Способ контроля качества неразъемных соединений

Изобретение относится к области неразрушающего контроля и может быть использовано при диагностике неразъемных соединений, в частности для контроля качества паяных соединений камер сгорания и сопел жидкостных ракетных двигателей. Способ контроля качества неразъемных соединений заключается в том, что первоначально на минимальном удалении от бездефектного участка неразъемного соединения размещают устройство нагрева и вихретоковый преобразователь. Включают нагрев и фиксируют показания вихретокового преобразователя. Затем переставляют устройство нагрева и вихретоковый преобразователь на контролируемый участок неразъемного соединения. Положения нагревательного устройства и вихретокового преобразователя относительно паяного соединения должны быть идентичны их положениям относительно бездефектного участка. Включают нагрев и фиксируют показания вихретокового преобразователя. После чего производят сравнение показаний вихретокового преобразователя, полученных на бездефектном участке и на контролируемом участке, и по разности показателей судят о качестве неразъемного соединения. Технический результат - повышение точности диагностирования качества паяных соединений изделий. 1 ил.

 

Изобретение относится к области неразрушающего контроля неразъемных соединений и может быть использовано для контроля качества паяных соединений камер сгорания и сопел жидкостных ракетных двигателей (ЖРД).

Известен способ определения степени сцепления металлического покрытия с изоляционным основанием, заключающийся в том, что контролируемый участок поверхности нагревают со стороны поверхности и затем замерят количество теплоты Q2, оставшееся в покрытии, производят измерение количества теплоты Q1, сообщаемое контролируемому участку, длительность интервала нагрева τ1 выбирают из условия τ1≅5•10-4D2/α, где α коэффициент температуропроводности материала основания, D - характерный размер контролируемого участка, измерение количества тепла Q2 производят через интервал времени τ2≤(0,5÷2)·10-2D2/d, а о степени сцепления металлического покрытия с изоляционным основанием судят по отношению S (Q1KQ2)/Q1, где K коэффициент, определяемый экспериментально для покрытия с известным сцеплением, (патент РФ №2065600, кл. G01N 25/72, 1994).

В результате анализа известного способа необходимо отметить, что при его осуществлении глубина проникновения вихревых токов в объект контроля зависит от частоты, таким образом можно ограничить по глубине зону контроля и повысить чувствительность метода. Однако данный способ имеет весьма узкую область применения, так как предназначен только для выявления поверхностных трещин, которые находятся в плоскостях, перпендикулярных поверхности контроля (обычно поверхность изделия). Известный способ не пригоден для выявления плоских дефектов (трещин, непропаев), расположенных в плоскости параллельной плоскости контроля.

Наиболее близким техническим решением к заявленному способу является способ определения степени сцепления металлического покрытия с изоляционным основанием, который основан на измерении количества тепла, быстро сообщенного покрытию, и измерении тепла, оставшегося в покрытии через некоторый интервал времени. Отношение этих значений характеризует степень сцепления. Для нагрева покрытия используют вихревые токи (см. авторское свидетельство СССР №744301, кл. G01N 25/72, 1980).

Известный способ обладает довольно узкой областью использования, так как может быть применен только для обнаружения дефектов типа отслоения, недостаточного сцепления тонкого металлического покрытия на основании из изоляционного материала.

Кроме того, известный способ предполагает использовать приборы для измерения температуры, работающие по принципу измерения теплового излучения от объекта контроля. При работе с материалами с высоким коэффициентом отражения измерение температуры при помощи регистрации теплового излучения затруднительно.

Заявленный способ неразрушающего контроля основан на регистрации полей вихревых токов, наведенных в объекте контроля катушкой с переменным током (см., например, «Неразрушающий контроль». Кн.3. Электромагнитный контроль. В.Г.Герасимов, А.Д.Покровский, В.В.Сухоруков: Под ред. В.В.Сухорукова. - М.: Высшая школа, 1992 г.). Так как величина наведенных вихревых токов в объекте контроля зависит от проводимости, то измеряя вносимое вихревыми токами поле, можно измерять проводимость. По проводимости объекта контроля можно косвенно судить о многих его свойствах, одно из таких свойств - это температура. При увеличении температуры происходит увеличение удельного электрического сопротивления и уменьшение удельной электрической проводимости материала объекта контроля. Проводя локальные измерения проводимости вихретоковым методом, можно измерять распределение температуры.

