Способ получения сплавов на основе титана

Изобретение относится к области металлургии, в частности к способу получения сплавов на основе титана, плавка и разливка которых проводится в вакуумных дуговых гарнисажных печах. Способ получения сплава на основе титана с содержанием бора 0,002-0,008 мас.% включает проведение плавки в вакуумной дуговой гарнисажной печи с расходуемым электродом, не имеющей дополнительного вакуумного порта для введения модифицирующих добавок. Навеску модификатора B4C, завернутую в алюминиевую фольгу, закладывают в отверстие расходуемого электрода, которое высверливают от сплавляемого торца электрода на расстоянии, определяемом в зависимости от времени его расплавления. Получают сплав на основе титана с равноосной структурой и размером зерна менее 15 мкм. 1 табл., 1 пр.

 

Область техники

Изобретение относится к области металлургии, в частности к способу получения сплавов на основе титана, плавка и разливка которых проводится в вакуумных дуговых гарнисажных печах, не оборудованных отдельным вакуумным портом для введения компонентов сплава (шихты) в процессе проведения плавки.

Известные решения и цель изобретения

Титановые сплавы используются для получения деталей ответственного назначения в авиастроении, судостроении, химическом машиностроении и других областях, где требуется сочетание высоких механических свойств (прочности, пластичности, вязкости разрушения и др.) и коррозионной стойкости при относительной малой массе [Ильин А.А., Колачев Б.А., Полькин И.С. Титановые сплавы. Состав, структура, свойства. Справочник. М: ВИЛС-МАТИ, 2009, 520 с.]. Качество детали, в значительной мере, определяется качеством титанового литья (слитка или фасонной отливки), которое, в свою очередь, зависит от способа получения сплава.

Известны способы получения титанового сплава методом вакуумно-дугового переплава электрода, изготовленного из титановой губки, с запрессованными в него легирующими элементами, методом получения сплава путем плазменной плавки из шихты, подаваемой в зону горения плазмы, методом электронно-лучевой плавки [Неуструев А.А., Ходоровский Г.Л. "Вакуумные гарнисажные печи", М. "Металлургия", 1967 г.].

Данные способы получения слитков не предусматривают модифицирование сплавов.

Наиболее близким к предложенному способу является метод получения сплавов на основе титан-алюминия (пат. US5311655 от 17.05.1994). Этот способ включает расплавление шихтовых материалов (в виде кусков) в тигле путем нагрева за счет вращающегося электрода или плазмы или электронного пучка. Осуществляется дуговой переплав (предпочтительно вакуум-дуговой переплав) после плавления части исходных материалов.

Данный способ позволяет получить в слитке размер зерна около 100 мкм, однако данные слитки используются только в качестве расходного материала при фасонном литье в дуговых гарнисажных печах. Получение определенной структуры слитка не является необходимым. Процесс изготовления слитков с определенной зерновой структурой производится на специальных печах.

Целью изобретения является создание способа получения сплавов на основе титана, позволяющего получить размер зерна менее 15 мкм и равноосную структуру в фасонных отливках и слитках.

Поставленная цель достигнута тем, что предложен способ введения в расплав легирующего компонента - модификатора при проведении плавки химически активных сплавов в вакуумных дуговых гарнисажных печах с расходуемым электродом во время горения дуги не имеющих дополнительного вакуумного порта для введения добавок, отличающийся тем, что на основе расчетных данных по весовым параметрам плавки, скорости наплавления сплава, программе ведения плавки производится подготовка и закладка в тело расходуемого электрода перед приваркой на определенном расстоянии от сплавляемого торца навеска легирующего компонента - модификатора, что приводит к расплавлению его в точно определенный момент плавки и равномерному распределению в расплаве.

Сущность изобретения

В основу изобретения положена цель разработать способ введения в расплав при горящей дуге в строго определенное время плавки точно рассчитанное количество материала шихты (легирующего компонента, модификатора).

Для достижения данной цели решались следующие задачи.

1. Определить способ ввода

2. Определить вид упаковки добавки.

3. Определить вес добавки

4. Составить схему расчета компонентов плавки и добавки.

5. Определить место установки добавки.

6. Рассчитать время ввода.

Пример выполнения

Для экспериментального обоснования предложенного изобретения было реализовано 4 варианта получения модифицированного титанового сплава, которые приведены в табл.1.

Состав сплава, мас.%
Легирующие элементы Примеси, не более
Ti Al B C Fe Si O N H Остальные
Основа 4,70 0 0,16 0,30 0,19 0,21 0,05 0,01 0,3
Основа 4,71 0,002 0,17 0,29 0,20 0,21 0,05 0,01 0,3
Основа 4,69 0,008 0,19 0,30 0,18 0,20 0,05 0,01 0,3
Основа 4,70 0,010 0,19 0,29 0,19 0,21 0,05 0,01 0,3

Для заливки фасонных отливок с толщиной стенки от 10 до 100 мм с целью получения мелкозернистой структуры и обеспечения однородных (изотропных) механических свойств во всех сечениях и направлениях отливки.

