Контактный резервуар для обработки воды озоном (варианты )



Контактный резервуар для обработки воды озоном (варианты )
Контактный резервуар для обработки воды озоном (варианты )

 


Владельцы патента RU 2516497:

Закрытое акционерное общество "Высокоэффективнные электрозарядные технологии и оборудование" (ЗАО "ВЭТО") (RU)

Изобретение относится к водоснабжению, а именно к очистке воды из поверхностных источников путем обработки ее озоном и может быть использовано, в частности, для обеззараживания питьевой воды в системах водоснабжения городов и населенных пунктов. Контактный резервуар включает: напорный отсек с системой подачи воды, сливной отсек с системой слива воды потребителю, а также систему подачи озоно-газовой смеси, с системой ее отведения и деструкции остаточного озона, газодиспергирующие элементы, установленные в нижней части контактного резервуара и снабженные узлами закрутки водного потока в виде центробежных форсунок, входы которых сообщены с системой подачи воды, обеспечивающей необходимый перепад давления воды на форсунках, а выходные сопла в виде круговой щели размещены над перфорированной поверхностью газодиспергирующих элементов и параллельны ей. Сопла форсунок обеспечивают смыв плоской струей воды зарождающихся пузырьков озоно-газовой смеси уменьшенного размера и повышение степени поглощения озона водой. Системы подачи необработанной воды в сливной отсек выполнены в виде установленных вверху контактного резервуара, под уровень горизонта воды, параллельно друг другу заглушенных с одного торца перфорированных труб, открытые торцы которых сообщены либо с напорным, либо со сливным отсеком, а у дна ниже диспергирующих элементов, в виде поперечной перфорированной перегородки, полость под которой сообщена либо с напорным либо со сливным отсеком, входы центробежных форсунок сообщены с трубами, через открытые торцы которых вода поступает из напорного отсека. При этом газодиспергирующие элементы выполнены обычной дисковой формы и равномерно размещены по поперечному сечению контактного резервуара с образованием проходов для пропуска воды и обслуживания. Предлагаемый контактный резервуар выполнен в двух вариантах. В первом варианте (фиг.№1) открытые торцы перфорированных труб в верхней части контактного резервуара сообщены с напорным отсеком, а полость под перфорированной перегородкой сообщена со сливным отсеком. Вариант обеспечивает противоток воды и озоно-газовой смеси. Во втором варианте (фиг.№2) открытые торцы перфорированных труб в верхней части контактного резервуара сообщены со сливным отсеком, а полость под перфорированной перегородкой сообщена с напорным отсеком контактного резервуара. Вариант обеспечивает спутные потоки воды и озоно-газовой смеси. В обоих вариантах входы центробежных форсунок, установленных на газодиспергирующих элементах, сообщены с напорным отсеком контактного резервуара. Технический результат: упрощение конструкции газодиспергирующих элементов, снижение стоимости их изготовления, монтажа и обслуживания, обеспечивание возможности смыва пузырьков озоно-газовой смеси обрабатываемой водой также в контактном резервуаре с противотоком воды и озоно-газовой смеси. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к установкам для обработки воды озоном и может быть использовано, в частности, для обеззараживания питьевой воды в системах водоснабжения городов и населенных пунктов, для дезинфекции оборотной воды бассейнов.

Из уровня техники известна, установка для обработки воды озоном, содержащая генератор озоно-газовой смеси, контактный резервуар с системой подачи воды и системой слива потребителю, в придонной части которого установлены газо-диспергирующие элементы, соединенные трубопроводом с генератором озоно-газовой смеси. Газо-диспергирующие элементы выполнены в виде пустотелых двухслойных панелей с равномерно перфорированным верхним слоем, состыкованных между собой без зазоров с образованием междудонного пространства между нижним слоем панелей и днищем контактного резервуара. Для прохода воды в панелях предусмотрены гильзы. Газо-диспергирующие элементы снабжены узлами закрутки водного потока в виде центробежных форсунок выходные сопла, которых выполнены как круговые щели, которые размещены над поверхностью перфорированного слоя панелей и параллельны ему, а входные отверстия форсунок сообщены с междудонным пространством и системой подачи воды в контактный резервуар (патент РФ №2374184 C02F 1/00, опубл. 2007).

Эта установка является наиболее близким аналогом предлагаемого технического решения.

