Фармацевтическая соль 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты, ее содержащая фармацевтическая композиция, лекарственное средство и способ лечения или профилактики бактериальных инфекций с помощью вышеуказанной соли

Настоящее изобретение относится к фармацевтической соли 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты, характеризующейся выполнением в виде моногидрата гидрохлорида и растворимостью по меньшей мере 0,050 мг в мл воды. Также изобретение относится к фармацевтической композиции на основе указанной выше фармацевтической соли, применению указанной фармацевтической соли и способу лечения или профилактики бактериальных инфекций, основанному на использовании указанной фармацевтической соли. Технический результат: получена новая фармацевтическая соль 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты, отличающаяся хорошей растворимостью в воде, что влияет на биодоступность активного ингредиента. 6 н. и 1 з.п. ф-лы, 16 ил., 2 табл., 9 пр.

 

Настоящее изобретение относится к лимоннокислой, полуфумаровой, малеиновокислой, L-виннокислой, мезилатной, солянокислой, калиевой и натриевой солям 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты. Данные соли характеризуются повышенной растворимостью в воде.

Уровень техники

8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновая кислота раскрыта в патенте США №6335447. Данное соединение известно под международным непатентованным названием озеноксацин. Его химическая формула:

Озеноксацин является известным бактерицидным веществом. В JP 2002356426 A, JP 2003226643A, EP 1731138 A1 и WO 2007015453 A1 раскрыты некоторые дермальные композиции, содержащие озеноксацин. Глазные композиции озеноксацина раскрыты в JP 2007119456А и Yamakawa, Т. et al., Journal of Controlled Release (2003), 86(1), 101-103.

Вышеуказанный патент США №6335447 в общем относится к солям, но в нем не раскрывается какая-то конкретная соль дезфторхинолоновых соединений (I).

Раскрытие изобретения

Озеноксацин малорастворим в воде. Хорошо известно, что фармацевтические препараты с плохой растворимостью в воде создают затруднения при их составлении из-за низкой скорости растворения. Более того, эффективность лекарств с плохой растворимостью в воде весьма ограничена при необходимости системного введения препарата и возможна большая вариабельность величины поглощения между пациентами, поскольку лекарства с низкой растворимостью зачастую не поглощаются должным образом.

Соответственно, для более лучшей доставки фармацевтических составов данного лекарственного вещества желательно изобрести растворимые соли озеноксацина.

Настоящие изобретатели исследовали разнообразные соли озеноксацина и неожиданно обнаружили, что отдельные соли озеноксацина обладают более высокой растворимостью в сравнении с основным лекарственным веществом.

В первом аспекте настоящее изобретение относится к фармацевтическим солям8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты, характеризующимся тем, что их растворимость превышает 0,050 мг/мл воды.

Во втором аспекте настоящее изобретение относится к фармацевтическим солям 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты, выбранным из группы, состоящей из лимоннокислой, полуфумаровой, малеиновокислой соли, соли L-винной кислоты, мезилатной, солянокислой, калиевой и натриевой солей.

В третьем аспекте настоящее изобретение относится к фармацевтическим составам, содержащим в качестве активного ингредиента фармацевтическую соль 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты, выбранную из группы, включающей лимоннокислую, полуфумаровую, малеиновокислую, L-виннокислую, мезилатную, солянокислую, калиевую и натриевую соли.

В четвертом аспекте настоящее изобретение относится к фармацевтическим солям 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты, выбранным из группы, включающей лимоннокислую, полуфумаровую, малеиновокислую, L-виннокислую, мезилатную, солянокислую, калиевую и натриевую соли, для использования в качестве лекарственного средства.

В пятом аспекте настоящее изобретение относится к использованию фармацевтических солей,8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты, выбранных из группы, включающей лимоннокислую, полуфумаровую, малеиновокислую, L-виннокислую, мезилатную, солянокислую, калиевую и натриевую соли, для изготовления лекарственного средства, предназначенного для лечения или профилактики бактериальных инфекций.

В шестом аспекте настоящее изобретение относится к фармацевтическим солям, 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты, выбранным из группы, включающей лимоннокислую, полуфумаровую, малеиновокислую, L-виннокислую, мезилатную, солянокислую, калиевую и натриевую соли, для использования при лечении или профилактике бактериальных инфекций.

Другой целью изобретения является обеспечение новых способов лечения больного, страдающего или имеющего риск бактериального заражения, путем введения терапевтически эффективного количества фармацевтической соли 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты, выбранной из группы, включающей лимоннокислую, полуфумаровую, малеиновокислую, L-виннокислую, мезилатную, солянокислую, калиевую и натриевую соли.

Краткое описание чертежей

На фиг.1 показан КР-спектр с Фурье-преобразованием соединения из примера 1.

На фиг.2 показана порошковая дифракционная рентгенограмма соединения из примера 1.

На фиг.3 показан КР-спектр с Фурье-преобразованием соединения из примера 2.

На фиг.4 показана порошковая дифракционная рентгенограмма соединения из примера 2.

На фиг.5 показан КР-спектр с Фурье-преобразованием соединения из примера 3.

На фиг.6 показана порошковая дифракционная рентгенограмма соединения из примера 3.

На фиг.7 показан КР-спектр с Фурье-преобразованием соединения из примера 4.

На фиг.8 показана порошковая дифракционная рентгенограмма соединения из примера 4.

На фиг.9 показан КР-спектр с Фурье-преобразованием соединения из примера 5.

На фиг.10 показана порошковая дифракционная рентгенограмма соединения из примера 5.

