Газовая турбина с уплотнительными пластинами на турбинном диске



Газовая турбина с уплотнительными пластинами на турбинном диске
Газовая турбина с уплотнительными пластинами на турбинном диске
Газовая турбина с уплотнительными пластинами на турбинном диске
Газовая турбина с уплотнительными пластинами на турбинном диске
Газовая турбина с уплотнительными пластинами на турбинном диске
Газовая турбина с уплотнительными пластинами на турбинном диске
Газовая турбина с уплотнительными пластинами на турбинном диске
Газовая турбина с уплотнительными пластинами на турбинном диске
Газовая турбина с уплотнительными пластинами на турбинном диске
Газовая турбина с уплотнительными пластинами на турбинном диске
Газовая турбина с уплотнительными пластинами на турбинном диске
Газовая турбина с уплотнительными пластинами на турбинном диске
Газовая турбина с уплотнительными пластинами на турбинном диске
Газовая турбина с уплотнительными пластинами на турбинном диске

 


Владельцы патента RU 2515697:

СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE)

Ротор турбины содержит некоторое число рабочих лопаток. Лопатки размещены на соответствующем турбинном диске и скомбинированы соответственно в ряды рабочих лопаток. Турбинный диск на своих боковых поверхностях имеет некоторое число уплотнительных пластин в форме участков кругового кольца. Пластины вставлены в продолжающийся в окружном направлении паз турбинного диска. Уплотнительная пластина на обращенной к оси турбины стороне имеет продолжающуюся в окружном направлении окантовку, находящуюся на расстоянии от внутренней кромки соответствующей уплотнительной пластины. Между окантовкой соответствующей уплотнительной пластины и боковой стенкой паза турбинного диска размещен запорный элемент. Окантовка продолжается по всей длине в окружном направлении уплотнительной пластины. Запорные элементы для уплотнения прилегают друг к другу в окружном направлении. Уплотнительная пластина имеет по меньшей мере одну продолжающуюся по существу в окружном направлении на обращенной к оси турбины стороне, прерывающую соответствующую окантовку выемку. Выемка геометрически выполнена таким образом, что через нее запорные элементы могут вводиться в паз турбинного диска. Также объектом изобретения является газо- и паротурбинная установка, содержащая описанный выше ротор турбины. Изобретение позволяет упростить монтаж ротора турбины. 2 н. и 8 з.п. ф-лы, 14 ил.

 

Изобретение относится к ротору турбины с некоторым числом рабочих лопаток, размещенных на соответствующем турбинном диске, скомбинированных соответственно в ряды рабочих лопаток, причем соответствующий турбинный диск на своих боковых поверхностях имеет некоторое число уплотнительных пластин в форме участков кругового кольца, которые вставлены в протяженный по окружности паз турбинного диска, причем соответствующая уплотнительная пластина на обращенной к оси турбины стороне имеет продолжающуюся в окружном направлении окантовку, находящуюся на расстоянии от внутреннего края соответствующей уплотнительной пластины.

Газовые турбины используются во многих областях для привода генераторов или рабочих машин. При этом используется энергоемкость топлива для выработки вращательного движения ротора турбины. Для этого топливо сжигается в камере сгорания, причем подается воздух, сжатый в компрессоре. При этом выработанная в камере сгорания посредством сжигания топлива рабочая среда, находящаяся под высоким давлением и при высокой температуре, направляется через турбинный блок, включенный на выходе камеры сгорания, где она расширяется, производя работу.

При этом для выработки вращательного движения ротора турбины на нем размещено некоторое количество рабочих лопаток, скомбинированных обычно в группы лопаток или ряды лопаток. При этом обычно для каждой ступени турбины предусмотрен турбинный диск, на котором закреплены рабочие лопатки с помощью своих хвостовиков (оснований) лопаток. Для направления рабочей среды в турбинном блоке обычно между смежными рядами рабочих лопаток размещены связанные с корпусом турбины направляющие лопатки, скомбинированные в ряды направляющих лопаток.

Камера сгорания газовой турбины может быть выполнена как так называемая кольцевая камера сгорания, при которой множество размещенных в окружном направлении вокруг ротора турбины горелок сообщаются с общей камерой сгорания, окруженной ограждающей стенкой, стойкой к действию высоких температур. Для этого камера сгорания в целом выполнена как кольцевая структура. Наряду с единственной камерой сгорания, также может предусматриваться множество камер сгорания.

Непосредственно к камере сгорания примыкает, как правило, первый ряд направляющих лопаток, который вместе с непосредственно последующим рядом рабочих лопаток, при наблюдении в направлении потока рабочей среды, образует первую турбинную ступень турбинного блока, за которой обычно включены последующие турбинные ступени.

При проектировании подобных газовых турбин дополнительно к достижимой мощности, обычно целью проектирования является высокий кпд. При этом повышение кпд может быть в принципе достигнуто, исходя из термодинамических причин, посредством повышения выходной температуры, с которой рабочая среда вытекает из камеры сгорания и втекает в турбинный блок. При этом для подобных газовых турбин желательными и также достижимыми температурами являются температуры от 1200 до 1500°С.

