Парогенератор

Изобретение относится к энергетике и может быть использовано в прямоточных парогенераторах. Парогенератор содержит теплообменник, жидкостный и паровой коллекторы. Теплообменник содержит несколько теплообменных блоков одинаковой конструкции. Теплообменный блок содержит пучок спиральных теплопередающих труб, центральный цилиндр и рукава. Спиральные теплопередающие трубы, имеющие разный радиус закругления, размещены по концентрической спирали в межтрубном пространстве между центральным цилиндром и рукавом, образуя одну или несколько теплообменных колонн. Один выход жидкостного коллектора соединен с основным трубопроводом для подачи воды, а второй выход жидкостного коллектора соединен с пучком спиральных теплопередающих труб. Один выход парового коллектора соединен с основным паровым трубопроводом, а второй выход парового коллектора соединен с пучком спиральных теплопередающих труб. Внутри части соединения с жидкостным коллектором каждая спиральная теплопередающая труба снабжена фиксированной и съемной диафрагмой. 6 з.п. ф-лы., 6 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к области техники паросилового цикла, в частности - парогенератора.

УРОВЕНЬ ТЕХНИКИ

Силовой цикл с использованием водяного пара, в основе которого лежит цикл Ренкина, широко применяется в отраслях атомной энергетики, в комбинированном парогазовом цикле, в электростанциях на угле и т.д. В этих областях генерация водяного пара при высокой температуре и теплоте является первым этапом преобразования тепловой энергии в электрическую. В настоящее время для генерации водяного пара применяется оборудование двух типов, а именно: парогенератор с естественной циркуляцией и прямоточный парогенератор. По сравнению с парогенератором с естественной циркуляцией, прямоточный парогенератор может непосредственно генерировать перегретый пар, а также пар со сверхвысоким давлением и сверхкритическими параметрами, что позволяет не только повысить КПД генерации, но также сделать конструкцию более компактной.

По способу размещения в прямоточном парогенераторе различают два типа труб горячей воды, а именно: прямую и спиральную. По сравнению с компоновкой с применением спиральной трубы, конструкция прямоточного парогенератора с прямой трубой проще, но вследствие того, что теплообменная труба и цилиндр выполнены из разных материалов, возникает разница линейных расширений, что приводит к концентрации напряжений в теплопередающей трубе и трубной решетке, а также к снижению безопасности эксплуатации всей установки. Несмотря на то, что общая площадь теплообмена прямоточного парогенератора с трубой спирального типа относительно большая, данная конструктивная особенность позволяет решить проблему концентрации напряжений, а сама конструкция парогенератора обеспечивает возможность реализации гибких объемно-планировочных решений.

Благодаря вышеуказанным преимуществам прямоточного парогенератора с трубой спирального типа, он находит широкое применение в производстве электроэнергии на атомных электростанциях. Существует два основных типа конструкции такого парогенератора - конструкция со встроенной спиральной трубой большого сечения и разделяемая модульная конструкция.

В ториевом высокотемпературном реакторе с газовым теплоносителем на АЭС THTR-300 в Германии, в высокотемпературном реакторе Saint Flensburg, США с газовым теплоносителем, в реакторе типа AGR в Великобритании и даже в новейшем реакторе на быстрых нейтронах с натриевым теплоносителем применяется прямоточный парогенератор со встроенной большой трубой спирального типа с несколькими головками и объединенной компоновкой. Одно из преимуществ такого парогенератора - его компактная конструкция. Кроме того, благодаря тому, что спираль имеет большой радиус закругления, обеспечена возможность производить проверку состояния рабочего объема и поверхностей. К основным проблемам такого устройства относятся следующие: 1) из-за отсутствия возможности проверить конструкцию с помощью внешнего испытания теплового состояния снаружи реактора, сторона водяного потока при эксплуатации перераспределению не подлежит, а это может привести к неравномерности температуры пара; 2) при подготовке спиральной трубы с объединенной компоновкой для прямоточного парогенератора, для каждого ее витка требуется собственная оснастка, так как диаметр закругления трубы на каждом витке разный, это увеличивает стоимость и сроки производства; 3) с целью предотвращения вибрации, вызванной потоком, требуется большее количество опорных пластин, что ведет к появлению такой проблемы, как повышенные напряжения в месте контакта теплообменных труб и опорных пластин.

В российских реакторах VG-400, АБТУ-ц50, БГР-300, а также в высокотемпературном испытательном реакторе мощностью 10 МВт с газовым теплоносителем в Университете Цинхуа применяется прямоточный парогенератор разделяемой модульной конструкции. Основные преимущества парогенератора такого типа заключаются в том, что модуль может выпускаться серийно, стоимость его производства невелика, и на каждом модуле можно провести внешнее испытание теплового состояния снаружи реактора. К основным проблемам такого устройства относятся следующие: 1) недостаточно компактная конструкция; 2) малый радиус закругления спиральной трубы, не позволяющий выполнять проверку состояния рабочего объема и поверхностей в процессе эксплуатации; 3) в случае закупорки трубы происходит блокировка не только стороны водяного потока, но также стороны высокотемпературного теплоносителя.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Техническая задача, на решение которой направлено настоящее изобретение, заключается в создании парогенератора, в конструкции которого устранены соответствующие недостатки парогенератора со встроенной большой спиральной трубой и парогенератора с разделяемой модульной конструкцией, известные из уровня техники; в новом парогенераторе обеспечена возможность контроля рабочего объема и поверхности теплопередающей трубы для своевременного обнаружения угроз безопасности, а также возможность проведения проверочных испытаний теплового состояния перед вводом в эксплуатацию с целью проверки надежности конструкции.

