Электрическая машина с осевым, радиально смещенным охлаждающим потоком и соответствующий способ



Электрическая машина с осевым, радиально смещенным охлаждающим потоком и соответствующий способ
Электрическая машина с осевым, радиально смещенным охлаждающим потоком и соответствующий способ
Электрическая машина с осевым, радиально смещенным охлаждающим потоком и соответствующий способ
Электрическая машина с осевым, радиально смещенным охлаждающим потоком и соответствующий способ

 


Владельцы патента RU 2516234:

СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE)

Изобретение относится к электрическим машинам. Электрическая машина имеет по меньшей мере один радиальный охлаждающий паз (16) и аксиально проходящие охлаждающие каналы. Первые охлаждающие каналы (18) проходят со своей центральной осью на иной радиальной высоте относительно оси ротора (11), чем вторые охлаждающие каналы (19). В по меньшей мере одном радиальном охлаждающем пазу (16) размещена проставка (29), с помощью которой первый охлаждающий поток (28) из одного из первых охлаждающих каналов (18) может направляться в один из вторых охлаждающих каналов (19). За счет этого может также второй в направлении течения частичный пакет (Т2) снабжаться более холодным воздухом, когда он протекает через первый частичный пакет (Т1) в холодной области, например, вблизи вала. Техническим результатом является обеспечение равномерного охлаждения ротора электрической машины. 2 н. и 11 з.п. ф-лы, 4 ил.

 

Настоящее изобретение относится к электрической машине с ротором, который имеет по меньшей мере один радиальный охлаждающий паз и аксиально проходящие охлаждающие каналы, которые сообщаются с его меньшей мере одним радиальным охлаждающим пазом. Кроме того, настоящее изобретение относится к способу охлаждения электрической машины с ротором путем охлаждения ротора охлаждающим потоком, который вводится аксиально в ротор.

В принципе, существует потребность охлаждать ротор электрической машины равномерно охлаждающим воздухом (или охлаждающим средством). Одновременно должна быть возможной без высоких затрат труда заливка карманов магнитов для защиты магнитов от коррозии и перемещения.

До сих пор один тип синхронных машин с возбуждением постоянными магнитами конструировался с только одним частичным пакетом. Это имеет недостаток, заключающийся в том, что статор в средней области в недостаточной степени может снабжаться охлаждающим воздухом. Также ротор в случае однопоточного охлаждающего потока охлаждается лишь неравномерно. В другом типе синхронных машин с возбуждением постоянными магнитами магниты закреплялись на отдельных частичных пакетах (например, посредством приклеивания). При этом, хотя достигалось более равномерное охлаждение, однако является довольно затратным посредством заливки защищать магниты при смещении или от коррозии.

Из публикации DE 101 07 298 C1 известна электрическая машина с ротором, который имеет радиальный охлаждающий паз. Ротор содержит, кроме того, аксиально проходящие охлаждающие каналы, которые сообщаются с радиальным охлаждающим пазом. Первые охлаждающие каналы из аксиально проходящих охлаждающих каналов проходят со своей центральной осью на другой радиальной высоте относительно оси ротора, чем вторые охлаждающие каналы из аксиально проходящих охлаждающих каналов. Короткозамыкающее кольцо оснащено замкнутой кольцевой камерой для реверсирования направления течения.

Подобные электрические машины с радиальным охлаждающим пазом и аксиальными охлаждающими каналами, которые проходят на различных радиальных уровнях, известны из публикаций WO 97/39513 A1, US 3684906 A и DE 2834988 A1. Там также описаны проставки, с помощью которых первый охлаждающий поток направляется из охлаждающего канала в радиально более высокий или более низкий охлаждающий канал.

Задачей настоящего изобретения является обеспечение охлаждения ротора электрической машины, несмотря на более простой монтаж, более равномерным образом. Кроме того, должен быть создан соответствующий способ охлаждения для ротора электрической машины.

В соответствии с изобретением эта задача решается электрической машиной согласно пункту 1 формулы изобретения.

Кроме того, в соответствии с изобретением предусмотрен способ согласно пункту 6 формулы изобретения.