В качестве борсодержащего модифицирующего материала по опытным данным выбран микропорошок карбида бора (B4C) 4-25 мкм.

В качестве плавильного агрегата выбрана вакуумная дуговая гарнисажная установка НИАТ 833Д, предназначенная для расплавления и заливки тугоплавких и химически активных сплавов путем расплавления электрода готового химического состава, сбора расплава в тигле и слива в литейную форму. Во время плавки электрод имеет отрицательный электрический заряд, а гарнисажный тигель - положительный. Сила тока 12-17 кА, напряжение 34-40 B постоянного тока.

Емкость тигля 120 кг по титану. Диаметр электрода 280 мм. Электрическая мощность на луге 650 кВт. Разрежение в камере 1,33×10-2-5×10-3 мм рт.ст. Из практических данных по эксплуатации установки составлены программы проведения плавок в зависимости от силы тока при постоянном напряжении и вида шихты (количество отходов, используемых в качестве подкладки в тигель, одно из условий гарнисажной плавки). По программе плавки необходимое время ведения плавки в зависимости от общего веса наплавленного металла. Модифицирующий эффект достигается при введении модификатора за 1,5-2 минуты до слива металла в литейную форму.

Выполняем операции согласно поставленной задачи.

1. Способ ввода - закладка навески модификатора в расходуемый электрод.

2. Упаковка - фольга из сплава АД00 по ГОСТ 12592-67.

3. Вес модификатора 0,002-0,008% от общего веса плавки.

4. Схема расчета веса плавки и модификатора.

G кг сливной-G кг отходов=G кг с электрода

Tплавки мин-(1,5-2) мин=T1, время расплавления электрода до места установки закладки.

Tплавки из программы плавки, определяем длину электрода, сплавляемого за время T1,

для этого:

- определяем вес 1 см длины электрода

3.14×282×4,5=P Фэ=280 мм (для данной установки),

удельный вес сплава - 4,5 г/см

- количество металла, сплавляемого за время T1

Rconstx T1=G*кг,

где Rconst - величина, определяемая опытным путем для данной установки, таким образом, G*/Rconst=Hсм, где Hсм - расстояние от сплавляемого торца электрода до места закладки навески модификатора.

5. Отмечаем полученный размер на электроде. Производим сверловку электрода сверлом диаметром 20 мм на глубину равную половине диаметра электрода. В полученное отверстие закладываем навеску модификатора, завернутую в алюминиевую фольгу. На электроде выполняем сверловки для следующих плавок и отправляем электрод на приварку.

В результате проведенных экспериментов показано, что при содержании бора 0,002-0,008% выявляется мелкозернистая структура в разных толщинах отливки (с размером зерна 10-15 мкм) и с сохранением прочностных характеристик, в результате пластичность сплава увеличивайся до 30%. При содержании бора более 0,008% высока вероятность его расположения преимущественно по границам зерен, что снижает механические свойства.

Способ получения сплава на основе титана с содержанием бора 0,002-0,008 мас.%, включающий проведение плавки в вакуумной дуговой гарнисажной печи с расходуемым электродом, не имеющей дополнительного вакуумного порта для введения модифицирующих добавок, отличающийся тем, что навеску модификатора B4C, завернутую в алюминиевую фольгу, закладывают в отверстие расходуемого электрода, которое высверливают от сплавляемого торца электрода на расстоянии, определяемом в зависимости от времени его расплавления.



 

Похожие патенты:
Изобретение относится к области металлургии, а именно к производству титановых сплавов, и может быть использовано для высоконагруженных деталей и узлов, работающих при температурах до 550°C длительно и при 600°C кратковременно.
Изобретение относится к порошковой металлургии, в частности к получению порошка сплава на основе элементов 4 группы периодической таблицы. Может использоваться в пироиндустрии при получении запальных устройств, в качестве газопоглотителей в вакуумных трубках, в лампах, в вакуумной аппаратуре и в установках для очистки газов.
Изобретение относится к области металлургии, а именно к сплавам на основе титана, и может быть использовано в элементах оборудования химических производств, в сварных соединениях судостроения.

Изобретение относится к деформационно-термической обработке сплавов с эффектом памяти формы, в частности сплавов на основе TiNi. Наноструктурный сплав титан-никель с эффектом памяти формы характеризуется структурой из наноскристаллических аустенитных зерен В2 фазы, в которой объемная доля зерен с размером менее 0,1 мкм и с коэффициентом формы зерен не более 2 во взаимно перпендикулярных плоскостях составляет не менее 90%.
Изобретение относится к металлургии, а именно к сплавам на основе титана с высокой коррозионной стойкостью против щелевой и питтинговой коррозии в агрессивных средах, и может быть использовано в свариваемых элементах оборудования: химических производств, оффшорной техники и судостроения.

Изобретение относится к области металлургии и может быть использовано в качестве конструкционного материала для изделий авиационной и космической промышленности.