Решение поставленной задачи достигается тем, что парогенератор согласно настоящему изобретению содержит: теплообменник, скомпонованный из нескольких теплообменных блоков одинаковой конструкции, причем теплообменный блок содержит пучок спиральных теплопередающих труб, центральный цилиндр и рукав, где спиральные теплопередающие трубы, имеющие разные радиусы, размещены по концентрической спирали в межтрубном пространстве между центральным цилиндром и рукавом с образованием одной или нескольких теплообменных колонн; жидкостный коллектор, один выход которого соединен с основным трубопроводом для подачи воды, а второй выход - с пучком спиральных теплопередающих труб; паровой коллектор, один выход которого соединен с основным паровым трубопроводом, а второй выход - с пучком спиральных теплопередающих труб.

Теплообменная колонна содержит одну или несколько теплопередающих труб.

Радиус закругления спиральной теплопередающей трубы обеспечивает возможность доступа посредством контактного датчика к любой части конструкции для контроля рабочего объема и поверхностей.

При этом в направлении оси центрального цилиндра варианты навивки пучка спиральных теплопередающих труб на теплообменные поверхности могут включать: попеременно по часовой и против часовой стрелки, полностью по часовой стрелке, полностью против часовой стрелки.

В поперечном сечении каждый пучок спиральных теплопередающих труб, центральный цилиндр и рукав имеют круглую или прямоугольную с закругленными углами форму.

По отношению к направлению потока теплоносителя, жидкостный коллектор установлен выше по направлению потока относительно теплообменника, а паровой коллектор - ниже по направлению потока относительно, либо паровой коллектор устанавливается выше по направлению потока относительно теплообменника, а жидкостный - ниже по направлению потока относительно.

При этом парогенератор выполнен с возможностью размещения согласно следующим вариантам: в вертикальном положении, в горизонтальном положении либо в положении под любым углом.

Внутри части соединения с жидкостным коллектором каждая спиральная теплопередающая труба снабжена фиксированной или съемной диафрагмой; причем фиксированная диафрагма выполнена с возможностью стабилизации потока двухфазной жидкости в спиральной теплопередающей трубе и равномерного распределения сопротивления на каждую спиральную теплопередающую трубу; съемная диафрагма, посредством которой в случае выхода из строя одной из спиральных теплопередающих труб обеспечено перераспределение потока в спиральной трубе путем снятия съемной диафрагмы с других спиральных теплопередающих труб в той теплообменной колонне, в которой находится неисправная спиральная теплопередающая труба.

По сравнению с известным уровнем техники, техническое решение, предложенное согласно настоящему изобретению, обладает следующими преимуществами:

1) компоновочные блоки производят серийно, благодаря чему стоимость производства низкая;

2) в каждом компоновочном блоке обеспечена возможность проведения проверочных испытаний теплового состояния снаружи реактора;

3) каждый блок содержит несколько спиральных колонн, каждая из которых, в свою очередь, содержит спиральные трубы с несколькими головками; благодаря этому устраняется недостаток, заключающийся в громоздкости конструкции с разделяемой компоновкой, поэтому она не подвержена возникновению вибрации вследствие воздействия потока, при этом опорная конструкция проста и надежна благодаря малому радиусу закругления спиральных труб и устойчивой конструкции;

4) минимальный радиус закругления спиральных труб выбран с учетом возможности доступа контрольно-измерительных инструментов для текущего эксплуатационного контроля; теплопередающие трубы каждого блока не снабжены коллекторами, они все подключены к одному жидкостному и паровому коллектору, что позволяет осуществлять текущий эксплуатационный контроль рабочего объема и поверхностей, а в случае закупорки трубы блокируется только данная труба, а не модуль, таким образом, поддерживается максимальная готовность теплопередающих труб;

5) конструкция с применением фиксированных и съемных диафрагм позволяет быстро и легко перераспределять поток после закупорки трубы.

ПЕРЕЧЕНЬ ГРАФИЧЕСКИХ ИЗОБРАЖЕНИЙ

На фиг.1 изображен продольный разрез парогенератора согласно первому варианту реализации настоящего изобретения с горизонтальным прохождением высокотемпературной текучей среды;

на фиг.2 изображен продольный разрез парогенератора согласно второму варианту реализации настоящего изобретения, с горизонтальным прохождением высокотемпературной текучей среды;

на фиг.3 изображен продольный разрез парогенератора согласно третьему варианту реализации настоящего изобретения с вертикальным прохождением высокотемпературной текучей среды;

на фиг.4 изображен продольный разрез парогенератора согласно четвертому варианту реализации 4 настоящего изобретения с вертикальным прохождением высокотемпературной текучей среды;

на фиг.5 представлена схема внутреннего устройства теплообменного узла согласно вариантам реализации настоящего изобретения;

на фиг.6 представлена схема устройства диафрагмы на входе спиральной трубы согласно вариантам реализации настоящего изобретения.