Предпочтительным образом, охлаждающий поток в соответствии с изобретением направляется в роторе от одной радиальной высоты на другую радиальную высоту. При рассмотрении в радиальном сечении, можно также говорить о смене уровней охладителя в роторе. Это оказывается особенно тогда предпочтительным, когда ротор на различных радиальных высотах нагревается по-разному. Таким образом, внутри ротора охлаждающий поток, который воспринял еще мало тепла, может отклоняться целенаправленно в радиальное положение, которое должно охлаждаться очень эффективно.

Предпочтительным образом проставка имеет несколько дисков, которые имеют, соответственно, сквозные отверстия, причем сквозные отверстия дисков размещены таким образом, что они отклоняют первый охлаждающий поток в радиальном направлении. Диски проставки приобретают, таким образом, дополнительную функцию, наряду с обеспечением радиального охлаждающего паза: они радиально отклоняют охлаждающий поток.

В роторе имеется только один единственный охлаждающий паз. Это имеет преимущество, состоящее в том, что помещение магнитов в карманы магнитов обоих частичных пакетов может быть выполнено сравнительно легко. Кроме того, заливка карманов магнитов изолирующей заливочной массой в случае двух частичных пакетов может быть выполнена относительно несложно.

Второй охлаждающий поток вводится в один из аксиально проходящих охлаждающих каналов и посредством проставки отклоняется радиально наружу. На месте, в котором второй охлаждающий поток отклоняется радиально наружу, может теперь первый охлаждающий поток, если он отклоняется в радиальное положение второго охлаждающего потока, брать на себя его функции охлаждения во втором частичном пакете, то есть в другой осевой области ротора.

Первые охлаждающие каналы размещены на меньшей радиальной высоте в роторе, чем вторые охлаждающие каналы. Тем самым, первый охлаждающий поток протекает сначала вблизи вала, где он воспринимает лишь малое количество тепла. После некоторого осевого пути распространения первый охлаждающий поток может тогда реализовать «неизрасходованное» высокое охлаждающее действие, когда он отклоняется во вторые охлаждающие каналы.

Ротор может возбуждаться постоянными магнитами. Они вводят лишь сравнительно малые потери в ротор, так что достаточно ротор разделить на два частичных пакета и предусмотреть только один единственный паз для охлаждающего воздуха в середине ротора. За счет этого ротор с возбуждением постоянными магнитами может легче изготавливаться. С другой стороны, если ротор оснащен короткозамыкающими стержнями, то может предусматриваться и больше частичных пакетов, причем охлаждающий поток тогда может вводиться через более чем два различных уровня в роторе.

Кроме того, частичный пакет (содержащий первые охлаждающие каналы), по отношению к второму, содержащему вторые охлаждающие каналы, частичному пакету, может быть смещен в окружном направлении. Это служит снижению пульсаций вращающего момента ротора и может быть реализовано посредством нескольких дисков проставки без особого труда, так как смещение, как правило, должно быть лишь очень незначительным. Поэтому функция проставки, а именно функция радиального отклонения не ухудшается заметным образом из-за смещения.

Настоящее изобретение далее поясняется более подробно со ссылками на чертежи, на которых показано следующее:

Фиг.1 - частичное поперечное сечение генератора с постоянными магнитами с воздушным охлаждением;

Фиг.2 - увеличенный фрагмент из фиг.1 для более четкого представления смены уровня охлаждающего потока в роторе;

Фиг.3 - вид в перспективе ротора по фиг.1 и

Фиг.4 - вид сверху фрагмента радиального охлаждающего паза ротора по фиг.3.

Описанные далее более подробно примеры выполнения представляют предпочтительные формы выполнения предложенного изобретения.

Фиг.1 показывает генератор 1 с охладителем 2. Охладитель 2 содержит вентилятор 3 для всасывания холодного воздуха, который он нагнетает в теплообменник 4. Воздух протекает оттуда через выпускной патрубок 5 наружу. Тем самым определяется внешний контур охлаждения.

Теплообменник 4 охлаждает посредством внешнего контура 6 охлаждения внутренний, замкнутый охлаждающий контур 7. Внутренний контур 7 приводится в действие вальным вентилятором 8, который смонтирован на В-стороне вала 9 генератора 1. Внутренний охлаждающий контур циркулирует, начиная от вентилятора 8 теплообменника, и выводится на А-стороне (приводную сторону) генератора в полость лобовой части обмотки. Там он обтекает лобовую часть 10 обмотки, а также обмоточную схему 31 и протекает затем через ротор 11 и статор 12, как описано более подробно ниже. Наконец, охладитель (в частности, воздух) обтекает полость лобовой части обмотки на В-стороне (неприводной стороне) генератора и достигает вновь вального вентилятора 8.