К недостаткам данной установки относится техническая сложность создания беззазорных стыков между поворотными пустотелыми панелями, устанавливаемыми на всей площади пола контактного резервуара площадью в 70…100 м2 и последующей эксплуатации оборудования, в том числе проведения регламентных работ, включающих санобработку контактного резервуара. Наличие реальных зазоров между панелями, намного превышающих суммарную площадь проходного сечения используемых щелевых форсунок, требует существенного увеличения дополнительного напора воды в междудонном пространстве для эффективного функционирования щелевых форсунок.

При перепаде давления воды на форсунках ~0,05 кгс/см2 нагрузка снизу на полые панели с учетом архимедовой выталкивающей силы составляет около 45…50 т. Возникают в связи с этим дополнительные проблемы с обеспечением прочности полых панелей и узлов стыка между ними.

Весьма существенный недостаток состоит в том, что это устройство не может быть использовано в контактном резервуаре с противотоком воды и озоно-газовой смеси. В нем осуществимы только спутные потоки воды и озоно-газовой смеси с направлением «снизу-вверх».

Задачей предлагаемого технического решения является обеспечение возможности использования газо-диспергирующих элементов, снабженных центробежными форсунками с соплами в виде круговых щелей, для уменьшения размера диспергируемых пузырьков озоно-газовой смеси, в контактных резервуарах с противотоком воды и озоно-газовой смеси, а также упрощение конструкции газо-диспергирующих элементов, стоимости их изготовления, монтажа и обслуживания.

Решение указанной задачи достигается тем, что в контактном резервуаре для обработки воды озоном, включающем: напорный отсек с системой подачи воды, сливной отсек с системой слива воды потребителю, а также оборудованный системой подачи озоно-газовой смеси, системой ее отведения и деструкции остаточного озона, газо-диспергирующие элементы, установленные в нижней части контактного резервуара и снабженные узлами закрутки водного потока в виде центробежных форсунок, выходы которых сообщены с системой подачи воды, а выходные сопла в виде круговой щели размещены над перфорированной поверхностью газо-диспергирующих элементов и параллельны ей в верхней части контактного резервуара под уровень горизонта воды параллельно друг к другу установлены перфорированные заглушенные с одного торца трубы, а в придонной части резервуара ниже газо-диспергирующих элементов установлена поперечная перфорированная перегородка.

В контактном резервуаре 1-го варианта с противотоком воды и озоно-газовой смеси (см. Фиг.1) открытые торцы перфорированных труб - 4 сообщены с напорным отсеком - 2, полость под перфорированным полом со сливным отсеком - 3, а входные отверстия щелевых форсунок - 8 с внутренней полостью перфорированных труб - 4 и напорным отсеком - 2.

В контактном резервуаре 2-го варианта со спутными потоками воды и озоно-газовой смеси (см. Фиг.2) открытые торцы перфорированных труб - 4 совмещены со сливным отсеком - 3, полость под перфорированной перегородкой - 5 с напорным отсеком - 2, а входные отверстия щелевых форсунок - 8 с полостью под перфорированной перегородкой - 5 и напорным отсеком - 2.

В обоих вариантах газо-диспергирующие элементы - 6 установлены равномерно на удалении друг от друга с образованием свободных проходов для потока воды и зоны обслуживания при санобработке контактного резервуара.

Устройство предлагаемых вариантов контактного резервуара поясняется схемами.

На Фиг.1. изображена схема 1-го варианта контактного резервуара с противоточным направлением движения воды и озоно-газовой смеси.

На Фиг.2 изображена схема 2-го варианта контактного резервуара со спутными потоками воды и озоно-газовой смеси с направлением «снизу-вверх».

Цифрами на чертежах обозначены контактный резервуар - 1, напорный отсек - 2, сливной отсек - 3, перфорированная труба - 4, перфорированная перегородка - 5, газо-диспергирующие элементы - 6, трубопроводы подачи озоно-газовой смеси - 7, центробежные форсунки - 8, трубопроводы подачи воды на вход центробежных форсунок - 9, отверстия в боковой стенке контактного резервуара - 10, трубопровод отвода отработанной озоно-газовой смеси - 11.

Стрелками полыми внутри показано направление движения озоно-газовой смеси в контактном резервуаре и в трубопроводах подачи озоно-газовой смеси, сплошными черными направление движения воды в контактном резервуаре и в трубопроводах подачи воды на вход центробежных форсунок.