Техническим результатом изобретения является расширение функциональных возможностей способа и повышении его точности при контроле качества паяных соединений изделий, например камер сгорания и сопел ЖРД, за счет обеспечения возможности выявления дефектов в виде непропаев и слипаний, выявление которых является сложной задачей для других методов контроля.

Указанный технический результат обеспечивается тем, что данный способ, основанный на косвенном измерении теплового сопротивления паяного соединения, которое в не меньшей степени, чем наличие зазора, свидетельствует о качестве паяного соединения и при этом может быть эффективно измерено на поверхности изделия.

Решение поставленной задачи обеспечивается следующими операциями:

- вблизи объекта контроля размещают нагревательное устройство, таким образом, чтобы созданный тепловой поток проходил через неразъемное соединение, перпендикулярно поверхности ожидаемых дефектов;

- вблизи зоны нагрева со стороны, с которой производится нагрев, размещают вихретоковые преобразователи для измерения проводимости поверхности и подповерхностных слоев в процессе нагрева;

- совместно с включением нагрева проводят измерения проводимости вихретоковыми преобразователями;

- по измеренной проводимости судят о температуре поверхности изделия и приповерхностных слоев;

- при наличии дефекта в паяном соединении температура поверхности во время нагрева будет выше над дефектом, чем на бездефектном участке.

Сущность заявленного изобретения поясняется графическими материалами, на которых представлена схема установки, реализующей заявленный способ.

Установка для реализации заявленного способа содержит устройство 1 нагрева объекта контроля (ОК). В качестве такового устройства наиболее целесообразно использовать индуктор с регулируемой температурой нагрева. В зависимости от специфики решаемой задачи может быть применен другой источник нагрева, однако индукционные нагреватели являются наиболее эффективными для решения данной задачи, так как можно совместить устройство нагрева и катушку возбуждения вихретокового преобразователя 2.

Наиболее предпочтительно использовать вихретоковый преобразователь трансформаторного типа для уменьшения влияния изменения температуры самого преобразователя на результаты измерений, что подтверждается сведениями из уровня техники (см., например, «Неразрушающий контроль». Кн.3. Электромагнитный контроль. В.Г.Герасимов, А.Д.Покровский, В.В.Сухоруков: Под ред. В.В.Сухорукова. - М.: Высшая школа, 1992 г.).

Вихретоковый преобразователь 2 связан с усилителем 3 сигнала вихретокового преобразователя. Усилитель 3 необходим для первичного усиления напряжения, наведенного в катушке измерения вихретокового преобразователя. Выход усилителя 3 связан с входом аналого-цифрового преобразователя 4

Необходимо отметить, что полезный сигнал преобразователя 2 имеет небольшую величину, порядка 10-100 мкВ, в то время как большинство аналого-цифровых преобразователей, используемых в настоящее время, рассчитаны на преобразование сигналов порядка единиц мВ. Трансформаторный сигнал (присутствующий вне зависимости от объекта контроля) определяется разницей измерительной и компенсационной катушек, его величина зависит от конкретной реализации вихретокового преобразователя. При необходимости целесообразно скомпенсировать трансформаторный сигнал изменением количества витков компенсационной и измерительной катушек или другими мерами для того, чтобы уменьшить требования к динамическому диапазону усилителя.

Аналого-цифровой преобразователь 4 необходим для дальнейшей обработки сигнала. Из теории цифровой обработки сигналов известно (см., например, Л.Рабинер, Б.Гоулд. Теория и применение цифровой обработки сигналов. Под редакцией Ю.Н. Александрова. М.: Мир, 1978 г.), что для представления аналогового сигнала с ограниченным спектром в цифровом виде без потери информации и внесения искажений необходимо, чтобы частота дискретизации аналого-цифрового преобразования была больше максимальной частоты спектра сигнала, по крайней мере, в 5 раз. Напряжение на измерительной катушке вихретокового преобразователя имеет ту же частоту, что и ток возбуждения вихретокового преобразователя. Поэтому для дискретизации сигнала с вихретокового преобразователя

Выход аналого-цифрового преобразователя связан с блоком 5 цифровой обработки сигналов, который предназначен для фильтрации, запоминания и дополнительной математической обработки исходных сигналов. Обработанный сигнал выводится на индикаторное устройство (не показано). В качестве индикаторного устройства предпочтительно использовать монитор с возможностью вывода временной развертки сигнала с вихретокового преобразователя.