ПРЕДПОЧТИТЕЛЬНЫЕ ВАРИАНТЫ РЕАЛИЗАЦИИ ИЗОБРЕТЕНИЯ

В настоящем изобретении используются свойства компоновки из модулей, но каждый блок включает несколько спиральных колонн, а каждая спиральная колонна, в свою очередь, состоит и спиральных труб с несколькими головками, благодаря чему удается избежать громоздкости, присущей разделяемой конструкции. Минимальный радиус закругления спиральных труб подобран с учетом возможности доступа контрольно-измерительных инструментов для текущего эксплуатационного контроля, теплопередающие трубы каждого блока непосредственно подключены к одному жидкостному и паровому коллектору, что позволяет осуществлять текущий эксплуатационный контроль рабочего объема и поверхностей. Кроме того, в случае закупорки трубы блокируется только данная труба, а не модуль, таким образом сохранена максимальная готовность теплопередающих труб.

На входе подачи воды каждой теплопередающей трубы установлена диафрагма. Диафрагмы подразделяются на два типа: фиксированные и съемные. Фиксированная диафрагма обеспечивает выполнение требований начального распределения и стабильности потока, а съемная диафрагма обеспечивает выполнение требований по перераспределению потока при закупоривании одной из труб. Внутри отдельного компоновочного блока, спиральные трубы в спиральной колонне находятся в одном и том же канале протекания гелия; при закупорке одной из труб вследствие поломки поток гелия отрегулировать нельзя; поэтому, чтобы обеспечить однородность температуры на выходе пара, поток текучей среды в других трубах спиральной колонны нужно увеличить. Путем снятия диафрагм с других труб такой спиральной колонны возможно произвести перераспределение потока после закупоривания одной из труб, это позволяет соблюсти требование по однородности температуры на выходе пара. Сопротивление дросселя на неповрежденных блоках регулировки не требует, как и сопротивление дросселя неповрежденных спиральных труб в каждом слое поврежденного блока. Точный размер диафрагмы может быть определен с помощью проверочных испытаний теплового состояния отдельно взятого блока, а распределение потока со стороны высокотемпературного теплоносителя в каждом блоке проверяется с помощью испытаний в аэродинамической трубе на масштабном макете высокотемпературной стороны.

Варианты реализации настоящего изобретения со ссылками на чертежи подробно описаны далее. Следующие варианты реализации используются для описания настоящего изобретения, но область его применения данными вариантами не ограничивается.

ПЕРВЫЙ ВАРИАНТ РЕАЛИЗАЦИИ

Продольный разрез парогенератора с горизонтальным прохождением высокотемпературной текучей среды изображен на фиг.1, где парогенератор 1 установлен в направлении потока теплоносителя х, он содержит жидкостный коллектор 11, паровой коллектор 12 и теплообменник 13. В этом варианте реализации парогенератор 1 размещен горизонтально. Жидкостный коллектор 11 и, соответственно, паровой коллектор 12 расположены по обеим сторонам теплообменника 13, в настоящем варианте реализации используется компоновочное решение по входу потока, т.е. паровой коллектор 12 установлен выше по направлению потока относительно теплообменника 13, а жидкостный коллектор 11 установлен ниже по направлению потока относительно теплообменника 13.

Один выход жидкостного коллектора 11 соединен с пучком спиральных теплопередающих труб 3, а его второй выход подсоединен к основному трубопроводу 14 для подачи воды. Один выход парового коллектора 12 соединен с пучком 3 спиральных теплопередающих труб, а другой его выход соединен с основным паровым трубопроводом 15.

Теплообменник 13 содержит несколько теплообменных блоков 2 одинаковой конструкции. Внутреннее устройство теплообменного блока согласно этому варианту реализации изображено на фиг.5, где теплообменный блок 2 содержит пучок спиральных теплопередающих труб 3, центральный цилиндр 4 и рукава 5. Спиральные теплопередающие трубы 3, имеющие разный радиус закругления, размещены по концентрической спирали в межтрубном пространстве между центральным цилиндром 4 и рукавом 5, образуя одну или несколько теплообменных колонн 6, а каждая теплообменная колонна 6 содержит одну или несколько спиральных теплопередающих труб 3.

Поперечное сечение центрального цилиндра 4, оболочки 5 и спиральной теплопередающей трубы 3 может иметь круглую или приближенную к круглой форму (например, прямоугольную с закругленными углами).

Радиус закругления каждой спиральной теплопередающей трубы 3 удовлетворяет условиям, согласно которым обеспечена возможность доступа посредством контактного датчика к любой части конструкции для контроля рабочего объема и поверхностей.

Направление навивки спиральной теплопередающей трубы 3 в теплообменных колоннах 6 следующее: если смотреть в направлении оси центрального цилиндра 4, навивка спиральной теплопередающей трубы 3 на теплообменную колонну 6 выполняется попеременно по часовой и против часовой стрелки, либо полностью по часовой или против часовой стрелки.