Однако при подобных высоких температурах рабочей среды компоненты и конструктивные элементы, подвергаемые их воздействию, испытывают высокие термические нагрузки. Для того чтобы турбинный диск защитить от контакта с горячей рабочей средой и чтобы направлять охлаждающий воздух вдоль боковых поверхностей роторного диска к рабочим лопаткам, обычно на турбинных дисках предусматриваются уплотнительные пластины, которые в круговой форме прикреплены к турбинному диску на соответствующих нормальных к оси турбины боковых поверхностях. При этом обычно на каждую турбинную лопатку на каждой стороне турбинного диска предусмотрена соответственно одна уплотнительная пластина. Они перекрываются чешуйчатым образом и обычно имеют уплотнительную плоскость, которая продолжается до соответствующей смежной направляющей лопатки таким образом, что проникновение горячей рабочей среды в направлении ротора турбины предотвращается.

Уплотнительные пластины выполняют, однако, и другие функции. Они создают, с одной стороны, осевую фиксацию турбинных лопаток посредством соответствующих крепежных элементов, с другой стороны, они уплотняют не только диск турбины от проникновения горячего газа извне, но и предотвращают утечку введенного внутрь турбинного диска охлаждающего воздуха, который обычно для охлаждения лопаток турбины направляется в них. Газовая турбина с подобным выполнением известна, например, из ЕР 1944471 A1.

Однако вышеназванное выполнение турбинных дисков с сегментированными, чешуйчато перекрывающимися уплотнительными пластинами является сравнительно сложным. Требуется относительно большое количество уплотнительных пластин, что приводит к сравнительно высоким затратам на конструирование турбинных дисков и, тем самым, всей газовой турбины. Кроме того, требуемый, в конечном счете, ремонт в зоне турбинных дисков ввиду такой конструкции является сравнительно затратным.

К тому же из US 2008/0181767 известна фиксация для уплотнительных листов турбинных дисков, при которой уплотнительные листы на своей внутренней кромке имеют бортик, с помощью которого они с уплотнением прилегают к периферийному окружному выступу турбинного диска. Для фиксации уплотнительного листа в его окончательном монтажном положении требуется соответствующий запорный элемент, который, будучи размещенным в выемке уплотнительного листа, одновременно с ним вводится в паз турбинного диска. Затем запорный элемент вынимается из выемки и сдвигается вдоль паза турбинного диска, причем последний затем блокирует уплотнительный лист на турбинном диске радиально и аксиально. Для стопорения запорного элемента от сдвига в окружном направлении его стрелка перегибается между двумя предусмотренными на уплотнительном листе выступами. В целом, однако, одновременное введение уплотнительного листа и запорного элемента вызывает неудобства при монтаже.

В основе изобретения лежит задача предложить ротор турбины, который при получении максимально возможной эксплуатационной надежности и максимально возможном кпд при применении в турбине обеспечивает возможность упрощенного конструирования и монтажа.

Эта задача в соответствии с изобретением решается ротором турбины вышеописанного типа, при котором между окантовкой соответствующей уплотнительной пластины и боковой стенкой паза турбинного диска размещен запорный элемент и при котором окантовка продолжается по всей длине в окружном направлении уплотнительной пластины и запорные элементы для уплотнения прилегают друг к другу в окружном направлении, причем соответствующая уплотнительная пластина имеет по меньшей мере одну продолжающуюся по существу в окружном направлении на обращенной к оси турбины стороне, прерывающую соответствующую окантовку выемку, которая геометрически выполнена таким образом, что через нее запорные элементы могут вводиться в паз турбинного диска.

При этом изобретение исходит из того, что упрощенная конструкция газовой турбины, особенно в зоне турбинного диска, была бы возможной, если бы обычные до сих пор конструкции с размещенными чешуеобразно уплотнительными пластинами могли бы быть упрощены.

В обычных до сих пор конструкциях с размещенными чешуеобразно уплотнительными пластинами были введены отверстия, так что они могли фиксироваться стопорными болтами и стопорными шайбами на турбинном диске. Однако при небольшом числе применяемых уплотнительных пластин отдельные уплотнительные пластины являются большими. Поэтому необходимо многократное и выполняемое на большой площади крепление уплотнительных пластин на турбинном диске, чтобы гарантировать достаточную осевую и радиальную фиксацию. Кроме того, крепление должно обеспечивать уплотнение остающегося зазора между турбинным диском и внутренней кромкой (то есть кромкой, обращенной к оси турбины) уплотнительной пластины. Для этого соответствующая уплотнительная пластина имеет на обращенной к оси турбины стороне продолжающуюся в окружном направлении, находящуюся на расстоянии от внутренней кромки соответствующей уплотнительной пластины окантовку, причем между окантовкой и также продолжающимся в окружном направлении пазом турбинного диска на турбинном диске размещено множество прилегающих друг к другу запорных элементов, при монтаже перемещаемых в окружном направлении.

Таким образом, можно множество запорных элементов, например в форме стержня, ввести в остающееся промежуточное пространство между уплотнительной пластиной и турбинным диском. Они фиксируются в радиальном и осевом направлении посредством окантовки, уплотнительной пластины и боковой стенки паза турбинного диска. Однако в окружном направлении они остаются смещаемыми и могут, таким образом, размещаться с прилеганием друг к другу, чтобы с образованием кольца из запорных элементов достичь полного уплотнения.