На фиг.11 показан КР-спектр с Фурье-преобразованием соединения из примера 6.

На фиг.12 показана порошковая дифракционная рентгенограмма соединения из примера 6.

На фиг.13 показан КР-спектр с Фурье-преобразованием соединения из примера 7.

На фиг.14 показана порошковая дифракционная рентгенограмма соединения из примера 7.

На фиг.15 показан ИК-спектр соединения из примера 8.

На фиг.16 показана порошковая дифракционная рентгенограмма соединения из примера 8.

На спектрах КР с Фурье-преобразованием по оси ординат отложена интенсивность, а по оси абсцисс - смещение частоты при комбинационном рассеянии света (см-1).

На ИК спектре по оси ординат отложено процентное поглощение, по

оси абсцисс - длина волны (см-1).

На порошковой дифракционной рентгенограмме по оси ординат отложена интенсивность дифракции, а по оси абсцисс - брэгговский угол (29).

Осуществление изобретения

В предпочтительном варианте осуществления настоящее изобретение относится к фармацевтическим солям согласно первому аспекту изобретения, характеризующимся тем, что их растворимость составляет более 0,075 мг/мл воды.

Предпочтительно, настоящее изобретение относится к фармацевтическим солям согласно второму аспекту изобретения, которые представляют собой:

a) цитрат 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты;

b) полуфумарат 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты;

c) малеат 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты;

d) L-тартрат 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты;

e) мезилат 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты;

f) гидрохлорид 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты;

д) гидрат гидрохлорида 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты;

h) моногидрат гидрохлорида 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты;

i) калиевую соль 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты; и

j) натриевую соль 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты.

Согласно варианту осуществления лимоннокислая соль имеет характеристические пики в спектре КР при (см-1): 2930, 1640, 1390, 1370, 1290, 1210, 780 и 670. В частности, лимоннокислая соль характеризуется спектром КР, показанным на фиг.1.

Согласно варианту осуществления лимоннокислая соль имеет характеристические пики на порошковой дифракционной рентгенограмме при (20): 5.9, 6.7, 9.8, 12.3, 18.2, 24.1, и 26.5; или при 5.9, 6.7, 8.3, 9.8, 1 1.8, 12.3, 14.0, 15.3, 17.1, 17.4, 18.2, 18.8, 19.4, 19.7, 20.2, 23.0, 23.6, 24.1, 24.5, 25.1, 25.9, 26.5, и 27.3. В частности, лимоннокислая соль характеризуется порошковой дифракционной рентгенограммой, показанной на фиг.2.

Согласно варианту осуществления полуфумаровая соль имеет характеристические пики в спектре КР при (см-1): 3042, 2942, 1635, 1400 и 1317. В частности, полуфумаровая соль характеризуется спектром КР, показанным на фиг.3.

Согласно варианту осуществления полуфумаровая соль имеет характеристические пики на порошковой дифракционной рентгенограмме при (29): 5.5, 12.0, 12.8, 16.2, 20.9, 26.5 и 29.1; или при 5.5, 12.0, 12.8, 13.0, 16.2, 16.8, 20.6, 20.9, 23.6, 24.4, 26.5, 27.8 и 29.1. В частности, полуфумаровая соль характеризуется порошковой дифракционной рентгенограммой, показанной на фиг.4.

Согласно варианту осуществления малеиновокислая соль имеет характеристические пики в спектре КР при (см-1): 617. В частности, малеиновокислая соль характеризуется спектром КР, показанным на фиг.5.

Согласно варианту осуществления малеиновокислая соль имеет характеристические пики на порошковой дифракционной рентгенограмме при (29): 7.7, 12.3, 12.8, 14.0, 21.5, 25.7, 26.3 и 28.2; или при 7.7, 12.3, 12.8, 13.6, 14.0, 16.0, 17.9, 21.5, 23.2, 24.95, 25.7, 26.3, 28.2, 29.8, 30.3, 32.3 и 38.3. В частности, малеиновокислая соль характеризуется порошковой дифракционной рентгенограммой, показанной на фиг.6.

Согласно варианту осуществления L-виннокислая соль имеет характеристические пики в спектре КР при (см-1): 3067, 3005, 2960, 1625, 1417, 1367, 1325, 1285, 1247 и 783. В частности, L-виннокислая соль характеризуется спектром КР, показанным на фиг.7.

Согласно варианту осуществления L-виннокислая соль имеет характеристические пики на порошковой дифракционной рентгенограмме при (29): 5.3, 9.4, 12.1, 14.7, 16.0, 18.7, 22.6, 23.1 и 24.5; или при 5.3, 9.4, 10.7, 12.1, 13.9, 14.7, 15.6, 16.0, 16.7, 18.1, 18.7, 19.8, 20.9, 21.3, 21.7, 22.6, 23.1, 24.5, 25.2, 25.7, 26.4 и 34.9. В частности, L-виннокислая соль характеризуется порошковой дифракционной рентгенограммой, показанной на фиг.8.

Согласно варианту осуществления мезилатная соль имеет характеристические пики в спектре КР при (см"1): 2942, 1608, 1365 и 1300. В частности, мезилатная соль характеризуется спектром КР, показанным на фиг.9.

Согласно варианту осуществления мезилатная соль имеет характеристические пики на порошковой дифракционной рентгенограмме при (20): 8.3, 1 1.2, 17.9, 18.6, 20.8 и 29.9; или при 8.3, 1 1.2, 12.4, 12.8, 13.7, 17.9, 18.6, 19.5, 20.8, 22.4 и 29.9. В частности, мезилатная соль характеризуется порошковой дифракционной рентгенограммой, показанной на фиг.10.