В месте соединения с жидкостным коллектором 11 на каждой спиральной теплопередающей трубе 3 установлена диафрагма; устройство диафрагмы на входе спиральной трубы в данном варианте реализации настоящего изобретения изображено на фиг.6. Диафрагмы бывают двух типов, а именно: фиксированная диаграмма 7 и съемная диафрагма 8. В случае выхода из строя одной спиральной теплопередающей трубы 3 перераспределение потока в спиральной трубе 3 реализуется путем снятия диафрагмы 8 с других спиральных теплопередающих труб 3 в спиральной колонне 6, в которой находится неисправная теплопередающая труба 3.

ВТОРОЙ ВАРИАНТ РЕАЛИЗАЦИИ

Продольный разрез парогенератора с горизонтальным прохождением высокотемпературной текучей среды изображен на фиг.2. Парогенератор согласно настоящему варианту реализации аналогичен парогенератору согласно первому варианту реализации, единственное отличие заключается только в том, что в жидкостном коллекторе 11 и паровом коллекторе 12 согласно настоящему варианту реализации применяется компоновочное решение по выходу потока, т.е. паровой коллектор 12 установлен ниже по направлению потока относительно теплообменника 13, а жидкостный коллектор 11 установлен выше по направлению потока относительно теплообменника.

ТРЕТИЙ ВАРИАНТ РЕАЛИЗАЦИИ

Продольный разрез парогенератора с вертикальным прохождением высокотемпературной текучей среды изображен на фиг.3, где парогенератор 1 содержит теплообменник 13, жидкостной коллектор 11 и паровой коллектор 12. В настоящем варианте реализации, парогенератор 1 размещен вертикально. Жидкостной коллектор 11 и, соответственно, паровой коллектор 12 расположены по обеим сторонам теплообменника 13. В настоящем варианте реализации используется компоновочное решение по входу потока, т.е. паровой коллектор 12 установлен выше по направлению потока относительно теплообменника 13, а жидкостной коллектор 11 установлен ниже по направлению потока теплообменника.

Теплообменник 13 содержит несколько теплообменных блоков 2 одинаковой конструкции. Внутреннее устройство теплообменного блока согласно этому варианту реализации изображено на фиг.5, где теплообменный блок 2 содержит пучок спиральных теплопередающих труб 3, центральный цилиндр 4 и рукава 5; спиральные теплопередающие трубы 3, имеющие разный радиус закругления, размещены по концентрической спирали в межтрубном пространстве между центральным цилиндром 4 и рукавом 5 с образованием одной или нескольких теплообменных колонн 6. Теплообменная колонна 6 содержит одну или несколько спиральных теплопередающих труб. Радиус закругления спиральной теплопередающей трубы 3 удовлетворяет условиям, согласно которым обеспечена возможность доступа посредством контактного датчика к любой части конструкции для контроля рабочего объема и поверхностей, вдоль направления оси центрального цилиндра, варианты навивки спиральной теплопередающей трубы 3 вокруг теплообменной колонны включают: попеременно по часовой и против часовой стрелки, полностью по часовой стрелке, полностью против часовой стрелки.

Поперечное сечение каждого пучка спиральных теплопередающих труб 3, центрального цилиндра 4 и рукава 5 имеют круглую или прямоугольную форму с закругленными углами. Один выход жидкостного коллектора 11 соединен с основным трубопроводом 14 для подачи воды, а второй его выход соединен с пучком спиральных теплопередающих труб 3. Один выход парового коллектора 12 соединен с основным паровым трубопроводом 15, а другой его выход соединен с пучком спиральных теплопередающих труб 3.

Как показано на фиг.6, в месте соединения с жидкостным коллектором, на каждой спиральной теплопередающей трубе установлена фиксированная диафрагма 7 и съемная диафрагма 8. Фиксированная диафрагма 7 служит для обеспечения стабильности потока двухфазной жидкости в спиральной теплопередающей трубе и равномерного распределения сопротивления на каждую спиральную теплопередающую трубу; съемная диафрагма 8, посредством которой в случае выхода из строя одной из спиральных теплопередающих труб, обеспечено перераспределение потока в спиральной трубе путем снятия съемной диафрагмы с других спиральных теплопередающих труб в той теплообменной колонне, в которой находится неисправная спиральная теплопередающая труба.

ЧЕТВЕРТЫЙ ВАРИАНТ РЕАЛИЗАЦИИ

Продольный разрез парогенератора с вертикальным прохождением высокотемпературной текучей среды изображен на фиг.4, парогенератор в настоящем варианте реализации аналогичен парогенератору согласно третьему варианту реализации, единственное отличие заключается только в том, что в этом варианте реализовано другое компоновочное решение относительно размещения жидкостного коллектора 11 и парового коллектора 12 по выходу потока, т.е. паровой коллектор 12 размещен ниже по направлению потока относительно теплообменника 13, а жидкостный коллектор 11 размещен выше по направлению потока относительно теплообменника.