Ротор 11 содержит листовой пакет 13, на торцевых сторонах которого размещены нажимные кольца 14 и 15. В своем осевом направлении ротор 11 разделен пополам посредством радиального охлаждающего паза 16. Этот охлаждающий паз 16 образован здесь проставкой с дисками 29.

Ротор 11 также имеет аксиально проходящие охлаждающие каналы, осевые центры которых лежат на двух коаксиальных цилиндрах. Далее радиальное расстояние центральной оси охлаждающего канала от оси вала 9 будет обозначаться как радиальная высота охлаждающего канала. Согласно представленному примеру, ротор 11 содержит, таким образом, (третий) охлаждающий канал 17 и радиально под ним, то есть на меньшей радиальной высоте, первый аксиальный охлаждающий канал 18. На правой стороне радиального охлаждающего паза 16, который делит ротор посередине, находится на той же радиальной высоте, что и у первого охлаждающего канала 17, второй охлаждающий канал 19. Радиально под ним находится вновь на той же радиальной высоте, что и у второго охлаждающего канала 18, четвертый охлаждающий канал 20. В листовом пакете 13 в предусмотренных для этого карманах размещены распределенные по окружности постоянные магниты 21. Он с обеих торцевых сторон вдвинуты в ротор и залиты также от обеих торцевых сторон. Так как ротор 11 имеет только один средний радиальный охлаждающий паз 16, вставка магнитов и заливка производятся соответственно просто.

Статор 12, в качестве держателя обмоток, содержит листовой пакет 22, который пересекается многочисленными радиально проходящими охлаждающими пазами 23. На внешней боковой поверхности листового пакета сформированы аксиально проходящие охлаждающие ребра 24 на листовом пакете 22. Охлаждающие ребра 24 выступают звездообразно от статора 12 и могут быть приварены к листовому пакету. В качестве альтернативы, каждый отдельный лист листового пакета 22 имеет радиально отстоящие выступы, так что при пакетировании отдельных листов получаются охлаждающие ребра 24.

Охлаждающий поток 25 статора протекает, таким образом, вдоль боковой поверхности статора исключительно в осевом направлении. Посредством этого потока, который почти без поглощения тепла почти непосредственно подается в теплообменник 4, эффективно охлаждаются осевые охлаждающие ребра 24 статора. На торце В-стороны этот первый охлаждающий поток 25 еще используется для того, чтобы охлаждать лобовую часть обмотки.

В соответствии с изобретением, как в примере, представленном на фиг.1, предусмотрен первый охлаждающий поток 28, который на А-стороне вводится в первые охлаждающие каналы 18 через нажимной щиток 14. В радиальном охлаждающем пазу 16 ротора 11 находится проставка. В данном примере в качестве проставки использованы три диска 29. Диски 29 выполнены различными и имеют вырезы 30 в смещенных относительно друг друга позициях. Тем самым первый охлаждающий поток 28 в радиальном охлаждающем пазу 16 на фиг.1 вытесняется вверх во вторые охлаждающие каналы 19, которые справа от охлаждающего паза 16 расположены на большей радиальной высоте, чем первые охлаждающие каналы 18. Наконец, первый охлаждающий поток 28 выходит из вторых охлаждающих каналов 19 через нажимной щиток 15 на В-стороне. В нажимном щитке 15 для этого предусмотрены отверстия, величина которых рассчитана таким образом, что сопротивление первого охлаждающего потока 28 не слишком мало, и также второй охлаждающий поток 26 имеет достаточный объемный расход. После отверстия в нажимном щитке 15 первый охлаждающий поток 28 объединяется с вторым и третьим охлаждающим потоком 26, 25 в полости торцевой стороны генератора 1 перед вальным вентилятором 8. Первый охлаждающий поток 28, таким образом, направляется в первой части ротора (левая сторона на чертеже) через более холодную область (ближнюю к валу область) ротора. При этом он почти не поглощает тепло. На правой стороне ротора он направляется вверх и служит там для эффективного охлаждения правой части ротора. Левая половина части ротора, как пояснено выше, главным образом охлаждается посредством второго охлаждающего потока 26.