В готовом смонтированном состоянии, как уже описано, запорные элементы фиксируются аксиально и радиально. Для того чтобы монтаж запорных элементов при уже установленной на турбинном диске уплотнительной пластине все же был возможным, соответствующая уплотнительная пластина имеет по меньшей мере одну по существу продолжающуюся в окружном направлении на обращенной к оси турбины стороне выемку, которую прерывает окантовка. Эта выемка геометрически выполнена таким образом, что запорный элемент может вводиться в паз турбинного диска, то есть она имеет точно такую величину, что запорный элемент при уже смонтированной уплотнительной пластине может опускаться в паз турбинного диска. Там этот запорный элемент затем может сдвигаться в окружном направлении в свое конечное положение, где он аксиально фиксируется боковой стенкой паза турбинного диска и уплотнительной пластиной, а радиально - окантовкой. Другие запорные элементы могут тогда вводиться через такую же выемку и также сдвигаться, пока все запорные элементы не будут смонтированы.

Уплотнительные пластины по существу имеют форму части круга. Тем самым уплотнительные пластины согласованы с формой турбинного диска и за счет этого гарантируется надежное уплотнение. Уплотнительные пластины большего размера, имеющие форму части круга, перекрывают тогда ту же самую площадь, что и ранее отдельные уплотнительные пластины, перекрывающие друг друга чешуеобразно.

В другом предпочтительном варианте осуществления на каждую боковую поверхность предусмотрены две уплотнительные пластины. Простейшее выполнение уплотнительных пластин возможно при максимальном сокращении количества уплотнительных пластин, причем отдельная уплотнительная пластина, например в форме кругового кольца, ввиду требуемого при монтаже прикрепления, не возможна. Поэтому простейшая возможная конструкция представляет собой выполнение с двумя одинаково выполненными уплотнительными пластинами. Это выполнение, к тому же, в частности, предпочтительно для стационарных газовых турбин, так как их сборка осуществляется от корпуса и ротора радиально, а не аксиально, как в авиационных газовых турбинах.

Предпочтительным образом, на обращенных друг к другу плоскостях двух уплотнительных пластин выполнена прорезь, причем для уплотнения промежуточного пространства между плоскостями использован соответствующий лист, соединяющий противолежащие прорези. Тем самым для надежного уплотнения между уплотнительными пластинами больше не требуется никакого чешуеобразного перекрытия, а предусматриваются соответствующие прорези или пазы с помещенным рифленым листом. Он закрывает при подходящем выполнении остающееся малое промежуточное пространство между уплотнительными пластинами.

Предпочтительным образом соответствующая уплотнительная пластина имеет продолжающуюся по существу в окружном направлении и аксиально уплотнительную плоскость. Посредством подобной уплотнительной плоскости, которая при соответственно увеличенной, ввиду меньшего количества, уплотнительной пластине должна выполняться сплошной в окружном направлении, достигается уплотнение обращенной к ротору турбины части турбинного диска по отношению к горячему газу, проникающему из внутреннего пространства турбины. При этом уплотнительная плоскость должна продолжаться в аксиальном направлении вплоть до соседних направляющих лопаток, чтобы реализовать особенно хорошее уплотнение.

В другом предпочтительном выполнении соответствующий запорный элемент имеет отверстие, соответствующая уплотнительная пластина - некоторое число вырезов и ограничивающая турбинный диск стенка - отверстие для приема стопорного болта. За счет этого как запорные элементы, так и уплотнительные пластины сами могут фиксироваться посредством стопорного болта и обеспечивается надежное соединение при одновременно простом монтаже.

Предпочтительным образом соответствующая уплотнительная пластина изготавливается точением (обработкой на токарном станке). Меньшее количество уплотнительных пластин обеспечивает возможность изготовления уплотнительных пластин как кругового кольца в процессе точения и затем его разделения. За счет этого возможно упрощенное и экономичное изготовление уплотнительных пластин.

Предпочтительным образом подобная газовая турбина используется в газо- и паротурбинной установке.

Связанные с изобретением преимущества состоят, в частности, в том, что за счет уменьшения количества уплотнительных пластин, приходящегося на каждую боковую поверхность турбинного диска газовой турбины, возможна существенно более простая и более благоприятная конструкция газовой турбины. Конструкция всего набора рабочих лопаток за счет этого существенно упрощается и является менее затратной в изготовлении, так как уплотнительные пластины могут быть изготовлены в процессе токарной обработки. К тому же уплотнительные пластины имеют сравнительно мало поверхностей утечки. Тем самым можно обеспечить существенно более герметичное уплотнение для снижения потерь охлаждающего воздуха.

Пример выполнения изобретения более подробно поясняется ниже со ссылками на чертежи, на которых показано следующее:

Фиг.1 - половинное сечение газовой турбины,

Фиг.2 - половинное сечение через внешнюю окружность диска газовой турбины, уплотнительную пластину и ее фиксирующее устройство,

Фиг.3-5 - уплотнительная пластина на различных видах,

Фиг.6-8 - запорный элемент на различных видах и

Фиг.9-14 - рабочие этапы процесса монтажа.