Согласно варианту осуществления моногидрат солянокислой соли имеет характеристические пики в спектре КР при (см-1): 1615, 1380, 1350 и 1300. В частности, моногидрат солянокислой соли характеризуется спектром КР, показанным на фиг.11.

Согласно варианту осуществления моногидрат солянокислой соли имеет характеристические пики на порошковой дифракционной рентгенограмме при (20): 9.5, 25.4 и 26.0; или при 8.6, 9.5, 14.7, 16.7, 20.6, 25.4, 26.0 и 29.8. В частности, моногидрат солянокислой соли характеризуется порошковой дифракционной рентгенограммой, показанной на фиг.12.

Согласно варианту осуществления калиевая соль имеет характеристические пики в спектре КР при (см-1): 3050, 3017, 2940, 1600, 1358 и 1325. В частности, калиевая соль характеризуется спектром КР, показанным на фиг.13.

Согласно варианту осуществления калиевая соль имеет характеристические пики на порошковой дифракционной рентгенограмме при (20): 5.8, 16.2, 19.7 и 25.7; или при 5.8, 9.9, 14.7, 16.2, 19.7 и 25.7. В частности, калиевая соль характеризуется порошковой дифракционной рентгенограммой, показанной на фиг.14.

Согласно варианту осуществления натриевая соль имеет характеристические пики в спектре КР при (см-1): 3370, 1630, 1580, 1520, 1430, 1390, 1360, 1280 и 630. В частности, натриевая соль характеризуется спектром КР, показанным на фиг.15.

В частности, натриевая соль характеризуется порошковой дифракционной рентгенограммой, показанной на фиг.16.

Соли присоединения кислоты могут быть получены по реакции свободного основания дез-фторхинолона (I) с соответствующей кислотой. В свою очередь соли щелочных металлов могут быть получены по реакции (I) с соответствующим гидроксидом. В процессе образования солей можно использовать разнообразные растворители. Неограничительными примерами подходящих растворителей являются этилацетат, этанол, смеси этанола с водой, диметилсульфоксид, трет-бутилметиловый эфир, ацетонитрил и т.п., и их смеси.

Соединения настоящего изобретения могут быть составлены вместе с подходящими вспомогательными средствами, носителями и разбавителями в фармацевтических составах, пригодных для системного введения. К таким составам относятся составы, для которых предъявляются требования по существенному уровню в крови и которые полезны при лечении или профилактике некоторых бактериальных инфекций у людей и животных. Соединения настоящего изобретения могут быть введены путем приема внутрь или парентеральным способом в виде таблеток, капсул, порошка, сиропа, гранул, пилюль, суспензий, эмульсий, растворов, порошковых препаратов, суппозиториев, глазных капель, каплей для носа, ушных капель, повязок, мазей или путем инъекции по традиционным способам. Способы введения, дозы и частоту введения можно подобрать подходящим образом в зависимости от возраста, веса и симптомов пациента. Обычно соединения настоящего изобретения можно вводить взрослым людям дозой от 0,1 до 100 мг/кг за один или несколько раз частями путем приема внутрь и парентеральным способом (например, инъекцией, капельной инфузией или введением в прямокишечную область). К частным инфекциям, которые подвергают лечению или профилактике, относятся инфекции, продуцируемые всеми видами бактерий, восприимчивых к дез-фторхинолоновому соединению (I).

Предполагается, что на всем протяжении описания и формулы изобретения слово "содержать" и вариации этого слова, такие, как "содержащий" и "содержит", не исключают других технических признаков, добавлений, компонентов или этапов. Дополнительные цели, преимущества и отличительные признаки настоящего изобретения станут очевидными специалистам в данной области техники при просмотре описания или при изучении, основываясь на практике данного изобретения. Следующие примеры представлены с целью иллюстрации и не предназначены для ограничения настоящего изобретения.

ПРИМЕРЫ

Приборы

КР с Фурье-преобразованием

Bruker RFS100.

Nd:AMr (алюмоитриевый гранат) с длиной волны возбуждения 1064 нм, мощность лазерного излучения - 300 мВт, Ge детектор, 64 сканирования, диапазон - 25-3500 см-1, разрешение - 2 см-1.

ИК

Thermo Nicolet Nexus.

частота лазера - 15798 см-1, детектор - DTGS (дейтерированный триглицидил сульфат) KBr, 32 сканирования, диапазон - 400-4000 cm-1, разрешение - 4 см-1.

Порошковая дифракционная рентгенограмма (Фиг.8, 10, 12 и 14)

Рентгеновский дифрактометр Bruker D8 Advance с CuKα-излучением (№ прибора. G.16.SYS.S013); стандартные условия измерения: мощность лампы 35 кВ/45 мА, размер шага 0,017° (2θ), время шага 105±5 с, диапазон сканирования 2-50° (2θ), щель расхождения установлена переменной V12; образцы вращаются; детектор Vanted, угол раскрытия - 3°, количество каналов 360±10.

Держатели образца: кремниевый монокристалл.

Размеры образца, глубина/диаметр: 1,0 мм/12 мм или 0,5 мм/12 мм, или 0,1 мм/≈12 мм.

По оси y (число импульсов в секунду или имп/с) дифрактограммы показана не полная интенсивность, а значение интенсивность/кол-во каналов активного детектора (/c).

