве шихты электродного материала для электроискрового легирования позволяет повысить стойкость режущего инструмента в среднем в 4 раза при минимальных затратах на электродный материал.

Источники информации

1. Вайнемар А.Е. Плазменная наплавка металлов [Текст] / Шоршоров М.Х., Веселков В.Д., Новосадов B.C. - М.: Машиностроение, 1969. - 192 с.

2. Химухин С.Н. Разработка научных основ формирования измененного слоя на металлах и сплавах с заданными свойствами при низковольтной электроискровой обработке [Текст]: автореф. дисс.… канд. техн. наук / Химухин С.Н. - Комсомольск-на-Амуре, 2009. - 40 с.

Шихта электродного материала для электроискрового легирования деталей машин, содержащая порошок карбида вольфрама и карбид титана, отличающийся тем, что упомянутый порошок получен электроэрозионным диспергированием отходов твердого сплава марки Т15К6 в керосине и имеет средний размер частиц 3-100 нм.



 

Похожие патенты:
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления тонкопленочных транзисторов. В способе изготовления тонкопленочного транзистора на подложку из монокристаллического кремния с термически выращенным слоем окиси кремния последовательно плазмохимическим осаждением из газовой фазы при температуре подложки 300оС осаждают слой нелегированного α-Si n--типа толщиной 300 нм и слой легированного фосфором микрокристаллического кремния n+-типа толщиной 20 нм, между стоком и истоком формируют термически слой оксида кремния толщиной 200 нм, углубленный в слой аморфного кремния, затем наносят 500 нм слой SiO2 методом химического осаждения из газовой фазы при 250°C, затем образцы отжигают в атмосфере водорода при 350°C в течение 30 минут.

Изобретение относится к области эмиссионной и наноэлектроники и может быть использовано в разработке и в технологии производства фотоэлектронных преобразователей второго поколения, эмиттеров с отрицательным электронным сродством для приборов ИК-диапазона.

Изобретение относится к области лазерной техники. Нанорезонатор состоит из двух гребенчатых пересекающихся фотонно-кристаллических волноводов, в месте пересечения образующих резонансную камеру.

Изобретение относится к медицине, а именно к ортопедической стоматологии. Описан способ изготовления внутрикостных имплантатов, включающий послойное нанесение плазменным напылением на металлическую основу имплантата биологического активного покрытия, при этом первым и вторым слоями дистанционно напыляют титан, третьим слоем наносят механическую смесь порошка титана и гидроксиапатита, четвертый слой формируют на основе гидроксиапатита или оксида алюминия, при этом при формировании четвертого слоя смешивают порошок бемита дисперсностью не более 50 нм с порошками гидроксиапатита или оксида алюминия в количестве 5-20% порошка бемита от общего количества веществ, при этом бемит берут в виде суспензии, приготовленной с добавлением поверхностно-активного вещества, растворенного в дистиллированной воде концентрацией 0,25-5%, обработанного в ультразвуковой ванне, затем полученную суспензию из бемита и гидроксиапатита или оксида алюминия обрабатывают в ультразвуковой ванне, сушат, отжигают и измельчают.
Изобретение относится к медицине, в частности к способу получения реагента для приготовления меченного технецием-99m наноколлоида на основе гамма-оксида алюминия А12O3, который может быть использован для радионуклидной диагностики.

Настоящее изобретение относится к смазочной масляной композиции, включающей 100 масс. частей смазки и от 0,01 до 3,0 масс.

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д. В способе получения наноструктурного покрытия из гранулированного нанокомпозита «металл-керамика» получают нанокомпозит предпочтительно методом ионно-лучевого распыления с образованием гранул, со средним диаметром преимущественно 2-4 нм, а концентрацию металлической фазы в получаемом нанокомпозите при распылении обеспечивают в пределах 25-30 ат.%.

Изобретение относится к нанесению изоляционных покрытий на металлические проволоки и может быть использовано, в частности, для покрытия проволок, предназначенных для изготовления сетчатых и других изделий.

Изобретение относится к нефтехимической промышленности и плазмохимии и может быть использовано для плазменной обработки и утилизации отходов нефтепереработки. Жидкое углеводородное сырьёе 5 разлагают электрическим разрядом в разрядном устройстве, расположенном в вакуумной камере 6.
Изобретение относится к области нанотехнологий, а точнее к способам заполнения внутренних полостей нанотрубок химическими веществами, и может быть использовано для заполнения внутренних полостей нанотрубок необходимым веществом при использовании их в виде наноконтейнеров и для изготовления наноматериалов с новыми полезными свойствами.
Изобретение относится к получению коллоидов металлов электроконденсационным методом. Может использоваться для создания каталитических систем, модификации волокнистых и пленочных материалов, например, для изготовления экранов защиты от электромагнитного излучения.

Изобретение относится к порошковой металлургии, в частности к получению монодисперсных наноразмерных порошков с заданными структурами и составом. Может использоваться в фармацевтической, пищевой, текстильной промышленности и других областях науки.

Изобретение относится к плазменной технике и технологии. .

Изобретение относится к области нанотехнологий и может быть использовано при нанесении высокоэффективных каталитических нанопокрытий. .

Изобретение относится к порошковой металлургии, а именно к способам получения металлических гранул. .

Изобретение относится к порошковой металлургии, в частности к производству металлических порошков. .

Изобретение относится к порошковой металлургии, в частности к получению порошковых материалов с частицами менее 0,2 мкм, в частности, используемых в качестве материалов для синтеза люминофоров.

Изобретение относится к способам получения наночастиц в вакуумном дуговом разряде. .

Изобретение относится к порошковой металлургии, в частности к устройствам для получения нанодисперсных порошков из любых токопроводящих материалов, в том числе и их отходов, методом электроэрозионного диспергирования для последующего их использования в технологических процессах изготовления, восстановления и упрочнения деталей машин, инструмента.
Изобретение относится к порошковой металлургии, в частности к переработке отходов твердых сплавов и использованию полученного порошка в качестве альтернативного сырья.

Изобретение относится к металлургии. Устройство для извлечения элементов из оксидных руд в виде порошка содержит плазмотрон, подающий канал, реакционный канал, фильтр и емкость для сбора порошка. Кроме того, устройство снабжено емкостью для загрузки сырья в виде смеси нанопорошков угля и оксидной руды, форсункой для регулирования скорости подачи сырья из емкости в реакционный канал, расположенной в подающем канале, каналом для теплоносителя, расположенным с охватом реакционного канала и связанным с технологическим контуром, содержащим теплообменник, тепловую турбину и электрогенератор. Упомянутый технологический контур выполнен с возможностью утилизации тепловой энергии в виде разности между энергией, выделяющейся при окислении углерода, и энергией, необходимой для разложения оксидов, в электрическую энергию. Реакционный канал выполнен с расширением по диаметру от входа в него сырья и розжига сырья плазмотроном до зоны образования газов разложения оксидов и окисления углерода, а после реакционного канала установлен многосекционный фильтр. Обеспечивается извлечение элементов из оксидных руд в виде порошка, а также более полное использование разности тепловыделения при окислении углерода и разложении оксидов. 1 ил., 3 табл.
Наверх