Одинаковые элементы на всех чертежах обозначены теми же самыми ссылочными позициями.

Газовая турбина 1 согласно фиг.1 содержит компрессор 2 для воздуха, необходимого для горения топлива, камеру 4 сгорания, а также турбинный блок 6 для привода компрессора 2 и не показанного генератора или рабочей машины. Для этого турбинный блок 6 и компрессор 2 размещены на общем роторе 8 турбины, с которым также связаны генератор или рабочая машина и который установлен с возможностью вращения относительно своей центральной оси 9. Камера 4 сгорания, выполненная как кольцевая камера сгорания, снабжена некоторым количеством горелок 10 для сжигания жидкого или газообразного топлива.

Турбинный блок 6 имеет некоторое количество связанных с ротором 8 турбины вращающихся рабочих лопаток 12. Рабочие лопатки 12 в форме венца размещены на роторе 8 турбины и образуют, таким образом, некоторое количество рядов рабочих лопаток. Кроме того, турбинный блок 6 имеет некоторое количество стационарных направляющих лопаток 14, которые также в форме венца с образованием рядов направляющих лопаток закреплены на держателе 16 направляющих лопаток турбинного блока 6. Рабочие лопатки 12 служат при этом для привода ротора 8 турбины за счет передачи импульса от рабочей среды М, протекающей через турбинный блок 6. Направляющие лопатки 14 служат, напротив, направлению потока рабочей среды М между соответствующими двумя, при наблюдении в направлении потока рабочей среды М, следующими друг за другом рядами рабочих лопаток или венцов рабочих лопаток. При этом следующая друг за другом пара из венца направляющих лопаток 14 или ряда направляющих лопаток и из венца рабочих лопаток 12 или ряда рабочих лопаток также называется ступенью турбины.

Каждая направляющая лопатка 14 имеет основание 18, которое для фиксации соответствующих направляющих лопаток 14 размещено на держателе 16 направляющих лопаток турбинного блока 6 в качестве элемента стенки. Основание 18 является при этом термически сравнительно сильно нагружаемым конструктивным элементом, который образует внешнее ограничение канала горячего газа для рабочей среды М, протекающей через турбинный блок 6. Каждая рабочая лопатка 12 аналогичным образом через основание 19 закреплена на роторе 8 турбины.

Между размещенными на некотором расстоянии друг от друга основаниями 18 направляющих лопаток 14 двух смежных рядов направляющих лопаток размещено, соответственно, направляющее кольцо 21 на держателе 16 направляющих лопаток турбинного блока 6. При этом внешняя поверхность каждого направляющего кольца 21 также подвергается действию горячей рабочей среды М, протекающей через турбинный блок 6, и в радиальном направлении отделена зазором от внешнего конца противолежащих ей рабочих лопаток 12. При этом расположенные между смежными рядами направляющих лопаток направляющие кольца 21 служат, в особенности, в качестве накрывающих элементов, которые защищают внутренний корпус 16 в держателе направляющих лопаток или другие конструктивные элементы корпуса от термических перенапряжений за счет горячей рабочей среды М, протекающей через турбину 6.

Камера 4 сгорания в данном примере выполнена как так называемая кольцевая камера сгорания, в случае которой множество размещенных в окружном направлении вокруг ротора 8 турбины горелок 10 сообщаются с общим пространством камеры сгорания. Для этого камера 4 сгорания в целом выполнена как кольцевая конструкция, которая позиционирована вокруг ротора 8 турбины.

Фиг.2 показывает соответствующее сечение через уплотнительную пластину 30, стопорный болт 32, запорный элемент 34, стопорную шайбу 36 и через внешнюю окружность размещенного на роторе 8 турбины турбинного диска 38 ступени рабочих лопаток турбинного блока 6.

Турбинный диск 38 включает в себя паз 40 рабочей лопатки, в котором размещена не показанная рабочая лопатка 12. Через отверстие 42 охлаждающего воздуха во время работы газовой турбины 1 подается охлаждающий воздух, который охлаждает турбинный диск 36 и далее направляется в не показанную рабочую лопатку 12.

Для того чтобы предотвратить утечку охлаждающего воздуха из внутренности турбинного диска 38 и, с другой стороны, проникновение горячей рабочей среды М, уплотнительная пластина 30 размещается на боковой поверхности турбинного диска 38. При этом выступы 44, 46, проходящие по кругу в турбинном диске 38, служат в качестве распорной державки. Уплотнительная пластина 30 посредством нанесенной на нее, продолжающейся в окружном направлении окантовки 47, с помощью запорного элемента 34 прикрепляется к турбинному диску 38 и с помощью стопорного болта 32 в отверстии 48 турбинного диска фиксируется радиально и в окружном направлении. Стопорная шайба 36 предотвращает при этом аксиальное выдвижение стопорного болта 32. При этом окантовка 47 смещена противоположно внутренней кромке уплотнительной пластины 30.