Порошковая дифракционная рентгенограмма (Фиг.16)

Рентгеновский дифрактометр PANalytical X'Pert PRO MPD с CuKα-излучением; стандартные условия измерения: мощность лампы - 45 кВ/40 мА, размер шага - 0,017° (2θ), время шага - 300 с, диапазон сканирования - 2-50° (2θ), щель - 0,19 мм, детектор - X'Celerator.

Пример 1. Лимоннокислая соль 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты (C21H21N3O3·C6H8H7)

Смесь дезфторхинолонового соединения (I) (100,3 мг) и лимонной кислоты (52,7 мг) подвергают обработке в шаровой мельнице (90 мин, 30 Гц) с добавлением этилацетата (50 мкл). Полученный порошок встряхивают в этилацетате (0,5 мл) при температурном цикле (Т1=25°C, Т2=30°C, 500 об/мин). После оставления на ночь полученную суспензию фильтруют и отделенное твердое вещество высушивают на вакууме.

Фурье-спектр показан на фиг.1.

Порошковая дифракционная рентгенограмма показана на Фиг.2. По оси ординат показана интенсивность дифракции, выраженная в имп/с.

Пример 2. Полуфумаровая соль 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты (C21H21N3O3·0.5C4H4O4)

Смесь (I) (100 мг) и фумаровой кислоты (35 мг) подвергают обработке в шаровой мельнице (90 мин, 30 Гц) с добавлением этилацетата (50 мкл). Полученное твердое вещество встряхивают в этаноле (1 мл) при температурном цикле (Т1=25°C, 12=30°C, 600 об/мин). После оставления на ночь полученную суспензию фильтруют и отделенное твердое вещество высушивают на вакууме.

Фурье-спектр показан на фиг.3.

Порошковая дифракционная рентгенограмма показана на Фиг.4. По оси ординат показана интенсивность дифракции, выраженная в имп/с.

Пример 3. Малеиновокислая соль 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты (C21H21N303·C4H4O4)

Смесь (I) (99,8 мг) и малеиновой кислоты (31,9 мг) подвергают обработке в шаровой мельнице (90 мин, 30 Гц) с добавлением смеси этанол:вода (1:1) (50 мкл). Полученное твердое вещество встряхивают в этаноле (1 мл) при температурном цикле (Т1=25°C, Т2=30°C, 500 об/мин). После оставления на ночь полученную суспензию фильтруют и отделенное твердое вещество высушивают на вакууме.

Фурье-спектр показан на фиг.5.

Порошковая дифракционная рентгенограмма показана на Фиг.6. По оси ординат показана интенсивность дифракции, выраженная в имп/с.

Пример 4. L-виннокислая соль 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты (C21H21N3O3·C4H6O6)

Смесь (I) (100,1 мг) и L-винной кислотой фумаровой кислоты (41,2 мг) подвергают обработке в шаровой мельнице (90 мин, 30 Гц) с добавлением этилацетата (50 мкл). Полученный порошок встряхивают в этилацетате (1 мл) при температурном цикле (Т1=25°C, Т2=30°C, 500 об/мин). После оставления на ночь полученную суспензию фильтруют и отделенное твердое вещество высушивают на вакууме.

Фурье-спектр показан на фиг.7.

Порошковая дифракционная рентгенограмма показана на Фиг.8. По оси ординат показана интенсивность дифракции, выраженная в имп/с.

Пример 5. Мезилатная соль 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты (C21H21N3O3·CH4O3S)

Соединение (I) (100 мг) и метансульфоновую кислоту (17,9 мкл) растворяют в диметилсульфоксиде (10 мл). Полученный прозрачный раствор упаривают и оставшееся твердое вещество встряхивают в трет-бутилметиловом эфире (2 мл) при температурном цикле (Т1=25°C, Т2=30°C, 500 об/мин). После оставления на ночь полученную суспензию фильтруют и отделенное твердое вещество высушивают на вакууме.

Фурье-спектр показан на фиг.9.

Порошковая дифракционная рентгенограмма показана на Фиг.10. По оси ординат показана интенсивность дифракции, выраженная в имп/с.

Пример 6. Моногидрат солянокислой соли 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты (C21H21N3O3·HCl·H2O)

Соединение (I) (200,4 мг) растворяют в HCl (0,1 Н) (5,5 мл) с добавлением Н2O (60 мл) и этанола (10 мл). Полученную суспензию перемешивают 2 часа и фильтруют. Прозрачный раствор упаривают (N2) и оставшееся желтое твердое вещество высушивают на вакууме, затем встряхивают в трет-бутилметиловом эфире (4 мл) при температурном цикле (Т1=25°C, 12=30°C, 500 об/мин). Через день суспензию фильтруют и отделенное твердое вещество высушивают на вакууме. К твердому веществу добавляют ацетонитрил (4 мл), и полученную суспензию подвергают обработке в ультразвуковой бане (10 мин), а затем встряхивают (30 мин) при 25°C. Суспензию фильтруют и высушивают на вакууме.

Фурье-спектр показан на фиг.11.

Порошковая дифракционная рентгенограмма показана на Фиг.12. По оси ординат показана интенсивность дифракции, выраженная в имп/с.

Пример 7. Калиевая соль 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты, C21H20KN3O3

Соединение (I) (100 мг) растворяют в Н2O (5 мл) с добавлением 5,5 мл КОН (0,05 М). Раствор фильтруют, упаривают и полученный аморфный остаток встряхивают в ацетонитриле (0,5 мл) (температурный цикл: Т1=25°C, Т2=30°C, 500 об/мин), что приводит к образованию белого осадка. Через день добавляют дополнительное количество ацетонитрила (1 мл) и полученную суспензию подвергают недолгой обработке в ультразвуковой бане, а затем встряхивают при таком же температурном цикле, как описано в предыдущем примере. Через два часа суспензию фильтруют и отделенное твердое вещество высушивают на вакууме.