Заявленный контактный резервуар 1-го варианта с противотоком воды и озоно-газовой смеси работает следующим образом.

Вода поступает (см. Фиг.1) в напорный отсек - 2, поднимается под действием давления подачи до верхнего уровня в напорном отсеке, превышающем уровень воды в контактном резервуаре - 1, и через открытые торцы в перфорированных трубах - 4, установленных под уровень воды в контактном резервуаре, поступает внутрь труб - 4, заполняет их, а затем под давлением через отверстия перфорации поступает в контактный резервуар, равномерно распределяясь по его поперечному сечению. Затем вода направляется вниз и по пути насыщается озоном из пузырьков восходящего потока озоно-газовой смеси и далее через отверстия перфорации поперечной перегородки - 5, установленной в нижней части контактного резервуара, поступает в пространство под перегородкой - 5, заполняет его и через отверстия в боковой стенке контактного резервуара - 10 поступает в сбивной отсек - 3 и далее потребителю.

Некоторая часть озонируемой воды под давлением в напорном отсеке - 2 поступает на вход центробежных форсунок - 8 по трубопроводам - 9, сообщенным с полостью перфорированных труб - 4, установленных в верхней части контактного резервуара. При воздействии тангенциально направленного потока воды из центробежных форсунок - 8 размеры диспергируемых пузырьков озоно-газовой смеси уменьшаются, что увеличивает степень поглощения озона водой.

Озоно-газовая смесь с остаточным озоном по трубопроводу - 11 с помощью вытяжного вентилятора отводится на деструктор остаточного озона и выбрасывается затем в окружающую атмосферу.

Заявленный контактный резервуар 2-го варианта со спутными потоками воды и озоно-газовой смеси работает следующим образом.

Вода поступает (см. Фиг.2) в напорный отсек - 2 и поднимается под давлением подачи до верхнего уровня, превышающего уровень воды в контактном резервуаре - 1, и через отверстия в боковой стенке контактного резервуара - 10 поступает в полость под перфорированной перегородкой - 5, установленной в нижней части контактного резервуара, а затем через отверстия перфорированной перегородки - 5, установленной в нижней части контактного резервуара, поступает в контактный резервуар, равномерно распределяясь по его поперечному сечению, направляется вверх и по пути насыщается озоном из спутного потока пузырьков озоно-газовой смеси и далее через отверстия перфорированных труб - 4, установленных в верхней части контактного резервуара, поступает внутрь труб и через открытые торцы поступает в сливной отсек - 3 и далее потребителю.

Озоно-газовая смесь с остаточным озоном по трубопроводу - 11 с помощью вытяжного вентилятора отводится на деструктор остаточного озона и выбрасывается затем в окружающую атмосферу.

Некоторая часть озонируемой воды под давлением поступает на вход центробежных форсунок - 8 по трубопроводам - 9, сообщенным с полостью под перфорированной перегородкой - 5, установленной в нижней части контактного резервуара. При воздействии тангенциально направленного потока воды из центробежных форсунок - 8 размеры диспергируемых пузырьков озоно-газовой смеси уменьшаются, что увеличивает степень поглощения озона водой.

Представленные варианты конструктивного решения контактного резервуара обеспечивают противоточное и спутное движение воды и озоно-газовой смеси в контактном резервуаре, упрощают конструкцию газо-диспергирующих элементов, снабженных щелевыми центробежными форсунками, удешевляют стоимость монтажных работ и создают удобства для санобработки контактного резервуара, повышают эффективность использования произведенного озона.

1. Контактный резервуар для обработки воды озоном, включающий напорный отсек с системой подачи воды, сливной отсек с системой слива воды потребителю, а также оборудованный системой подачи озоно-газовой смеси, системой ее отведения и деструкции остаточного озона, газо-диспергирующие элементы, установленные в нижней части контактного резервуара и снабженные узлами закрутки водного потока в виде центробежных форсунок, входы которых сообщены с системой подачи воды, а выходные сопла в виде круговой щели размещены над перфорированной поверхностью газо-диспергирующих элементов и параллельны ей, отличающийся тем, что дополнительно в верхней части контактного резервуара под уровень горизонта воды установлены параллельно друг к другу заглушенные с одного торца перфорированные трубы, а в придонной части ниже газо-диспергирующих элементов установлена поперечная перфорированная перегородка, при этом открытые торцы перфорированных труб, установленных в верхней части, сообщены со сливным отсеком, полость под перфорированной перегородкой сообщена с напорным отсеком, а входы щелевых форсунок с внутренней полостью под перфорированной перегородкой и с напорным отсеком, газо-диспергирующие элементы установлены на удалении друг от друга с образованием свободных проходов для потока воды и зон обслуживания при санобработке контактного резервуара.