Уплотнительная пластина 30 включает в себя прикрепленную, продолжающуюся по существу в аксиальном и окружном направлении уплотнительную плоскость 50, которая герметизирует промежуточное пространство между турбинным диском 38 и смежными направляющими лопатками 14 от проникновения горячей рабочей среды М из турбины. Кроме того, уплотнительная пластина 30 также обеспечивает аксиальную фиксацию рабочей лопатки 12 в пазу 40 рабочей лопатки и фиксирует ее от смещения.

На фиг.3 показана уплотнительная пластина 30 в плане. В уплотнительной пластине 30 выполнены вырезы 52 на одинаковом расстоянии на стороне, обращенной к ротору 8 турбины, которые служат для приема стопорных болтов 32. Тем самым уплотнительная пластина 30, которая, ввиду в целом меньшего числа уплотнительных пластин, выполнена соответственно большей, фиксируется по всей окружности. Кроме того, можно видеть окантовку 47 для фиксации запорных элементов 34.

Уплотнительная пластина 30 показана на фиг.4 в косом профиле. На боковой поверхности уплотнительной пластины 30, которая в смонтированном состоянии прилегает к другой уплотнительной пластине 30, выполнена прорезь 54, в которую введен не показанный рифленый лист, так что лежащие между уплотнительными пластинами 30 стыки закрываются и, тем самым, уплотняются.

На фиг.5 еще раз показана уплотнительная пластина 30 в плане. При этом здесь представлена расположенная вокруг вырезов 52 выемка 56, которая прерывает окантовку 47. Она по своей геометрии согласована с величиной запорного элемента 34, так что она подходит для помещения детально показанного на следующих чертежах запорного элемента 34. При монтаже запорные элементы 34 могут опускаться через выемку 56 и затем вдоль окантовки 47 сдвигаться в их конечное положение. Тем самым достигается фиксация уже смонтированной уплотнительной пластины 30 на турбинном диске 38 и хорошее уплотнение остающегося промежуточного пространства.

Фиг.6 показывает запорный элемент 34 в сечении. В запорном элементе 34 выполнено отверстие 58, в которое вводится стопорный болт 32. На фиг.7, где показан запорный элемент 34 в профиль, рядом также представлена выемка 60, которая служит для позиционирования стопорной шайбы 36, которая препятствует аксиальному выдвижению стопорного болта 32. Фиг.8 показывает запорный элемент еще раз в плане. Можно явно видеть согласование с формой выемки 56, представленной на фиг.5.

Фиг.9-14 показывают процесс монтажа уплотнительной пластины 30 на турбинном диске 36. Уплотнительная пластина 30 сначала радиально опускается в паз 62 турбинного диска (фиг.10, фиг.11), затем аксиально перемещается к рабочей лопатке 12 (фиг.12) и затем радиально поднимается (фиг.13). Выступ 64 на внутреннем радиусе уплотнительной пластины 30 прилегает, таким образом, к выступу 46 турбинного диска 38. Запорный элемент 34 радиально вводится над выемкой 56 на уплотнительной пластине 30 в паз 62 и в окружном направлении вдоль окантовки 47 настолько сдвигается, что его отверстие 58 совмещается с отверстием 48 в турбинном диске 38, а также вырезом 52 в уплотнительной плате 52. Там запорный элемент 34 фиксируется с помощью стопорного болта 32.

Затем таким же путем вводятся следующие запорные элементы 34. Тем самым уплотнительная пластина 30 фиксируется радиально и аксиально. Кроме того, запорные элементы 47 в смонтированном состоянии прилегают друг к другу, так что гарантируется полное уплотнение промежуточного пространства между уплотнительной пластиной 30 и боковой стенкой паза 62 турбинного диска.

В выемку 60 запорного элемента 34 радиально вводится стопорная шайба 36, которая в центре также имеет отверстие. В него и отверстия 48, 58 вводится стопорный болт 32. Он радиально фиксирует стопорную шайбу 36 и в окружном направлении запорный элемент 34 и уплотнительную пластину 30. Противоположно аксиальному выдвижению стопорного болта 32 конец стопорной шайбы 36 загнут радиально вниз. Окончательная сборка показана на фиг.14.

Изображенная уплотнительная пластина 30 по существу имеет форму полукруга. Таким образом, уплотнительная пластина 30 может в процессе токарной обработки изготавливаться как круговое кольцо и затем разрезаться. Тем самым возможна особенно простая конструкция газовой турбины 1. Кроме того, за счет меньшего количества поверхностей утечки по сравнению с существующим чешуеобразным выполнением возможно существенно лучшее уплотнение для предотвращения утечки охлаждающего воздуха.