Фурье-спектр показан на фиг.13.

Порошковая дифракционная рентгенограмма показана на Фиг.14. По оси ординат показана интенсивность дифракции, выраженная в имп/с.

Пример 8. Натриевая соль 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты, C21H20N3NaO3

Соединение (I) (22,87 г) суспендируют в Н2О (130 мл). Добавляют 0,5 М водный раствор NaOH (126 мл) в течение 1 ч 20 мин. Затем добавляют 1% водный раствор NaOH (1,3 мл). После встряхивания смеси в течение 1 ч pH устанавливается на уровне 10,99-11,00 и наблюдается помутнение смеси. Затем добавляют 25 мл воды и встряхивают смесь в течение 15 мин. Добавляют еще одну порцию воды (25 мл), и смесь встряхивают более 15 мин. Раствор охлаждают, получая твердое вещество, которое высушивают сублимацией.

ИК-спектр показан на фиг.15.

Порошковая дифракционная рентгенограмма показана на Фиг.16. По оси ординат показана интенсивность дифракции, выраженная в имп/с.

Пример 9. Растворимость в воде

Для определения растворимости солей в воде суспензию солей встряхивают 2 ч при температуре 20°C и скорости 400 об/мин. Данные по количеству солей и соответствующим объемам воды сведены в Таблицу 1. После этого смеси фильтруют (0,1 м фильтрующую центрифугу) и определяют концентрации методом ВЭЖХ.

Таблица 1
Соль Масса соли (мг) Объем воды (мл)
Лекарственное вещество, свободное основание 12 0,5
Лимоннокислая соль 19 0,5
Полуфумаровая соль 5 0,25
Малеиновокислая соль 13 0,5
L-виннокислая соль 12 0,5
Мезилат 10-15 0,1
Моногидрат гидрохлорида 40 0.2
Соль Масса соли (мг) Объем воды (мл)
Калий 10-15 0,1
Натрий 85 0,4

Данные по растворимости солей в воде, определенной методом ВЭЖХ, даны Таблице 2.

Таблица 2
Соль Площадь пика на ВЭЖХ Коэффициент разбавления Вводимый объем, мкл Растворимость в Н2O, мг/мл pH
Лекарственное вещество, свободное основание 719897 5 10 0,0190 8,5
Лимоннокислая соль 6030413 100 10 5,2155 2,7
Полуфумаровая соль 2898884 5 10 0,0897 4,8
Малеиновокис
лая соль
3931283 5 10 0,1489 5,3
Соль Площадь пика на ВЭЖХ Коэффициент разбавления Вводимый объем, мкл Растворимость в Н2O, мг/мл pH
L-виннокислая соль 6057774 100 10 4,5986 2,5
Мезилат 3415772 5000 10 113,4631 2,4
Моногидрат гидрохлорида 649381 500 10 2,0 2,8
Калий 3334195 5000 10 109,0430 9,8
Натрий 1333377 100 10 159 9,0

1. Фармацевтическая соль 8-метил-7-[5-метил-6-(метиламино)-3-пиридинил]-1-циклопропил-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты, характеризующаяся выполнением в виде моногидрата гидрохлорида и растворимостью по меньшей мере 0,050 мг в мл воды.

2. Соль по п.1, которая характеризуется пиками порошковой дифракционной рентгенограммы (2θ) при 9.5, 25.4 и 26.0, или при 8.6, 9.5, 14.7, 16.7, 20.6, 25.4, 26.0 и 29.8.

3. Фармацевтическая композиция для лечения или профилактики бактериальных инфекций, включающая фармацевтическую соль по п.1 или п.2 в качестве активного ингредиента.

4. Применение фармацевтической соли по п.1 или 2 в качестве лекарственного средства для лечения или профилактики бактериальных инфекций.

5. Применение фармацевтической соли по п.1 или 2 для изготовления лекарственного средства при лечении или профилактики бактериальных инфекций.

6. Применение фармацевтической соли по п.1 или 2 в качестве лечебного средства при лечении или профилактике бактериальных инфекций.

7. Способ лечения или профилактики бактериальных инфекций у больного, страдающего или имеющего риск бактериального заражения, включающий введение терапевтически эффективного количества фармацевтической соли по п.1 или 2.



 

Похожие патенты:

Изобретение относится к производным 5-фенил-1H-пиридин-2-она и 6-фенил-2H-пиридазин-3-она общих формул I-III: где: R представляет собой H, -R1, -R1-R2-R3, -R1-R3 или -R2-R3; R1 представляет собой гетероарил, который обозначает моноциклический радикал, содержащий 5-6 атомов в цикле и один или несколько гетероатомов N, необязательно замещенный одним или несколькими низшими алкилами; R2 представляет собой -C(=O), -C(=O)NR2; где R2 представляет собой H или низший алкил; R3 представляет собой H или R4; где R4 представляет собой низший алкил или гетероциклоалкил, который обозначает моновалентный насыщенный циклический радикал, состоящий из одного кольца, содержащий один или два кольцевых гетероатома, выбранными из N и O; X представляет собой CH или N; Y1 представляет собой Н, низший алкил или низший галогеналкил; каждый Y2 независимо представляет собой низший алкил, который необязательно замещен одним или несколькими заместителями, выбранными из группы, состоящей из гидроксигруппы, низшей алкоксигруппы; n имеет значение 0, 1, 2 или 3; Y3 представляет собой H; m имеет значение 0 или 1; Y4 представляет собой Y4a, Y4b, Y4c или Y4d; где Y4a представляет собой Н; Y4b представляет собой низший алкил, необязательно замещенный одним или несколькими заместителями, выбранными из группы, состоящей из низшего галогеналкила, галогена; Y4c представляет собой низший циклоалкил, необязательно замещенный одним или несколькими заместителями, выбранными из группы, состоящей из низшего алкила, низшего галогеналкила, галогена; и Y4d представляет собой аминогруппу, необязательно замещенную одним или несколькими низшими алкилами; или к его фармацевтически приемлемой соли.