Второй охлаждающий поток 26 через ротор вводится посредством охладителя или охлаждающего воздуха, который в полости лобовой части обмотки 10 и обмоточной схемы 31 уже охлажден. Этот второй охлаждающий поток 26 проникает через нажимной диск 14 А-стороны в третий охлаждающий канал 17 ротора 11. У радиального охлаждающего паза 16 в середине ротора второй поток 26 охладителя отклоняется радиально наружу. Он распределяется аксиально по всему воздушному зазору 27 между ротором 11 и статором 12. Оттуда он, так как нажимные диски 14 и 15 имеют несколько больший диаметр, чем листовой пакет ротора, включая постоянные магниты 21, вытесняется радиально наружу через охлаждающий паз 23 статора. На внешней поверхности статора второй охлаждающий или воздушный поток 26 объединяется с третьим охлаждающим потоком 25. Второй охлаждающий поток 26 обеспечивает, таким образом, охлаждение представленной на фиг.1 левой роторной части и внутренней части статора по всей его осевой длине. Второй охлаждающий поток 26 имеет, таким образом, по существу Z-образную траекторию. Он протекает сначала аксиально, потом радиально и, наконец, снова аксиально. Вместе с линейным охлаждающим потоком статора может, таким образом, осуществляться достаточное охлаждение статора 12, и в том случае, если ротор имеет только радиальный охлаждающий паз 16 и не имеет множества подобных радиальных пазов.

На фиг.2 показан фрагмент ротора 11 с охлаждающим пазом 16 по фиг.1 в увеличенном виде. Ротор разделен охлаждающим пазом 16 аксиально на два частичных пакета Т1 и Т2. Радиальный охлаждающий паз 16 образован дисками 29, которые служат проставками между обоими частичными пакетами Т1 и Т2. Из увеличенного представления на фиг.2 видно, что диски 29 имеют вырезы или отверстия 30, так что охлаждающий поток может пройти через соответствующий диск 29. В данном случае первый охлаждающий поток 28 проходит через охлаждающий паз 16 или диски 29 через отверстия 30 из одного первых охлаждающих каналов 18 в один из вторых охлаждающих каналов 19. Центр соответствующего отверстия 30 повышается в направлении охлаждающего потока от одного диска к следующему в радиальном направлении. Тем самым первый охлаждающий канал 18 со вторым охлаждающим каналом 19 находится в соединении по потоку.

Диски 29 имеют другие вырезы 32, которые позволяют второму охлаждающему потоку 26, который проникает через третьи охлаждающие каналы 17 в ротор, протекать радиально наружу. При этом, при обстоятельствах, является предпочтительным, если обращенный к второму охлаждающему каналу 19 правый диск 29 уплотняет второй охлаждающий канал 19 по отношению к третьему охлаждающему каналу 17, так что второй охлаждающий поток 26, который при достижении охлаждающего паза 16, как правило, уже заметно нагрет, не проникает во второй охлаждающий канал 19. Скорее, введенный в первый частичный пакет Т1 первый охлаждающий поток 28 может, из-за радиальной смены уровней, охлаждать второй частичный пакет Т2 в области постоянных магнитов 21, то есть во внешней области ротора. В принципе, также возможны направления течения каждого охлаждающего потока, соответственно, в обратном направлении.

Фиг.3 показывает соответствующий изобретению ротор в пространственном изображении. Как уже описывалось в связи с фиг.1, на валу рядом с частичными пакетами Т1 и Т2 ротора 11 на В-стороне находится вальный вентилятор 8. Частичные пакеты Т1 и Т2 отделены друг от друга радиальным охлаждающим пазом 16. Из него второй охлаждающий поток 26 вытесняется наружу. Частичные пакеты Т1 и Т2 в окружном направлении смещены относительно друг друга. На фиг.4 это смещение V показано в увеличенном виде. За счет смещения V в окружном направлении снижается волнистость вращающего момента ротора 11. При этом вырезы 32 дисков 29 обеспечивают достаточный радиальный охлаждающий паз.