Заявленный способ контроля реализуют следующим способом:

- на внешней поверхности изделия, например камеры сгорания или сопла ЖРД, на минимальном удалении от бездефектного участка паяного соединения размещают устройство нагрева 1 и вихретоковый преобразователь 2;

- до включения нагревательного устройства или одновременно с включением нагревательного устройства включается запись сигнала вихретокового преобразователя в память блока 5;

- включают нагрев и фиксируют показания вихретокового преобразователя в памяти блока 5;

- переставляют устройство нагрева и вихретоковый преобразователь на внешнюю поверхность камеры сгорания или сопла вблизи контролируемого участка паяного соединения, положения нагревательного устройства и вихретокового преобразователя относительно паяного соединения должны быть идентичны их положениям относительно бездефектного участка;

- до включения нагревательного устройства или одновременно с включением нагревательного устройства включают запись сигнала вихретокового преобразователя в память прибора;

- включают нагрев и фиксируют показания вихретокового преобразователя в долговременной памяти прибора;

- производят сравнение показаний вихретокового преобразователя, полученных на бездефектном участке и на контролируемом участке;

- близкие значения показаний, полученных на бездефектном участке и на контролируемом участке, означают отсутствие дефекта;

- существенные различия в показаниях говорят о наличии дефекта в виде непропая или об изменении электрических и температурных свойств контролируемого участка относительно бездефектного участка, на котором производилась калибровка.

Сведений, изложенных в материалах заявки, достаточно для практического осуществления изобретения.

Рассмотрим пример реализации данного метода контроля на примере системы контроля паяных соединений камеры ЖРД. Камера ЖРД конструктивно представляет собой соединение двух деталей, в одной из которых фрезерованием образованы пазы. Необходимо контролировать паяные соединения между ребрами одной стенки и другой стенкой.

Для контроля использовали вихретоковый датчик. Размер катушек выбран таким, чтобы область контроля существенно не превышала толщину ребра стенки камеры ЖРД. Вихретоковый датчик подключен к стандартному вихретоковому дефектоскопу, позволяющему менять частоту и амплитуду тока возбуждения в широких пределах, а также обеспечивать возможность вывода и сохранения в памяти прибора сигнала с преобразователя за последние 10 секунд сканирования.

С одной стороны от катушки возбуждения размещен индуктор. Вихретоковый дефектоскоп настроен таким образом, чтобы чувствительность к проводимости поверхностного слоя была максимальна. На экран вихретокового дефектоскопа выводится развертка сигнала с встречно включенных измерительной и компенсационной катушек.

Процесс контроля осуществлялся следующим образом:

- осуществляли подготовку вихретокового дефектоскопа к работе в соответствии с руководством по эксплуатации и подключали к нему вихретоковый преобразователь;

- устанавливали индуктор и вихретоковый преобразователь на бездефектный участок объекта контроля;

- на экране прибора отображалась временная развертка амплитуды сигнала с вихретокового преобразователя;

- подавали ток в индуктор, включая тем самым процесс нагрева;

- сигнал вихретокового преобразователя на дисплее прибора отражает процесс нагрева, нагрев можно отключать, когда сигнал вихретокового преобразователя перестанет существенно меняться;

- сохраняли изменение сигнала вихретокового преобразователя в процессе нагрева;

- устанавливали индуктор и вихретоковый преобразователь на контролируемый участок объекта контроля;

- на экране прибора отображалась временная развертка амплитуды сигнала с вихретокового преобразователя;

- подавали ток в индуктор, включая тем самым процесс нагрева;

- сигнал вихретокового преобразователя на дисплее прибора отражает процесс нагрева, нагрев можно отключать, когда сигнал вихретокового преобразователя перестанет существенно меняться;

- сохраняли изменение сигнала вихретокового преобразователя в процессе нагрева;

- сравнивали изменения сигнала вихретокового преобразователя в процессе нагрева бездефектного участка и контролируемого участка;

- близкие значения показаний, полученных на бездефектном участке и на контролируемом участке, означали отсутствие дефекта;

- существенные различия в показаниях означали наличие дефекта в виде непропая или об изменении электрических и температурных свойств контролируемого участка относительно бездефектного участка, на котором производилась калибровка.