Изобретение относится к новым производным пиридин-2-онов и пиридазин-3-онов, обладающим ингибирующей активностью в отношении Btk-киназы. В формулах I-IV: R обозначает -R1-R2-R3 или -R2-R3; R1 обозначает гетероарил, содержащий в кольце 6 атомов, включая один гетероатом N; R2 обозначает -C(=O), -C(=O)N(R2'), где R2' обозначает H; R3 обозначает R4; где R4 - низший алкил, гетероциклоалкил, (низший алкил)гетероциклоалкил или гетероциклоалкил(низший алкил), где гетероциклоалкил содержит в кольце 6 атомов, включая два гетероатома, выбранных из N и O; и где R4 может быть замещен одним или более заместителем, выбранным из низшего алкила, оксогруппы и низшей алкоксигруппы; X обозначает CH или N; Y1 обозначает низший алкил; n и m равны 0; значения радикалов Y2, Y4 приведены в формуле изобретения.

Настоящее изобретение относится к соединениям, являющимся ингибиторами аспартильных протеаз, пригодным для лечения сердечно-сосудистых, нейродегенеративных заболеваний и грибковых инфекций, формулы где W представляет собой -C(=O)-; X представляет собой -NH-; U представляет собой -C(R6)(R7)-; R1 представляет собой метил; R2, R3 и R6 представляют собой H; R4 и R7 представляют собой необязательно замещенный фенил, а также их таутомерам и фармацевтически приемлемым солям.

Настоящее изобретение относится к фармацевтически приемлемым солям амидзамещенного индазола, а именно 4-Метилбензолсульфонату (3S)-3-{4-[7-(аминокарбонил)-2H-индазол-2-ил]фенил}пиперидиния; бензолсульфату (3S)-3-{4-[7-(аминокарбонил)-2H-индазол-2-ил] фенил}пиперидиния и моногидрату 4-метилбензолсульфоната (3S)-3-{4-[7-(аминокарбонил)-2H-индазол-2-ил]фенил}пиперидиния, а также к их стереоизомерам и таутомерам.

Изобретение относится к соединению формулы I и к его применению для изготовления лекарства для лечения депрессии, тревоги или их обеих: или к его фармацевтически приемлемым солям, где m представляет собой 0-3; n представляет собой 0-2; Аr представляет собой: возможно замещенный индолил; возможно замещенный индазолил; азаиндолил; 2,3-дигидро-индолил; 1,3-дигидро-индол-2-он-ил; возможно замещенный бензотиофенил; бензотиазолил; бензизотиазолил; возможно замещенный хинолинил; 1,2,3,4-тетрагидрохинолинил; хинолин-2-он-ил; возможно замещенный нафталинил; возможно замещенный пиридинил; возможно замещенный тиофенил или возможно замещенный фенил; R 1 представляет собой: С1-6алкил; гетеро-С 1-6алкил; гало-С1-6алкил; гало-С2-6 алкенил; С3-7циклоалкил; С3-7циклоалкил-С 1-6алкил; С1-6алкил-С3-6циклоалкил-С 1-6алкил; С1-6алкокси; С1-6алкилсульфонил; фенил; тетрагидропиранил-С1-6алкил; фенил-С1-3 алкил, где фенильная часть возможно замещена; гетероарил-С 1-3алкил; R2 представляет собой: водород или C1-6алкил; и каждый Ra и Rb независимо представляет собой: водород; C1-6алкил; С1-6алкокси; гало; гидрокси или оксо; или Ra и Rb вместе образуют C1-2алкилен; при условии, что, когда m представляет собой 1, n представляет собой 2, и Аr представляет собой возможно замещенный фенил, тогда R 1 не является метилом или этилом, и где возможно замещенный означает один - три заместителя, выбранных из алкила, циклоалкила, алкокси, гало, галоалкила, галоалкокси, циано, амино, ациламино, моноалкиламино, диалкиламино, гидроксиалкила, алкоксиалкила, пиразолила, -(CH2)q-S(O)rR f; -(СН2)q-С(=O)-NRgR h; -(CH2)q-N(Rf)-C(=O)-R i или -(CH2)q-C(=O)-Ri ; где q является 0, r представляет собой 0 или 2, каждый R f, Rg и Rh независимо представляет собой водород или алкил, и каждый Ri независимо представляет собой алкил, и где «гетероарил» означает моноциклический радикал с 5-6 кольцевыми атомами, содержащий один, два кольцевых гетероатома, выбранных из N или S, причем остальные кольцевые атомы представляют собой С, «гетероалкил» означает алкильный радикал, включая разветвленный С4-С 7-алкил, где один атом водорода замещен заместителями, выбранными из группы, состоящей из -ORa, -NRb H, исходя из предположения, что присоединение гетероалкильного радикала происходит через атом углерода, где Ra представляет собой водород или С1-6алкил, Rb представляет собой C1-6алкил.