1. Ротор (8) турбины
с некоторым числом рабочих лопаток (12), размещенных на соответствующем турбинном диске (38), скомбинированных соответственно в ряды рабочих лопаток,
причем соответствующий турбинный диск (38) на своих боковых поверхностях имеет некоторое число уплотнительных пластин (30) в форме участков кругового кольца, которые вставлены в продолжающийся в окружном направлении паз (62) турбинного диска,
причем соответствующая уплотнительная пластина (30) на обращенной к оси турбины стороне имеет продолжающуюся в окружном направлении окантовку (47), находящуюся на расстоянии от внутренней кромки соответствующей уплотнительной пластины (30),
причем между окантовкой (47) соответствующей уплотнительной пластины (30) и боковой стенкой паза (62) турбинного диска размещен запорный элемент (34),
причем
окантовка (47) продолжается по всей длине в окружном направлении уплотнительной пластины (30) и запорные элементы (34) для уплотнения прилегают друг к другу в окружном направлении,
причем соответствующая уплотнительная пластина (30) имеет по меньшей мере одну продолжающуюся по существу в окружном направлении на обращенной к оси турбины стороне, прерывающую соответствующую окантовку (47) выемку (56), которая геометрически выполнена таким образом, что через нее запорные элементы (34) могут вводиться в паз (62) турбинного диска.

2. Ротор (8) турбины по п.1, в котором на каждую боковую поверхность предусмотрены две уплотнительные пластины (30).

3. Ротор (8) турбины по п.1 или 2, в котором на обращенных друг к другу плоскостях двух уплотнительных пластин (30) выполнена прорезь (54), причем для уплотнения промежуточного пространства между плоскостями использован соответствующий лист, соединяющий противолежащие прорези (54).

4. Ротор (8) турбины по п.1 или 2, в котором соответствующая уплотнительная пластина (30) имеет продолжающуюся по существу в окружном направлении и аксиально уплотнительную плоскость (50).

5. Ротор (8) турбины по п.3, в котором соответствующая уплотнительная пластина (30) имеет продолжающуюся по существу в окружном направлении и аксиально уплотнительную плоскость (50).

6. Ротор (8) турбины по любому из пп.1, 2 или 5, в котором соответствующий запорный элемент (34) имеет отверстие (58), соответствующая уплотнительная пластина (30) - некоторое число вырезов (52) и ограничивающая паз (62) турбинного диска боковая стенка - отверстие (48) для приема стопорного болта (32).

7. Ротор (8) турбины по п.3, в котором соответствующий запорный элемент (34) имеет отверстие (58), соответствующая уплотнительная пластина (30) - некоторое число вырезов (52) и ограничивающая паз (62) турбинного диска боковая стенка - отверстие (48) для приема стопорного болта (32).

8. Ротор (8) турбины по п.4, в котором соответствующий запорный элемент (34) имеет отверстие (58), соответствующая уплотнительная пластина (30) - некоторое число вырезов (52) и ограничивающая паз (62) турбинного диска боковая стенка - отверстие (48) для приема стопорного болта (32).

9. Ротор (8) турбины по п.1, в котором соответствующая уплотнительная пластина (30) изготавливается точением.

10. Газо- или паротурбинная установка с ротором (8) турбины согласно любому из пп.1-9.



 

Похожие патенты:

Блокировочное устройство для лопаток, снабженных ножкой Т-образного типа, на ободе диска компрессора турбомашины содержит средство стопорения лопаток, кронштейн и средство фиксации.

Платформа рабочего колеса газотурбинного двигателя, включающего барабан и лопатки, основание которых удерживается в кольцевой канавке барабана, содержит два ребра жесткости с боковыми опорными поверхностями.

Рабочее колесо турбины содержит диск и множество лопаток, установленных по его периферии. Каждая лопатка имеет полку, перо и установленный в пазу диска крепежный элемент, проходящий в направлении внутрь от полки и аксиально по всему расстоянию между боковыми поверхностями диска.

Рабочее колесо турбины содержит диск, устройство аксиальной фиксации и множество лопаток, включающих перо, полку и крепежный элемент. Лопатки установлены по периферии диска, причем крепежный элемент каждой лопатки смонтирован в пазу, простирающемся аксиально между поверхностями диска.

Устройство амортизации вибраций для лопатки газовой лопаточной машины, например газотурбинного двигателя, оборудованного вентилятором, или высокооборотного винтового двигателя.

Лопатка турбины охлаждается внутренним потоком охлаждающей текучей среды, поступающей через отверстия, расположенные внизу хвостовой части лопатки. Лопатка включает в себя регулирующую пластину, снабженную отверстиями, расположенными в соответствии с отверстиями внизу хвостовой части лопатки.

Ротор газовой турбины включает расположенные на диске турбины охлаждаемые рабочие лопатки, каждая из которых имеет ножку лопатки, расположенную в осевом пазу для ее фиксации.

Ротор газотурбинного двигателя содержит диск с осевыми гнездами, выполненными на ободе диска для индивидуального крепления лопаток. На одной стороне обода устанавливают кольцо.

Изобретение может быть использовано при изготовлении моноблочного лопаточного диска (блиска), преимущественно, для ротора газотурбинного двигателя. Получают лопатку с выступом, параметры которого обеспечивают присоединение к диску посредством линейной сварки трением.

Изобретение относится к области лопаточных машин, в частности к конструкции композиционных лопаток осевых вентиляторов и компрессоров авиадвигателей. Лопатка лопаточной машины содержит профилированное перо, комлевую часть, а также хвостовик типа «ласточкин хвост» и выполнена из ориентированных слоев композиционного материала, соединенных между собой связующим материалом.