В итоге, можно заключить, что изобретение позволяет обеспечить охлаждение при двух или более частичных пакетах ротора с возбуждением постоянными магнитами. Кроме того, возможно, за счет использования различных уровней охлаждения снабжать ротор по всей длине почти неизрасходованным охлаждающим воздухом. Кроме того, обеспечивается многочисленные дополнительные преимущества. С одной стороны, ввиду более простой доступности карманов постоянных магнитов, возможна упрощенная заливка. Тем самым обеспечивается надежная фиксация магнитов и высококачественная защита от коррозии. Кроме того, нажимные диски 29 ротора, которые отделяют друг от друга частичные пакеты ротора, применяются для охлаждения статора, так как они обладают вентилирующим действием. При необходимости, согласно описываемому выполнению, за счет смещения частичных пакетов, может снижаться блокирующий момент. Дополнительное преимущество обеспечивается тем, что формы листов обоих частичных пакетов могут быть идентичными.

1. Электрическая машина с
- ротором (11), который имеет один единственный радиальный охлаждающий паз (16), причем
- ротор (11) имеет аксиально проходящие охлаждающие каналы, которые сообщаются с его радиальным охлаждающим пазом (16), причем
- первые охлаждающие каналы (18) аксиально проходящих охлаждающих каналов проходят со своей центральной осью на более низкой радиальной высоте относительно оси ротора (11), чем вторые охлаждающие каналы (19) аксиально проходящих охлаждающих каналов, и
- в радиальном охлаждающем пазу (16) размещена проставка, с помощью которой первый охлаждающий поток (28) из одного из первых охлаждающих каналов (18) может направляться в один из вторых охлаждающих каналов (19),
отличающаяся тем, что
- охлаждающий паз (16) делит ротор (11) посредине,
- второй охлаждающий поток (26) может вводиться в один из аксиально проходящих охлаждающих каналов и посредством проставки направляться радиально наружу, причем третьи охлаждающие каналы (17) находятся на той же радиальной высоте, что и вторые охлаждающие каналы (19).

2. Электрическая машина по п.1, причем проставка имеет несколько дисков (29), которые имеют, соответственно, сквозные отверстия (30), и причем сквозные отверстия (30) дисков (29) размещены таким образом, что они отклоняют первый охлаждающий поток (28) в радиальном направлении.

3. Электрическая машина по п.1 или 2, причем ротор (11) возбуждается постоянными магнитами (21).

4. Электрическая машина по п.1, причем ротор (11) имеет короткозамыкающие стержни.

5. Электрическая машина по п.2, причем ротор (11) имеет короткозамыкающие стержни.

6. Электрическая машина по п.3, причем ротор (11) имеет короткозамыкающие стержни.

7. Электрическая машина по п.1, причем частичный пакет (Т1), содержащий первые охлаждающие каналы (18), по отношению к частичному пакету (Т2), содержащему вторые охлаждающие каналы (19), смещен в окружном направлении.

8. Электрическая машина по п.2, причем частичный пакет (Т1), содержащий первые охлаждающие каналы (18), по отношению к частичному пакету (Т2), содержащему вторые охлаждающие каналы (19), смещен в окружном направлении.

9. Электрическая машина по п.3, причем частичный пакет (Т1), содержащий первые охлаждающие каналы (18), по отношению к частичному пакету (Т2), содержащему вторые охлаждающие каналы (19), смещен в окружном направлении.

10. Электрическая машина по п.4, причем частичный пакет (Т1), содержащий первые охлаждающие каналы (18), по отношению к частичному пакету (Т2), содержащему вторые охлаждающие каналы (19), смещен в окружном направлении.

11. Электрическая машина по п.5, причем частичный пакет (Т1), содержащий первые охлаждающие каналы (18), по отношению к частичному пакету (Т2), содержащему вторые охлаждающие каналы (19), смещен в окружном направлении.

12. Электрическая машина по п.6, причем частичный пакет (Т1), содержащий первые охлаждающие каналы (18), по отношению к частичному пакету (Т2), содержащему вторые охлаждающие каналы (19), смещен в окружном направлении.

13. Способ охлаждения электрической машины с ротором (11) путем охлаждения ротора первым охлаждающим потоком (28), который вводится аксиально в ротор (11), причем
- первый охлаждающий поток (28) при вводе в ротор в направлении течения имеет среднюю линию, которая лежит на первой радиальной высоте относительно оси ротора,
- первый охлаждающий поток (28) в середине ротора в одном единственном радиальном охлаждающем пазу (16) со своей средней линией отклоняется на вторую радиальную высоту, отличающуюся от первой радиальной высоты, и
- второй охлаждающий поток (26) вводится аксиально в ротор (11) на второй радиальной высоте и в середине ротора направляется радиально наружу.