Изобретение относится к новым соединениям, обладающим активностью антагониста рецептора 1 типа ангиотензина II (AT 1) и активностью ингибирования неприлизина. .

Изобретение относится к новым производным изохинолинона формулы (I), в которой R1 выбран из Н, (С1 -С6)алкила, (С2-С6)алкенила, (СН2)а-Х-Аr и (CR101R102 )a-X-Ar, где указанный (С1-С6 )алкил возможно замещен 1, 2 или 3 группами, независимо выбранными из -(C1-С6)алкокси, -галогено, -ОН, группы -гетероциклоалкил, (С3-С7)циклоалкила и -NR8R9; R2 выбран из Н и (С 1-С6)алкила; R3 выбран из Н, (С 1-С6)алкила и (CH2)d-Y; и при условии, что когда R3 представляет собой (CH 2)d-Y, R2 выбран из Н; R4 и R5 независимо выбраны из Н, (C1-С 6)алкила и галогено; R6 представляет собой (С 3-С7)циклоалкил; R7 представляет собой Н; Аr представляет собой фенил или гетероарил, возможно замещенный 1, 2 или 3 группами, независимо выбранными из групп -(С1-С6)алкил, -(СН2)е -O-(С1-С6)алкил, -(СH2) е-S(О)f(C1-C6)алкил, -(CH 2)е-N(R10)-(C1-C6 )алкил, -(СН2)е-Z-(С1-С 6)алкил, -галогено, -гетероциклоалкил, -C(O)NR8 R9, -NR8R9 и -С(O)ОН, где (С 1-С6)алкил в каждом случае независимо возможно замещен 1, 2 или 3 группами, независимо выбранными из -NR 12R13; X выбран из простой связи; Y представляет собой NR16R17, где R16 и R 17 вместе с атомом азота, к которому они присоединены, образуют 5-7-членное кольцо, возможно содержащее дополнительный гетероатом NR27, где указанное кольцо возможно замещено по атому углерода 1 или 2 заместителями, независимо выбранными из группы -(С1-С6)алкил, где указанный -(C1-С6)алкил возможно замещен -ОН; и где R27 выбран из Н и (С1-С6)алкила, где указанный (С1-С6)алкил возможно замещен -ОН; Z выбран из C(O)N(R18); R8 и R 9 независимо выбраны из Н и (С1-С6 )алкила, где указанный (С1-С6)алкил возможно замещен 1, 2 или 3 группами, независимо выбранными из NR 19R20; или R8 и R9 вместе с атомом азота, к которому они присоединены, образуют 5-6-членное кольцо, возможно содержащее дополнительный гетероатом, выбранный из NR21; R12 и R13 независимо выбраны из Н и (С1-С6)алкила, где указанный (С1-С6)алкил возможно замещен группами -(С1-С6)алкокси, -ОН; или R12 и R13 вместе с атомом азота, к которому они присоединены, образуют 5-6-членное кольцо, возможно содержащее дополнительный гетероатом, выбранный из NR24; R10, R 18, R19, R20, R21, R 22, R23 и R24 независимо выбраны из Н и (С1-С6)алкила; а выбрано из 1, 2, 3, 4, 5 и 6; d равно 0 или 1; е равно 0; f независимо выбран из 1 и 2; где гетероциклоалкил представляет собой присоединенное по атому С 5-6-членное неароматическое циклическое кольцо, содержащее от 1 до 2 атомов NR28; возможно содержащее 1 двойную связь; гетероарил представляет собой 6-членное ароматическое кольцо, содержащее 1 атом N; R28 выбран из Н, (С 1-С6)алкила и -С(O)O-(С1-С6 )алкила; R101 представляет собой (С1-С 6)алкил; R102 представляет собой Н; или к их фармацевтически приемлемым солям или N-оксидам.
Изобретение относится к медицине, а именно к хирургии, и может быть использовано для лечения гнойно-некротических заболеваний мягких тканей. Для этого одновременно осуществляют подачу лекарственного раствора и обработку низкочастотным ультразвуком с помощью низкочастотного ультразвукового кавитатора - аппарата АУЗХ-100 «ФОТЕК».
Изобретение относится к области ветеринарии и предназначено для лечения инфекций бактериальной этиологии у животных. Композиция содержит, масс.%: доксициклина хиклат - 5,0-15,0, бромгексина гидрохлорид - 0,25-0,75, лактулоза - 0,5-1,5, 2-пирролидон - остальное.

Настоящее изобретение относится к новым 1-ω-арилоксиалкил- и бензилзамещенным 2-иминобензимидазолинам и их фармакологически приемлемым солям общей формулы 1, где R = СН=СН2, R1 = 2-ClC6H4OCH2 (1б); R = СН=СН2, R1 = 4-ClC6H4OCH2 (1в); R = СН=СН2, R1 = 4-BrC6H4OCH2 (1г); R = СН=СН2, R1 = 2,4-Cl2C6H3OCH2 (1д); R = СН=СН2, R1 = 3,4-Cl2C6H3 (1e); R = СН=СН2, R1 = 4-FC6H4OCH2CH2 (1ж); R = CH2N(C2H5)2, R1 = 4-C(CH3)3С6Н4ОСН2 (1з); R = CH2N(C2H5)2, R1 = 3,4-Cl2C6H3 (1к); R = R1 = 4-ОСН3С6Н4ОСН2 (1л); R = 4-BrC6H4, R1 = 4-ОСН3С6Н4ОСН2 (1м); R = 4-BrC6H4, R1 =2-ОСН3С6Н4ОСН2 (1н); R = 4-NO2C6H4, R1 = 4-ОСН3С6Н4ОСН2 (1o); R = 3,4-Cl2C6H3, R1 = 2-ОСН3С6Н4ОСН2 (1п); R = 3,4-Cl2C6H3, R1 = 4-ОСН3С6Н4ОСН2 (1p); R = С6Н5ОСН2, R1 = 4-ОСН3С6Н4ОСН2 (1c); R = 2-СН3С6Н4ОСН2, R1 = 2-ОСН3С6Н4ОСН2 (1т); R = 4-СН3С6Н4ОСН2, R1 = 2-OCH3C6H4OCH2 (1у); R = 4-С(СН3)3C6H4OCH2, R1 = 2-OCH3C6H4OCH2 (1ф); R = 2-OCH3C6H4OCH2, R1 = 4-BrC6H4OCH2 (1х), обладающим протистоцидной и антибактериальной активностью.