Конструкция теплообменного блока 2, фиксированной диафрагмы 7 и съемной диафрагмы 8 согласно настоящему изобретению обеспечивает проведение внешних испытаний теплового состояния перед эксплуатацией.

Изложенное выше описание - это предпочтительные варианты реализации настоящего изобретения, при этом необходимо отметить, что специалист в данной области техники может вносить в изобретение некоторые усовершенствования и улучшения без отклонения от технической сущности изобретения, что входит в объем правовой охраны настоящего изобретения.

ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ

Парогенератор, предложенный согласно настоящему изобретению, включает теплообменник, жидкостный коллектор и паровой коллектор. Отдельный компоновочный блок согласно настоящему изобретению выполнен с возможностью прохождения испытаний теплового состояния снаружи реактора; в то же время каждый блок имеет неизменную конструкцию и может выпускаться серийно, таким образом снижая стоимость производства. Парогенератор, предложенный в настоящем изобретении, позволяет обеспечить эксплуатационный контроль рабочего объема и поверхностей теплопередающей трубы для своевременного обнаружения угроз безопасности, а проверочные испытания теплового состояния могут проводиться перед вводом в эксплуатацию. Таким образом, настоящее изобретение может быть промышленно применимо.

1. Парогенератор, содержащий:
теплообменник, скомпонованный из нескольких теплообменных компоновочных блоков одинаковой конструкции;
причем теплообменный компоновочный блок содержит пучок спиральных теплопередающих труб, центральный цилиндр и рукав;
спиральные теплопередающие трубы с разными радиусами размещены концентрически и спирально в кольцевом пространстве между центральным цилиндром и рукавом и формируют по меньшей мере одну концентрическую поверхность теплообменной колонны; а парогенератор также содержит
жидкостный коллектор, один конец которого соединен с основным трубопроводом для подачи воды, а другой конец которого соединен с указанным пучком спиральных теплопередающих труб; и
паровой коллектор, один конец которого соединен с основным паровым трубопроводом, а другой конец которого соединен с указанным пучком спиральных теплопередающих труб, причем поверхность теплообменной колонны образована по меньшей мере одной спиральной теплопередающей трубой и внутри части соединения с жидкостным коллектором каждая спиральная теплопередающая труба снабжена фиксированной и съемной диафрагмой.

2. Парогенератор по п.1, отличающийся тем, что поверхность теплообменной колонны образована по меньшей мере одной спиральной теплопередающей трубой.

3. Парогенератор по п.1, отличающийся тем, что вдоль направления оси центрального цилиндра траектория навивки пучка спиральных теплопередающих труб на примыкающие теплообменные поверхности включает: размещение попеременно по часовой и против часовой стрелки, полностью по часовой или полностью против часовой стрелки.

4. Парогенератор по п.1, отличающийся тем, что поперечное сечение каждого из объектов: пучок спиральных теплопередающих труб, центральный цилиндр и рукав - имеет круглую форму или прямоугольную форму с закругленными углами.

5. Парогенератор по п.1, отличающийся тем, что по отношению к направлению потока теплоносителя жидкостный коллектор установлен по направлению потока перед теплообменником, а паровой коллектор установлен по направлению потока за теплообменником или паровой коллектор установлен по направлению потока перед теплообменником, а жидкостный коллектор установлен по направлению потока за теплообменником.

6. Парогенератор по п.1, отличающийся тем, что он выполнен с возможностью размещения согласно следующим вариантам: в вертикальном положении, в горизонтальном положении либо в положении под любым углом.

7. Парогенератор по любому из п.1-6, отличающийся тем, что фиксированная диафрагма выполнена с возможностью стабилизации потока двухфазной жидкости в спиральной теплопередающей трубе и равномерного распределения сопротивления на каждую спиральную теплопередающую трубу; съемная диафрагма, посредством которой в случае выхода из строя одной из спиральных теплопередающих труб, обеспечено перераспределение потока в спиральной трубе путем снятия съемной диафрагмы с других спиральных теплопередающих труб в той теплообменной колонне, в которой находится неисправная спиральная теплопередающая труба.



 

Похожие патенты:

Изобретение относится к энергетике и может быть использовано в теплообменниках отработавшего газа, в частности охладителях отработавшего газа для рециркуляции отработавших газов в автомобилях, с приспособленными для протекания отработавшего газа и обтекаемыми охлаждающим средством каналами теплообменника, которые оканчиваются в распределительной и/или собирающей камере, с расположенным в распределительной и/или собирающей камере устройством с направляющими каналами, причем устройство с направляющими каналами имеет входную область для отработавшего газа, выходную область для отработавшего газа и множество проходящих от входной области для отработавшего газа до выходной области для отработавшего газа проточных каналов, которые наклонены друг относительно друга.

Изобретение относится к области судового котлостроения и может быть использовано в стационарных утилизационных котлах, работающих вместе с дизелями или газовыми турбинами.

Изобретение относится к котлу-утилизатору, характеризующемуся наличием реактора, к нижней части которого примыкают две горелки, а к боковой поверхности реактора примыкает боров подвода дымовых газов, при этом дымовые газы, которые отходят из борова подвода дымовых газов, поступают в зону активного горения реактора, которая расположена в нижней его части, системы утилизации тепла дымовых газов, которые поступают в реактор котла-утилизатора, патрубка отвода дымовых газов из реактора, который содержит дополнительную систему утилизации тепла дымовых газов и, по меньшей мере, один дымосос.