 

Похожие патенты:

Способ изготовления для постоянного магнита включает этапы: а) изготовление постоянного магнита (1), (b) разламывание постоянного магнита (1) для получения двух или более отдельных частей (13) и с) восстановление постоянного магнита (1) путем соединения поверхностей разлома смежных отдельных частей (13) вместе.

Изобретение относится к области электротехники и может быть использовано, в частности, в гибридных автомобилях и электромобилях, электромеханических, в том числе автоматических системах управления и т.д.

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам, и может быть использовано, в частности, в ветроэнергетических установках.

Изобретение относится к области электротехники, в частности к электрическим машинам, и касается особенностей конструктивного выполнения бесконтактных синхронных генераторов индукторного типа, работающих, преимущественно, на выпрямительную нагрузку и применяемых, например, в генераторных установках автотракторной техники.

Изобретение относится к электромагнитному устройству, выполненному с возможностью обратимой работы в качестве генератора и электродвигателя. Технический результат - обеспечение возможности регулирования и оптимизации относительно положения статора и ротора в целях получения максимального кпд и максимальной рабочей гибкости системы.

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения вентильных электрических машин. Изобретение может быть использовано как электрический двигатель и как генератор.

Изобретение относится к электротехнике и может быть использовано при создании однофазных асинхронных электродвигателей с пусковой обмоткой для электроинструмента и бытовой техники, имеющих существенную нагрузку на валу в момент пуска и работающих в условиях низкого напряжения питающей сети.

Изобретение относится к области электротехники, в частности к магнитным системам статоров электрических машин постоянного тока и магнитных приводов. Технический результат: повышение магнитного потока магнитной системы статора в заданных габаритах.

Настоящее изобретение относится к конструкции статоров для использования в электродвигателях. Технический результат изобретения заключается в обеспечении упрощения обмотки (намотки статора), что ведет к повышению надежности статора и электродвигателя в целом, а также к снижению затрат.

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам, и может быть использовано в ветроэнергетических установках.

Изобретение относится к электротехнике, к статору вращающейся электрической машины (1) с постоянным возбуждением. В середине первой группы (10a) катушек размещен средний зубец (8a), который имеет первую ширину MB среднего зубца. Статор (5) имеет вторую группу (10b) катушек. Первая и вторая группы катушек размещены в окружном направлении (U) непосредственно последовательно друг за другом. Между первой и второй группами катушек размещен первый краевой зубец (9), который имеет первую ширину RB краевого зубца. Первая ширина RB краевого зубца по существу равна RB=a·ZB, и первая ширина MB среднего зубца по существу равна MB=(2-a)·ZB. Коэффициент а больше чем 0 и меньше чем 1. Технический результат состоит в уменьшении моментов покоя и/или качания, возникающих во вращающейся электрической машине (1) с постоянным возбуждением. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники, а именно к однофазным асинхронным электродвигателям с пусковой обмоткой, и может быть использовано в электроинструменте и бытовой технике, например в холодильных компрессорах, имеющих существенную нагрузку на валу в момент пуска и нередко работающих в условиях пониженного напряжения питающей сети. Технический результат, достигаемый при использовании настоящего изобретения, состоит в повышении пускового электромагнитного момента однофазного асинхронного электродвигателя, что может обеспечить надежный пуск при наличии увеличенной нагрузки на валу. Указанный технический результат достигается тем, что в однофазном асинхронном электродвигателе, содержащем ротор и статор с пазами, в которых размещены основная и вспомогательная обмотки со смещением магнитных осей по отношению друг к другу на половину полюсного деления, согласно данному изобретению в статоре в области пазов, расположенных в зонах магнитных осей основной обмотки, выполнены сквозные немагнитные зазоры с воздушным заполнением или с немагнитными вставками. 4 ил.