Способ контроля качества неразъемных соединений, заключающийся в том, что проводят нагрев неразъемного соединения и по разности температур нагрева неразъемного соединения и его бездефектного участка судят о качестве неразъемного соединения, отличающийся тем, что первоначально на минимальном удалении от бездефектного участка неразъемного соединения размещают устройство нагрева и вихретоковый преобразователь, включают нагрев и фиксируют показания вихретокового преобразователя, затем переставляют устройство нагрева и вихретоковый преобразователь на контролируемый участок неразъемного соединения, причем положения нагревательного устройства и вихретокового преобразователя относительно паяного соединения должны быть идентичны их положениям относительно бездефектного участка, включают нагрев и фиксируют показания вихретокового преобразователя, после чего производят сравнение показаний вихретокового преобразователя, полученных на бездефектном участке и на контролируемом участке, и по разности показателей судят о качестве неразъемного соединения.



 

Похожие патенты:

Изобретение относится к области контроля технического состояния обсадных колонн, насосно-компрессорных труб и других колонн нефтяных и газовых скважин. Техническим результатом является повышение точности и достоверности выявления наличия и местоположения поперечных и продольных дефектов конструкции скважины и подземного оборудования как в магнитных, так и в немагнитных первом, втором и последующих металлических барьерах.

Настоящее изобретение относится к датчику (6) для мониторинга с помощью вихревых токов поверхности круговой канавки (2), сформированной в диске (1) турбореактивного двигателя.

Изобретение относится к геофизическим исследованиям в скважине и может быть применено при электромагнитной дефектоскопии многоколонных конструкций стальных труб.

Изобретение относится к способу определения и оценки трещин в испытываемом объекте из электропроводного материала. Способ включает: нагружение испытываемого объекта электромагнитным переменным полем с предварительно определенной постоянной или переменной частотой (f), определение вихревых токов, индуцированных в испытываемом объекте, вдоль предварительно определенных параллельных измерительных путей на участке (10) поверхности испытываемого объекта, обеспечение сигналов вихревых токов, причем каждый сигнал вихревых токов соответствует измерительному пути, преобразование (14) сигналов вихревых токов и предоставление преобразованных измеренных величин как функции измерительного пути, частоты (f) и положения (s) вдоль измерительного пути, интерпретация (16) преобразованных измеренных величин с применением преобразованных измеренных величин, по меньшей мере, одного соседнего измерительного пути, и предоставление сигналов трещин со скорректированной амплитудой и/или положением пути по отношению к преобразованным измеренным величинам.

Изобретение относится к неразрушающему контролю и может быть использовано для выявления подповерхностных дефектов в ферромагнитных объектах. Сущность изобретения заключается в том, что в предлагаемом способе контролируемый объект намагничивают постоянным магнитным полем, возбуждают с помощью вихретокового преобразователя на контролируемом участке вихревые токи, регистрируют вносимое в вихретоковый преобразователь напряжение U _ в н и по нему судят о наличии дефектов, и согласно изобретению путем изменения параметра Р, регулирующего воздействие постоянного магнитного поля на контролируемый объект, плавно изменяют напряженность Н постоянного магнитного поля от минимальной величины до максимальной, регистрируют максимум Uмax амплитуды вносимого в вихретоковый преобразователь напряжения U _ в н и величину соответствующего ему значения параметра Р, а параметры дефекта оценивают по совокупности значений Uмах и Р.

Изобретение относится к неразрушающему контролю методом вихревых токов и может быть использовано для дефектоскопии и контроля электрических, магнитных и геометрических свойств объектов из электропроводящих материалов.

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике и может быть использовано в промышленности для контроля осевого смещения и поперечного биения валов. .