Изобретение относится к области теплоэнергетики и может быть использовано в энергетических парогазовых установках с газотурбинными двигателями, паровыми турбинами и котлами-утилизаторами, снабженными блоками дожигающих устройств.

Изобретение относится к энергетике и может быть использовано в котлах-утилизаторах башенного типа, предназначенных для получения перегретого пара за счет охлаждения продуктов сгорания после газовой турбины.

Изобретение относится к процессу метанирования, в частности к рекуперации тепла в процессе, включающем реакцию метанирования и объединенном с процессом газификации угля.

Изобретение относится к двигателестроению и может быть использовано в качестве источника парогазовой смеси при предпусковом подогреве как двигателей внутреннего сгорания, так и автомобилей.

Изобретение относится к теплоэнергетике и может найти применение на любом предприятии, эксплуатирующем котлы на углеводородном топливе. .

Изобретение относится к устройствам для получения пара и может быть использовано в нефтегазодобывающем производстве при проектировании технологического оборудования, а также для передвижного отопления.

Изобретение относится к теплообменнику отработавшего газа, в частности охладителю отработавшего газа, для рециркуляции отработавших газов на автомобилях согласно ограничительной части пункта 1 формулы изобретения.

Изобретение относится к теплоэнергетике и может быть использовано для утилизации тепла дымовых газов котельных агрегатов, промышленных печей, вентиляционных выбросов при нагревании воздуха с одновременным получением электричества. Комплексный утилизатор тепла сбросных газов содержит корпус, снабженный газовыми и воздушными патрубками, внутри которого помещен пакет, состоящий из перфорированных пластин, образующих между собой газовые и воздушные каналы, причем перфорация пластин выполнена в виде горизонтальных щелей, размещенных в шахматном порядке относительно друг друга, в которых помещены термоэлектрические звенья, состоящие из овальных вставок, выполненных из упругого диэлектрического коррозионностойкого материала, внутри которых помещены зигзагообразные ряды, состоящие из термоэмиссионных преобразователей, каждый из которых представляет собой пару оголенных проволочных отрезков, выполненных из разных металлов M1 и М2, спаянных на концах между собой, причем сами зигзагообразные ряды соединены между собой последовательно соединительными проводами, образуя термоэлектрические секции, соединенные с коллекторами электрических зарядов и клеммами. Такое выполнение утилизатора повышает его надежность и эффективность. 5 ил. .

Настоящее изобретение относится к теплообменнику для охлаждения горячих газов посредством охлаждающей текучей среды, причем указанный теплообменник содержит: по меньшей мере, одну вертикально ориентированную емкость, содержащую ванну охлаждающей текучей среды и имеющую пространство для сбора паровой фазы, генерированной над указанной ванной охлаждающей текучей среды, один вертикальный трубчатый элемент, вставленный внутрь указанной емкости, открытый на концах и коаксиальный с указанной емкостью, один спиральный канал, который оборачивается вокруг оси емкости, вставленный в указанный коаксиальный трубчатый элемент, один выпуск для паровой фазы, генерированной в верхней части указанной емкости, причем, по меньшей мере, одна транспортная линия вставлена в нижнюю часть вертикальной емкости, открыта с двух концов, из которых один соединен с вертикальной емкостью и другой является свободным и находится снаружи указанной емкости, причем указанная транспортная линия является трубчатой и выступает вбок снаружи указанного теплообменника, содержит, по меньшей мере, один центральный внутренний канал, который находится в сообщении по текучей среде со спиральным каналом и проходит вертикально вдоль трубчатого элемента, вставленного в вертикальную емкость, при этом канал имеет наружную рубашку, в которой циркулирует охлаждающая текучая среда. Технический результат - повышение безопасности и работоспособности теплообменной системы. 3 н. и 17 з.п. ф-лы, 1 ил.