Изобретение относится к области электротехники, а именно к двигателям и генераторам с постоянными магнитами, в частности к магнитоэлектрическим генераторам электроэнергии. Предлагаемая магнитоэлектрическая машина содержит неподвижный статор и подвижный ротор, выполненные из немагнитного материала, в корпусе статора выполнены «П»-образные шихтованные магнитопроводы с обмотками, ротор содержит рабочие элементы, выполненные в виде постоянных магнитов и расположенные в отверстиях в форме прорезей размерами l и l1, причем количество прорезей m равно количеству постоянных магнитов. При этом корпус статора магнитоэлектрической машины выполнен в виде полого цилиндра, на внутренней поверхности которого размещены не менее 3 групп «П»-образных шихтованных магнитопроводов с обмотками. Каждая группа содержит не менее 3 «П»-образных шихтованных магнитопроводов с обмотками, соединенных последовательно между собой и смещенных относительно друг друга на расстояние L. Ротор расположен внутри статора и состоит из полого цилиндра, в прорезях которого размещены постоянные магниты, смещенные относительно друг друга на угол α=120°, полюса постоянных магнитов выступают за пределы полого цилиндра на величину Δ: Δ=d-l′, где Δ - величина выступа полюсов магнитов за пределы полого цилиндра; d - диаметр окружности, определяемый внутренним диаметром статора и размерами магнитопровода; l′ - величина воздушного зазора между магнитопроводом и магнитом. Технический результат - повышение КПД магнитоэлектрической машины при одновременном уменьшении тягового усилия в осевом направлении и упрощение конструкции, а также обеспечение максимального значения коэффициента мощности при дисковом исполнении такой машины. 3 ил.

Изобретение относится к области электротехники, в частности к электрическим машинам, и касается выполнения синхронного микродвигателя (СД) с электромагнитным униполярным возбуждением. Технический результат - повышение надежности работы синхронного микродвигателя за счет создания на роторе постоянных полюсов электромагнитным путем без использования постоянных магнитов. Синхронный микродвигатель (СД) с электромагнитным униполярным возбуждением содержит статор, на котором расположены обычный сердечник с трехфазной сетевой обмоткой, создающей вращающееся магнитное поле статора, и обмотка возбуждения с постоянным током, создающая поток возбуждения, а также цилиндрический массивный ротор из железомедного сплава, разделенный немагнитной проводящей прослойкой на две магнитоизолированные части - два сердечника ротора. При этом согласно данному изобретению, с целью повышения надежности работы СД, осуществляется бесконтактное электромагнитное униполярное возбуждение, при котором два сердечника ротора образуют два постоянных магнитных полюса с неизменно разной полярностью, северный N и южный S, взаимодействие которых с вращающимся магнитным полем статора создает синхронизирующий момент, а наличие на роторе массивных сердечников обеспечивает ему асинхронный пуск без пусковой обмотки. 2 ил.

Изобретение относится к области электротехники, в частности к электрическим машинам, и касается особенностей конструктивного выполнения статоров вращающихся электрических машин, возбуждаемых постоянными магнитами. Предлагаемый статор имеет множество сегментов расположенных рядом друг с другом в окружном направлении статора. Согласно изобретению указанные сегменты имеют проходящие в продольном направлении статора зубцы и канавки, при этом сегменты, граничащие непосредственно друг с другом, соприкасаются на границе сегментов, а зубцы непосредственно граничащих друг с другом сегментов расположены так, что на границе сегментов зубец одного сегмента соприкасается с зубцом непосредственно граничащего с сегментом сегмента, причем сумма значений ширины обоих соприкасающихся на соответствующей границе сегментов зубцов больше единой ширины большинства зубцов, которые не расположены непосредственно на границе сегментов, или всех зубцов, которые не расположены непосредственно на границе сегментов, при этом меньшинство зубцов, которые не расположены непосредственно на границе указанных сегментов, имеют единую ширину, которая больше единой ширины большинства зубцов, которые не расположены непосредственно на границе сегментов. Технический результат, достигаемый при использовании настоящего изобретения, состоит в обеспечении возможности уменьшения возникающих в возбуждаемой постоянными магнитами вращающейся электрической машины фиксирующих и/или маятниковых моментов. 2 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к электротехнике. Технический результат состоит в повышении кпд устройства и обеспечении максимальной рабочей гибкости за счет регулировки и оптимизации положения статора и ротора. Для этого электромагнитное устройство имеет статор и ротор, вращающийся между обращенными к нему поверхностями статора и несущий множество магнитов, распределенных через одинаковые интервалы вдоль его периферии. Магниты расположены так, что они образуют на поверхностях ротора последовательность чередующихся противоположных полюсов, направленных к статору, при этом статор содержит два набора независимо поддерживаемых магнитных ярм, находящихся по обе стороны от ротора перед магнитами. Магнитные ярма имеют два ориентированных в осевом направлении плеча, торцевые поверхности которых, когда ротор находится в неподвижном состоянии, по меньшей мере, частично обращены к паре последовательных магнитов на одной и той же поверхности ротора. 24 з.п. ф-лы, 28 ил.