Изобретение относится к области микробиологии, биотехнологии и фармацевтики, а именно к применению производных 1,3-бензодиоксола формулы (1) в качестве регуляторов коллективного поведения (чувства кворума) у бактерий, в частности для регуляции опосредуемого гомосеринлактонами чувства кворума у виолацеин-продуцирующих биотехнологически полезных, гнилостных и патогенных бактерий, и предназначено для контроля биотехнологических процессов, предупреждения порчи сельскохозяйственной продукции, а также управления бактериальными инфекциями растений, животных и человека.

Изобретение относится к области ветеринарии и предназначено для комплексной терапии маститов у собак. За 10 минут до непосредственного выполнения лимфотропной и лимфостимулирующей инъекций животному внутримышечно вводят фуросемид в дозе 2 мг на 1 кг веса.

Настоящее изобретение относится к средству, обладающему антибактериальной и протистоцидной активностью, на основе гидрохлорида формулы (1а-л) , где R=C6H5OCH2 (a); 4-CH3C6H4OCH2 (б); 4-OCH3C6H4OCH2 (в); 2-OCH3C6H4OCH2 (г); 4-FC6H4OCH2 (д); 2-ClC6H4OCH2 (e); C10H7OCH2 (ж); 2,4-Cl2C6H3OCH2 (з); 4-BrC6H4OCH2 (и); 2-FC6H4 (к); 2-ClC6H4 (л).
Изобретение относится к медицине, а именно к оториноларингологии, и может быть использовано для предоперационной подготовки пациентов с перфорацией перегородки носа.

Настоящее изобретение относится к способу получения 14-O-[(N-(3-метил-2-аминобутирилпиперидинил)сульфанил)ацетил]мутилинов формулы (I), заключающемуся в снятии защиты с N-защищенного пиперидинил-сульфанил-ацетил-мутилина формулы (II), выделением полученного соединения формулы (III) и его ацилированием с получением соединения формулы (IV) и последующим снятием защиты и выделением соединения формулы (I).

Изобретение относится к новым липопептидным соединениям формулы (I): и к его фармацевтически приемлемым солям, где: R представляет: и v представляет целое число от 3 до 5.
Изобретение относится к медицине, а именно к оториноларингологии, фониатрии и физиотерапии и может быть использовано в комплексном лечении обострения хронического ларингита.

Изобретение относится к применению соединений Формулы I, где R1 представляет собой атом водорода, C1-7-алкил, C1-7-алкокси, C1-7-алкил, замещенный атомом галогена, C1-7-алкокси, замещенный атомом галогена, атом галогена, циано, нитро, гидрокси, C(O)O-С1-7-алкил, S(O)2-C1-7-алкил, С(O)ОСН2-фенил, ОСН2-фенил, тетразол-1-ил, фенил, возможно замещенный атомом галогена, или представляет собой фенилокси, возможно замещенный атомом галогена, или представляет собой бензил, возможно замещенный атомом галогена, или представляет собой бензилокси, возможно замещенный атомом галогена; в том случае, когда n>1, заместители R1 могут быть одинаковыми или разными; Х представляет собой -O-(СН2)2-, -O-CHR″-CH2-, -O-CH2-CHR′, -O-CR″2-CH2-, -(CH2)2-CHR′-, -CHR′-(CH2)2-, -CR″2-(CH2)2-, -CH2-CHR′-CH2-, -CH2-CR″2-CH2-, -CHR″-O-CH2-, -CR″2-O-CH2-, -CF2(CH2)2-, -CR″2-CH2-, -SiR″2-(CH2)2-, -S-(CH2)2-, -S(O)2-(CH2)2-, -(CH2)4-, -CH2-O-(CH2)2-, формулу (а) или (b), где m имеет значение 0, 1, 2 или 3; R′ представляет собой C1-7-алкил, C1-7-алкокси или C1-7-алкил, замещенный атомом галогена; R″ представляет собой C1-7-алкил или C1-7-алкил, замещенный атомом галогена; R2 представляет собой атом водорода или C1-7-алкил; Y представляет собой фенил, нафтил, С3-6-циклоалкил или пиридин-2- или 3-ил, пиримидин-2-ил или хинолин-6 или 7-ил; n имеет значение 1, 2 или 3; или фармацевтически приемлемой соли присоединения кислоты в изготовлении лекарственного средства для лечения тревожных расстройств, биполярного расстройства, расстройств, вызванных стрессом, психотических расстройств, шизофрении, неврологических заболеваний, болезни Паркинсона, нейродегенеративных расстройств, болезни Альцгеймера, эпилепсии и мигрени.
Наверх