Изобретение относится к области металлургии, а именно к высокопрочным титановым сплавам, и может быть использовано в авиационной промышленности. Высокопрочный псевдо-бета титановый сплав содержит, мас.%: 5,3-5,7 алюминия, 4,8-5,2 ванадия, 0,7-0,9 железа, 4,6-5,3 молибдена, 2,0-2,5 хрома, 0,12-0,16 кислорода, остальное титан и примеси и, при необходимости, один или более дополнительных элементов, выбранных из N, С, Nb, Sn, Zr, Ni, Co, Cu и Si, причем каждый дополнительный элемент присутствует в количестве менее 0,1%, и общее содержание дополнительных элементов составляет менее 0,5 мас.%.

Изобретение относится к порошковой металлургии, а именно к дисперсно-упрочненным композиционным материалам. .

Изобретение относится к области наноструктурных материалов с ультрамелкозернистой структурой, в частности, двухфазных альфа-бета титановых сплавов, которые могут быть использованы для изготовления полуфабрикатов и изделий в различных отраслях техники, машиностроения, медицины.

Изобретение относится к области спецэлектрометаллургии и может быть использовано при вакуумно-дуговом переплаве базового -TiAl-сплава, который затвердевает через -фазу.
Изобретение относится к металлургии и литейному производству, в частности к способу модифицирования легированного чугуна с шаровидным графитом для изготовления быстроизнашивающихся деталей, например мелющих элементов рудо- и угольных размольных мельниц.
Изобретение относится к получению наноструктур. Содержащую карбид наноструктуру получают осаждением на основу нанослоя металла или неметалла, или их окислов и последующей карбидизацией путем обработки в угарном газе в присутствии угля или сажи при температуре 1400-1500°С.

Изобретение относится к металлургии, в частности к получению карбидочугуна с отсутствием пор в объеме сплава, и может быть использовано для изготовления рабочих частей выглаживателей.
Изобретение относится к области металлургии, в частности к волокнистым композиционным материалам, армированным непрерывными волокнами оксида алюминия, и может быть использовано в качестве конструкционного материала в авиационной технике.

Изобретение относится к углеродсодержащим медным сплавам и может быть использовано в электротехнике для изготовления электрических проводов. Медный сплав получают добавлением графита гексагональной системы в высокотемпературную среду с температурой в диапазоне от 1200°С до 1250°С в количестве, необходимом для получения медного сплава с содержанием углерода в диапазоне от 0,01% до 0,6% по весу.

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов с металлической матрицей из алюминия или его сплавов, армированных керамическим наполнителем из нитридов или карбидов бора и вольфрамом.

Изобретение относится к области порошковой металлургии, в частности к композиционным материалам на основе алюминия, и может быть использовано в качестве конструкционного материала для деталей, работающих в условиях высоких механических и тепловых нагрузок, например для поршней форсированных двигателей внутреннего сгорания, работающих при температурах их нагрева 350°C и выше.
Изобретение относится к области металлургии, в частности к способам получения сплавов на основе кобальта, предназначенных для каркасов металлокерамических и бюгельных зубных протезов.

Изобретение относится к порошковой металлургии, в частности к способам получения высокопористых ячеистых материалов (ВПЯМ). Может использоваться для изготовления фильтров, шумопоглотителей, носителей катализаторов, теплообменных систем, конструкционных материалов, работающих в условиях высоких температур, может найти применение в энергетике, машиностроительной, химической и других отраслях промышленности.
Изобретение относится к области металлургии цветных металлов, в частности к получению сплавов алюминия с редкоземельными металлами. Способ получения лигатуры алюминий-скандий включает расплавление алюминия, алюминотермическое восстановление скандия из исходной шихты, содержащей фторид скандия, хлорид калия и фторид натрия под покровным флюсом и последующую выдержку полученного расплава.

Изобретение относится к специальной электрометаллургии и может быть использовано для получения слитка сплава высокой чистоты. Способ включает: стадию загрузки исходного материала сплава в холодный тигель в индукционной плавильной печи с холодным тиглем и образование ванны расплава исходного материала сплава индукционным нагревом в атмосфере инертного газа, стадию продолжения индукционного нагрева и добавления первого рафинирующего агента к ванне расплава, и затем уменьшения содержания по меньшей мере фосфора из числа примесных элементов, присутствующих в ванне расплава, и стадию формирования слитка сплава посредством отверждения расплава, содержание фосфора в котором было уменьшено.

Изобретение относится к области металлургии, в частности к способу получения сплавов на основе титана, плавка и разливка которых проводится в вакуумных дуговых гарнисажных печах. Способ получения сплава на основе титана с содержанием бора 0,002-0,008 мас. включает проведение плавки в вакуумной дуговой гарнисажной печи с расходуемым электродом, не имеющей дополнительного вакуумного порта для введения модифицирующих добавок. Навеску модификатора B4C, завернутую в алюминиевую фольгу, закладывают в отверстие расходуемого электрода, которое высверливают от сплавляемого торца электрода на расстоянии, определяемом в зависимости от времени его расплавления. Получают сплав на основе титана с равноосной структурой и размером зерна менее 15 мкм. 1 табл., 1 пр.

Наверх