Изобретение относится к промышленной теплоэнергетике и может быть использовано в котельных ТЭЦ, работающих на твердом малосернистом топливе повышенной влажности, например торфе. В теплоутилизаторе для глубокой утилизации тепла дымовых газов согласно изобретению перед дымовой трубой размещен изолированный резервуар с проточной водой, имеющий с торцевых сторон рубашки, разделенные горизонтальными полками на секции. Внутри резервуара расположены горизонтальные параллельные ряды труб и объединяющие объемы рубашек, состоящие из отдельных пучков, в которых дымовые газы перемещаются в одном направлении. Пучки труб чередуются между собой большими объемами секций рубашек, изменяющих направление движения дымовых газов в соседних пучках, образуя таким образом змеевик переменного сечения для перемещения дымовых газов навстречу проточной воде. Горячие дымовые газы перемещаются по змеевику, трубы которого погружены в резервуар с проточной охлаждающей водой. Серная и сернистая кислоты конденсируются из дымовых газов в первую очередь в нижней части змеевика и вымываются из него с помощью части конденсата влаги топлива в конденсатосборник кислот. Изобретение позволит улучшить экономические показатели работы ТЭЦ и увеличить КПД . 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к теплоэнергетике, в частности к устройствам для использования тепла уходящих газов устройств, использующих в качестве топлива природный или сжиженный газ. Устройство утилизации тепла дымовых газов содержит систему газоводяных поверхностных теплообменников, выполненных из оребренных коррозионно-стойких биметаллических труб, при этом один теплообменник устройства выполнен выносным. Нагреваемыми теплоносителями является вода, водосодержащая незамерзающая жидкость, наружный холодный воздух приточной вентиляции. Выносной теплообменник установлен на входе (по ходу воздуха) калорифера приточной вентиляции помещений и по контуру циркуляции водосодержащей незамерзающей жидкости он работает в паре с последним теплообменником устройства, при этих условиях последний теплообменник устройства работает как конденсатор водяных паров дымовых газов. После прохождения теплообменников поток газов разделяется на два потока: большой и малый. На малом потоке в целях увеличения его динамического напора установлен напорный вентилятор, после прохождения которого два потока газов смешиваются в щелевом эжекторе, в котором также увеличивается динамический напор и большого потока, в результате компенсируются аэродинамические потери теплоутилизатора. Изобретение позволяет повысить эффективность использования низкопотенциального тепла конденсации водяных паров, содержащихся в дымовых газах. 2 н. и 5з.п. ф-лы, 2 ил.

Изобретение предлагает систему и способ парогазовой конверсии. Способ парогазовой когенерации на основе газификации и метанирования биомассы включает: 1) газификацию биомассы путем смешивания кислорода и водяного пара, полученных из воздухоразделительной установки, с биомассой, транспортировку образующейся в результате смеси через сопло в газификатор, газификацию биомассы при температуре 1500-1800°С и давлении 1-3 МПа с получением неочищенного газифицированного газа и транспортировку перегретого пара, имеющего давление 5-6 МПа, полученного в результате целесообразной утилизации тепла, к паровой турбине; 2) конверсию и очистку: в соответствии с требованиями реакции метанирования корректировку отношения водород/углерод неочищенного газифицированного газа, образованного на стадии 1), до 3:1 с использованием реакции конверсии и извлечение при низкой температуре неочищенного газифицированного газа с использованием метанола для десульфуризации и декарбонизации, в результате чего получают очищенный сингаз; 3) проведение метанирования: введение очищенного сингаза стадии 2) в секцию метанирования, состоящую из секции первичного метанирования и секции вторичного метанирования, причем секция первичного метанирования содержит первый реактор первичного метанирования и второй реактор первичного метанирования, соединенные последовательно; предоставление возможности части технологического газа из второго реактора первичного метанирования вернуться к входу первого реактора первичного метанирования для смешивания со свежим подаваемым газом и далее возможности войти в первый реактор первичного метанирования, так что концентрация реагентов на входе первого реактора первичного метанирования уменьшается и температура слоя катализатора регулируется технологическим газом; введение сингаза после первичного метанирования в секцию вторичного метанирования, содержащую первый реактор вторичного метанирования и второй реактор вторичного метанирования, соединенные последовательно, где небольшое количество непрореагировавшего СО и большое количество CO2 превращается в CH4, и транспортировку перегретого пара промежуточного давления, образованного в секции метанирования, к паровой турбине; и 4) концентрирование метана: концентрирование метана синтетического природного газа, содержащего следовые количества азота и водяного пара, полученного на стадии 3), с помощью адсорбции при переменном давлении, так что молярная концентрация метана достигает 96% и теплотворная способность синтетического природного газа достигает 8256 ккал/Nм3. Технический результат - энергия биомассы превращается в чистый и удобный для использования природный газ с высокой теплотворной способностью, большое количество тепла, высвободившееся в результате реакций газификации и метанирования биомассы, эффективно утилизируется для образования высококачественного перегретого пара. 2 н. и 8 з.п. ф-лы, 3 табл., 3 ил., 2 пр.

Изобретение предназначено для осуществления реакций парового риформинга и может быть использовано в химической промышленности. Теплообменный реактор содержит множество байонетных труб (4), подвешенных к верхнему своду (2), простирающихся до уровня нижнего дна (3) и заключенных в кожух (1), содержащий впускной (Е) и выпускной (S) патрубки для дымовых газов. Теплообменный реактор содержит пучок труб парогенератора, образованный множеством вертикальных труб (5), подвешенных к верхнему своду (2) и заключенных в периферийное пространство между внутренней перегородкой (Bi) и вертикальной стенкой кожуха (1). Внутренняя перегородка (Bi) содержит отверстие (Oi) для прохода дымовых газов из середины реактора к периферийному пространству. Вертикальные трубы (5) питаются водой из нижнего распределителя (9). Пароводяная смесь, выходящая из вертикальных труб (5), собирается в верхнем коллекторе (7), расположенном над верхним сводом (2). Нижняя линия (14) связывает жидкую фазу сепараторного резервуара (6) с верхним коллектором (7). Верхняя линия (13) связывает верхний коллектор (7) с паровой фазой сепараторного резервуара (6). Паровой риформинг осуществляют при скорости дымовых газов в периферийном пространстве от 20 м/сек до 80 м/сек. Дымовые газы поступают в теплообменный реактор при температуре, близкой к 1200°С, и выходят из него при температуре, меньшей 400°С. Изобретение позволяет повысить тепловую эффективность теплообменного реактора. 3 н. и 4 з.п. ф-лы, 2 ил.