Лопатка для турбины или компрессора содержит перо и хвостовик. Перо лопатки изготовлено из согнутой слоистой полосы из армированной волокном пластмассы, в которой в зоне фальца образована удерживающая петля, причем из лежащих друг на друге концов полосы сформирована поверхность лопатки. Хвостовик лопатки содержит продолговатую балку и соединенные с ней с фиксацией положения держатели, обеспечивающие крепление лопатки в канавке рабочего колеса. Перо лопатки с помощью удерживающей петли подвешено на балке хвостовика. Отдельные держатели соединены друг с другом с помощью боковых частей, ориентированных параллельно балке. Другое изобретение группы относится к рабочему колесу, содержащему ротор с канавками, а также указанные выше лопатки. Хвостовик каждой из лопаток вложен в соответствующую канавку ротора и с фиксацией положения соединен с ротором. Группа изобретений позволяет повысить долговечность лопаток. 2 н. и 13 з.п. ф-лы, 3 ил.

Изобретение относится к роторам турбин газотурбинных двигателей авиационного и наземного применения. Ротор турбины включает диск турбины с установленным на его ободе при помощи байонетного соединения уплотнительным кольцом с образованием кольцевой полости, расположенной между полотном диска и уплотнительным кольцом. В кольцевой полости между осевым кольцевым ребром уплотнительного кольца и осевым кольцевым выступом диска размещен контровочный замок, выполненный с возможностью осевого перемещения в кольцевой полости в сторону диска. Контровочный замок выполнен с направленным от диска осевым ребром и с направленными от диска и расположенными по краям замка двумя осевыми выступами. Осевое ребро контровочного замка выполнено с возможностью пластической деформации в радиальном направлении на внешнюю поверхность уплотнительного кольца. Осевые выступы замка контактируют с боковыми поверхностями пазов байонетного соединения диска и уплотнительного кольца. Изобретение позволяет повысить надежность ротора турбины. 3 ил.

Секция ротора турбомашины содержит крепежные пазы для рабочих лопаток, распространяющиеся в осевом направлении. В каждом крепежном пазу установлена рабочая лопатка, включающая обращенную радиально внутрь контактную поверхность. Для пропускания охлаждающего средства по торцевой поверхности ротора пластинчатые уплотнительные элементы под действием центробежной силы прилегают к контактной поверхности. Для фиксации уплотнительных элементов от смещения в окружном направлении, по меньшей мере, один из уплотнительных элементов снабжен отверстием для блокировочного элемента. Блокировочный элемент зафиксирован в отверстии уплотнительного элемента и гнезде, соосном этому отверстию и расположенном в ножке лопатки. Блокировочный элемент зафиксирован от выпадения посредством Z-образной фиксирующей пластины, первый конец которой прилегает между уплотнительным элементом и торцевой стороной ножки лопатки. Изобретение позволяет упростить монтаж и демонтаж блокировочного элемента. 4 з.п. ф-лы, 9 ил.

Прокладка для вставления между хвостом лопатки вентилятора турбореактивного двигателя и нижней частью отсека, в котором размещен этот хвост. Отсек ограничен диском вентилятора. Прокладка имеет металлический элемент жесткости, оснащенный, по меньшей мере, одним наружным элементом, выполненным из эластомерного материала, и содержащий несущую поверхность (134) этого наружного элемента. Несущая поверхность (134) содержит, по меньшей мере, одну волнистую зону (136). Достигается надежное удержание и демпфирование лопатки за счет улучшенного сцепления между элементом жесткости и наружным элементом. 3 н. и 6 з.п. ф-лы, 5 ил.

Изобретение может быть использовано для приваривания орбитальной сваркой трением лопаток к барабану осевого компрессора. Барабан (14) удерживают в люльке (44) с помощью делительного стола (54). Люлька (44) выполнена с возможностью поворота и движения в вертикальном направлении для расположения различных участков своей наружной поверхности параллельно плоскости орбитального движения лопатки (18, 20, 22). Лопатка удерживается в устройстве (62) орбитального движения с помощью зажимного устройства (68). Внутренняя поверхность барабана (14) закреплена опорами (51), которые опираются на сердечник (52), крепящийся к люльке (44). Барабан (14) содержит ряд выступов (38), поперечное сечение которых соответствует форме лопатки. Выступы (38) образуют поверхности сопряжения для лопаток (18, 20, 22). Лопатка (18, 20, 22) содержит пластину, обеспечивающую ее надежный зажим в зажимном устройстве (68). Изобретение обеспечивает возможность изготовления тонкостенного барабана с меньшими по сравнению с традиционной линейной сваркой трением затратами. 2 н. и 11 з.п. ф-лы, 5 ил.