Изобретение относится к определению реперов интересующих точек в зоне (10, 20) поверхности детали (100), включающему в себя установление плотного контакта в упомянутой зоне поверхностного контрольного образца (11, 21), представляющим собой тонкий и достаточно эластичный слой, чтобы соответствовать форме зоны; при этом тонкий слой содержит трассы электропроводящего материала; при этом при проходе зонда (30) с токами Фуко по трассе подается значащий и характерный сигнал трассы; при этом данный характерный сигнал соответствует реперу интересующей точки, определяемым таким образом в упомянутой зоне.

Изобретение относится к области измерительной техники и может быть использовано для технической диагностики неоднородных конструкций. Устройство для определения сопротивления теплопередачи многослойной конструкции включает датчики температуры и теплового потока и тепловизионное устройство.

Изобретение относится к области неразрушающего контроля материалов и может быть использовано для контроля скрытых дефектов. Согласно заявленному способу активного одностороннего теплового контроля скрытых дефектов в твердых телах нагревают одну из поверхностей объекта контроля в течение фиксированного времени оптическим излучением источника нагрева и регистрируют нестационарное температурное поле этой поверхности в виде последовательности термограмм.

Изобретение относится к области измерительной техники и может быть использовано для оценки надежностей конструкций из полимерных композиционных материалов. Способ включает силовое воздействие на поверхность конструкции и регистрацию обусловленных им изменений.

Использование: для неразрушающего контроля качества поверхностного слоя металла. Сущность: заключается в том, что используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую па эталонный образец, измеряют разностную термоЭДС, возникающую при контакте первой группы нагреваемых электродов с контролируемым изделием и второй группы нагреваемых электродов с эталоном, о качестве поверхностного слоя судят по ее величине, при этом сначала измеряют температуру контролируемого изделия, используя которую изменяют температуру групп нагреваемых электродов таким образом, чтобы используемая при измерении термоЭДС разностная температура между первой группой нагреваемых электродов и контролируемым изделием, а также между второй группой нагреваемых электродов и эталоном оставалась одинаковой при любых колебаниях температуры контролируемого изделия и эталона, после чего измеряют разностную термоЭДС.

Изобретение относится к области управления промышленной безопасностью и технической диагностики, в частности к контролю напряженно-деформированного состояния таких объектов, как сосуды, аппараты, печи, строительные конструкции, трубопроводы, находящихся под действием механических и/или термомеханических нагрузок, с использованием анализа распределения температурных полей на поверхности объекта и связанного с ними распределения механических напряжений.
Изобретение относится к области исследования качества деталей с гальваническими покрытиями, в частности к оценке степени газосодержания поверхностей деталей с защитными гальваническими покрытиями.

Изобретение относится к области измерительной техники, в частности к тепловому неразрушающему контролю объектов, и может быть использовано для технической диагностики неоднородных конструкций, например зданий и сооружений, по сопротивлению теплопередаче.

Изобретение относится к неразрушающему тепловому контролю и может быть использовано для контроля состояния протяженных железобетонных изделий, имеющих основную металлическую продольную несущую арматуру (например: опоры линий электропередач, балки, сваи, трубы и т.п.), применяемых в различных отраслях хозяйства в процессе производства, строительства и эксплуатации.

Изобретение относится к контрольно-измерительной технике и может быть использовано для контроля технического состояния токоведущих частей электрооборудования, находящихся под токовой нагрузкой.

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на обтекатель ракеты в наземных условиях и может быть использовано при наземных испытаниях элементов летательных аппаратов. Заявленный способ включает нагрев наружной поверхности обтекателя за счет пропускания электрического тока через эквидистантный этой поверхности нагреватель в виде токопроводящей тонкостенной оболочки переменной толщины по высоте, контактирующей с ограничителем из теплоизоляционного материала, также эквидистантным наружной поверхности обтекателя, и измерение температуры. Токопроводящая тонкостенная оболочка расположена к наружной поверхности обтекателя с зазором, в который нагнетают инертный газ под давлением, а ограничитель из теплоизоляционного материала выполнен пористым. Технический результат - расширение температурного диапазона воспроизведения теплового поля на наружной поверхности обтекателей из неметаллических материалов при наземной отработке конструкции. 1 ил.
Наверх