Изобретение относится к теплотехнике и может быть использовано в контактных теплообменниках. Теплообменник с непосредственным контактом сред включает в себя рубашку испарителя и внутренний элемент. Внутренний элемент размещен в рубашке испарителя. Проход, образованный рубашкой, создается между рубашкой испарителя и внутренним элементом. Проход, образованный рубашкой, выполнен с возможностью прохода потока жидкости. Кожух имеет внутреннюю выпускную камеру, соединенную для пропуска горячего газа. Внутренний элемент дополнительно имеет множество выпускных проходов, обеспечивающих вход некоторой части горячего газа, проходящего через внутреннюю выпускную камеру, в поток жидкости в проходе, образованном рубашкой. Технический результат - повышение эффективности. 3 н. и 21 з.п. ф-лы, 3 ил.

Изобретение относится к теплоэнергетике. Испаритель для генератора пара с восстановлением тепла имеет два горизонтальных барабана для пара умеренного размера, один из которых расположен несколько выше, чем другой. Он также включает в себя змеевик, имеющий трубы, расположенные в потоке горячего газа. Нижний барабан сообщается со входными отверстиями труб для змеевика. Выходные отверстия труб сообщаются с верхним барабаном. Дренажная линия соединяет нижнюю часть верхнего барабана с нижней областью нижнего барабана таким образом, что вода протекает из верхнего барабана в нижний барабан. Вода, которая, в основном, находится в жидкой фазе, поступает в нижний барабан через впускную линию и смешивается с водой из верхнего барабана. Смесь протекает в змеевик. Здесь некоторая часть ее преобразуется в насыщенный пар, в то время как остальная остается, как насыщенная вода. Насыщенный пар и насыщенная вода протекают в верхний барабан, где пар уходит, и вода протекает обратно в нижний барабан для рециркуляции через змеевик. Благодаря их умеренным размерам, барабаны могут противостоять высокому давлению, без избыточной толщины стенок, и это позволяет вводить испаритель в рабочий режим с минимальными точками задержки или без них. При этом эти два барабана обеспечивают время удержания и защиту, соответствующие одному барабану большой емкости, имеющему существенную толщину стенок. 2 н. и 13 з.п. ф-лы, 2 ил.

Изобретение относится к теплоэнергетике. Способ глубокой утилизации тепла дымовых газов включает предварительное охлаждение дымовых газов в газо-газовом поверхностном пластинчатом теплообменнике, нагревая противотоком осушенные дымовые газы, для создания температурного запаса, предотвращающего конденсацию остаточных водяных паров в дымовой трубе. Дальнейшее охлаждение дымовых газов до температуры, близкой к точке росы водяных паров, осуществляется в контактном газоводяном водоподогревателе, который нагревает воду. Охлажденные влажные дымовые газы подают в газовоздушный поверхностный пластинчатый теплообменник - конденсатор, где конденсируются содержащиеся в дымовых газах водяные пары, нагревая воздух. Осушенные дымовые газы подают дополнительным дымососом в газо-газовый поверхностный пластинчатый теплообменник, где нагревают для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу. Технический результат: повышение эффективности утилизации тепла дымовых газов за счет использования скрытого тепла конденсации водяных паров и повышенной температуры самих дымовых газов. 1 ил., 1 табл.

Изобретение относится к станционной энергетике, конкретнее к энергосбережению при эксплуатации котлов электростанций, содержащих паротурбинные установки (ПТУ). В способе глубокой утилизации осуществляют подачу конденсата ПТУ в водогазовый теплообменник (ВГТ) на выходе из котла и нагрев конденсата за счет тепла продуктов сгорания (ПС), продукты сгорания в (ВГТ) охлаждают до температуры ниже точки росы на (5-10)°C, полученный конденсат (ПС) собирают, подвергают очистке по известной технологии и направляют в конденсатную линию и далее последовательно в подогреватель конденсата, деаэратор и котел. Для реализации способа система глубокой утилизации (ГУ) включает размещенный под водогазовым теплообменником (ВГТ) резервуар для слива конденсата (ПС), баки сбора и запаса конденсата, дренажный и конденсатный насосы, а также участок обработки конденсата, соединенный с конденсатной линией станции. Кроме экономии тепла (топлива) данное решение обеспечивает снижение эмиссии токсичных оксидов NOХ и CO2 за счет подавления водяными парами, уменьшения расхода топлива, получение дополнительной воды, которая может использоваться для подпитки котла и других нужд, устраняет или сводит к минимуму конденсацию в газовом тракте и дымовой трубе, улучшают условия их службы, отпадает необходимость в рециркуляции дымовых газов для предотвращения конденсации. 2 н.п. ф-лы, 4 ил.
Наверх