Изобретение относится к области электротехники, в частности к электрическим машинам, и касается особенностей конструктивного выполнения однофазных двигателей переменного тока. Предлагаемый однофазный двигатель содержит статор с образующими зубцы пазами для основной обмотки и пазами для вспомогательной обмотки. Основная обмотка выполнена с возможностью подключения к источнику питания переменного тока для создания основного магнитного поля с основной магнитной осью, вспомогательная обмотка выполнена с возможностью подключения к источнику питания через рабочий конденсатор для создания вспомогательного магнитного поля с вспомогательной магнитной осью, причем указанные основная и вспомогательная оси посредством векторного суммирования задают вращающийся вектор, представляющий результирующее магнитное поле с, по существу, постоянной магнитной индукцией при работе двигателя на номинальной нагрузке. При этом согласно данному изобретению группа зубцов, расположенная по вспомогательной магнитной оси, имеет более высокую магнитную проницаемость по сравнению с другими зубцами, причем наименьший зубец из зубцов, образующих пазы для основной обмотки, больше наибольшего зубца из зубцов, образующих пазы для дополнительной обмотки. Технический результат - обеспечение более высоких рабочих характеристик однофазного двигателя, в частности, при нагрузке, отличающейся от номинальной. 9 з.п. ф-лы, 3 ил.

Изобретение относится к области электротехники и электромашиностроения и может быть использовано в высокооборотных электрических машинах различного назначения. Предлагаемый ротор электрической машины содержит вал, магнитопровод, выполненный из равномерно чередующихся магнитных и немагнитных кольцевых пластин, постоянные магниты с полюсными наконечниками и охватывающую их по наружной поверхности цилиндрическую немагнитную обойму. Постоянные магниты с полюсными наконечниками установлены в окнах указанной обоймы. При этом согласно изобретению постоянные магниты выполнены таким образом, что центр радиуса наружной цилиндрической поверхности каждого из магнитов смещен вдоль продольной оси магнита в сторону наружной поверхности немагнитной обоймы с образованием плавного увеличения сечения обоймы над магнитом и полюсным наконечником от продольной оси магнита к его боковым сторонам. Механические напряжения, возникающие в роторе такой конструкции при работе электрической машины, распределяются равномерно по сечению указанной немагнитной обоймы над каждым постоянным магнитом с полюсным наконечником от продольной оси магнита к его боковым сторонам. Технический результат, достигаемый при использовании настоящего изобретения, заключается в повышении надежности и мощности электрической машины, содержащей предлагаемый ротор, за счет обеспечения возможности повышения ее частоты вращения. 1 ил.

Изобретение относится к области электротехники и машиностроения, в частности, к погружным электродвигателям для подъема пластовой жидкости. Предлагаемый погружной электродвигатель содержит статор с зубчатым магнитопроводом и размещенный внутри него ротор. На внутренней поверхности зубцов статора в аксиальном направлении выполнены равномерно расположенные по окружности пазы, число которых равно трем, либо кратное трем. Технический результат, достигаемый при использовании данного изобретения, состоит в обеспечении уменьшения реактивного момента, что способствует снижению вибрации и улучшению пусковых свойств погружных двигателей. 1 з. п. ф-лы, 8 ил., 2 табл.

Изобретение относится к области электротехники и ветроэнергетики. Предлагаемый статор ветроэлектроагрегата содержит магнитопроводы, систему возбуждения, стяжные элементы и обмотку, при этом согласно изобретению статор выполнен в виде П-образной скобы и пакета пластин, на которых установлены сердечники с рабочей катушкой и катушкой возбуждения, а средняя часть указанного пакета жестко связана со средней частью указанной П-образной скобы. Технический результат - высокая технологичность статора ветроэлектроагрегата, достигаемая за счет обеспечения возможности регулировать кривизну воздушного зазора, подстраивая данный статор к различным роторам путем прижатия середины пакета пластин к средней части указанной П-образной скобы, а также уменьшение затрат на изготовление статора путем уменьшения количества магнитопроводов и стяжных элементов статора ветроэлектроагрегата. 1 ил.
Наверх