Изобретение относится к газотурбинным двигателям авиационного и наземного применения, преимущественно, к турбомашинам, на роторе которых закрепляются лопатки и средства для охлаждения и устранения деформаций и вибраций. Ротор осевой газовой турбины содержит диск ротора с расположенными на нем охлаждаемыми рабочими лопатками и покрывной диск, установленный на ободе диска ротора с образованием кольцевой полости и зафиксированный с помощью неподвижных разъемных соединений. В ободе диска и в основании хвостовой части каждой лопатки выполнены каналы для подвода охлаждающего воздуха в полости под основанием лопаток и во внутренние полости рабочих лопаток. Диск ротора снабжен кольцевым посадочным выступом, выполненным на ободе диска, а покрывной диск оснащен канавкой, выполненной ответной посадочному выступу. Каналы в ободе диска выполнены открытыми по его поверхности со стороны покрывного диска и наклонными со стороны основания хвостовой части каждой лопатки. Разъемное соединение выполнено в виде радиально центрированных по одной оси отверстий в стенках канавки покрывного диска и посадочного выступа диска ротора и штифтов, установленных в эти отверстия. Ротор содержит не менее трех разъемных соединений. Изобретение позволяет повысить надежность и технологичность ротора турбины газотурбинного двигателя, а также уменьшить его вес. 2 ил.

Ротор турбинной установки включает вал ротора, ряд расположенных смежно друг с другом рабочих лопаток и проставки между лопатками. Вал ротора имеет проходящий по периферии приемный паз, в который рабочие лопатки вставлены своими хвостовиками. Проставки расположены в приемном пазу вала ротора между двумя смежными рабочими лопатками. На наружной стороне хвостовика, рядом с рабочей стороной, рабочие лопатки имеют изогнутый контур стенки. Проставки на наружной стороне также имеют изогнутый контур стенки. Наружные стороны хвостовиков лопаток и проставок радиально заподлицо примыкают друг к другу в направлении по периферии, а контур стенки в аксиальной плоскости сечения ротора имеет вогнутый изгиб. Другие изобретения группы относятся к компрессору и турбине турбинной установки, содержащим указанный выше ротор. При модернизации ротора турбинной установки рабочие лопатки заменяют рабочими лопатками, имеющими на наружной стороне хвостовиков, рядом с рабочей стороной лопаток, изогнутый контур стенки, а проставки заменяют проставками, также имеющими на наружной стороне изогнутый контур стенки. Группа изобретений позволяет упростить изготовление ротора турбинной установки. 4 н. и 8 з.п. ф-лы, 5 ил.

Ротор турбины тепловой электростанции содержит множество лопаток, диск ротора и средство фиксации. Диск ротора прикреплен к валу и содержит на периферии выступы, к которым прикреплены лопатки. Диск ротора содержит канавку, открытую в осевом направлении и имеющую нижнюю и верхнюю поверхности, причем нижняя поверхность канавки расположена на периферии диска ротора, а верхняя поверхность канавки расположена на выступах и обращена к нижней поверхности. Канавка диска ротора имеет в области его выступов осевой участок с углублением и открытым участком, на котором канавка открыта в осевом направлении, причем радиальная ширина углубления больше, чем радиальная ширина открытого участка. Каждая из лопаток содержит на хвостовике боковой выступ, имеющий на нижней части канавку с верхней поверхностью, расположенной вслед за верхней поверхностью канавки диска ротора. Средство фиксации установлено в канавке диска ротора для фиксации лопаток. При сборке указанного выше ротора турбины устанавливают лопатки между выступами диска ротора, а в канавку диска ротора и канавку лопатки устанавливают нижний и верхний профили. Затем устанавливают промежуточный замыкающий элемент, чтобы прочно прижать нижний и верхний профили соответственно к нижней поверхности канавки диска ротора и к верхним поверхностям канавки диска ротора и канавок лопаток. Группа изобретений позволяет повысить срок службы ротора турбины и упростить конструкцию средств фиксации. 2 н. и 5 з.п. ф-лы, 12 ил.

Ротор барабанного типа осевого компрессора предназначен для газотурбинных двигателей, преимущественно авиационных. Рабочие лопатки (4) ротора установлены своими хвостовиками (3) в пазах (2), разнесенных по длине барабана (1) кольцевыми рядами. Лопатки (4) выполнены с нижней полкой (6) пера (5) и ножкой (7). Ножка (7) расположена между полкой (6) и хвостовиком (3) с поперечным разделением верхней поверхности хвостовика (3) на две части. Пазы (2) и установленные в них хвостовики (3) вытянуты вдоль наружной поверхности барабана (1) и выполнены в форме прямой призмы, имеющей расширяющееся в сторону ножки (7) продольное сечение. На верхние поверхности хвостовиков (3) установлены с предварительным натягом силовые кольца (9) из композиционного материала, по одному, по меньшей мере, на каждый кольцевой ряд частей верхних поверхностей хвостовиков. Достигается снижение величины радиальных и окружных напряжений, испытываемых материалом барабана в процессе работы, обеспечение возможности снижения массы барабана при проектировании и существенного увеличения окружных скоростей ротора. 4 ил.

Система штифтового крепления хвостовика для диска ротора паровой турбины с осевым потоком содержит штифты, проходящие аксиально через отверстия в чередующихся зубьях хвостовиков лопаток и зубьях диска. Отношение осевой ширины зубьев диска и суммы осевой ширины зубьев диска и осевой ширины зазора между смежными зубьями диска составляет от 0,4 до 0,6. Отношение длины зубьев диска к диаметру штифтов составляет от 4 до 6. Изобретение позволяет снизить пиковые механические напряжения в зубьях диска. 2 з.п. ф-лы, 4 ил.
Наверх