2. Контактный резервуар для обработки воды озоном, включающий напорный отсек с системой подачи воды, сливной отсек с системой слива воды потребителю, а также оборудованный системой подачи озоно-газовой смеси, системой ее отведения и деструкции остаточного озона, газо-диспергирующие элементы, установленные в нижней части контактного резервуара и снабженные узлами закрутки водного потока в виде центробежных форсунок, входы которых сообщены с системой подачи воды, а выходные сопла в виде круговой щели размещены над перфорированной поверхностью газо-диспергирующих элементов и параллельны ей, отличающийся тем, что дополнительно в верхней части контактного резервуара под уровень горизонта воды установлены параллельно друг к другу заглушенные с одного торца перфорированные трубы, а в придонной части ниже газо-диспергирующих элементов установлена поперечная перфорированная перегородка, при этом открытые торцы перфорированных труб, установленных в верхней части контактного резервуара, сообщены с напорным отсеком, полость под перфорированной перегородкой сообщена со сливным отсеком, а входы щелевых форсунок сообщены с полостями перфорированных труб и с напорным отсеком, газо-диспергирующие элементы установлены на удалении друг от друга с образованием свободных проходов для потока воды и зон обслуживания при санобработке контактного резервуара.



 

Похожие патенты:
Группа изобретений относится к области биохимии, экологии, охране окружающей среды. Предложен препарат для очистки воды и почвы от нефтяных загрязнений, содержащий микроорганизмы - деструкторы нефти, сорбент, криопротектор - глицерин, микроудобрения - азотнокислый натрий 0,5% и фосфорнокислый калий 0,5%.

Изобретение относится к устройствам для электрохимической обработки водных растворов и может быть использовано в процессах электрохимического получения различных химических продуктов путем электролиза водных растворов, в частности смеси оксидантов при электролизе водного раствора хлоридов щелочных или щелочноземельных металлов.

Изобретение может быть использовано в энергетике, атомной промышленности, микроэлектронике, фармацевтике и других областях промышленности, где требуется вода высокой степени обессоливания.

Изобретение относится к способу работы водоумягчительной установки. Водоумягчительная установка содержит автоматически регулируемое смесительное устройство для смешивания потока V(t)verschnitt смешанной воды из первого умягченного частичного потока V(t)teil1weich и второго содержащего исходную воду частичного потока V(t)teil2roh, и электронное управляющее устройство, которое подстраивает с помощью одной или нескольких определенных экспериментально моментальных измерительных величин положение регулирования смесительного устройства так, что жесткость воды смешанного потока V(t)verschnitt устанавливается на заданное номинальное значение (SW), при этом управляющее устройство в одной или нескольких заданных рабочих ситуациях игнорирует по меньшей мере одно из одной или нескольких моментальных измерительных величин для подстройки положения регулирования смесительного устройства и вместо этого исходит из последней значащей соответствующей измерительной величины перед возникновением заданной рабочей ситуации или находящегося в памяти электронного управляющего устройства стандартного значения для соответствующей измерительной величины.

Изобретение относится к устройствам для электрохимической обработки водных растворов. Установка содержит электрохимический реактор, выполненный из проточных электрохимических снабженных корпусом модульных ячеек, каждая из которых содержит один или несколько вертикальных катодов и три или более анода.

Изобретение относится к установкам для очистки воды. Блочно-модульная установка для очистки и подачи воды содержит блок предварительной фильтрации 1, блок основной очистки 2, блок обеззараживания и блок управления.

Изобретение относится к обработке заводских сточных вод. Способ обработки заводских сточных вод, содержащих органические соединения, включает стадию предварительной обработки, на которой сточные воды 11, содержащие органические соединения, подают в бескислородный резервуар 1.

Группа изобретений может быть использована на стадии водоподготовки в животноводстве, растениеводстве, а также в фармакологической и пищевой промышленности. Обработку воды осуществляют путем гидродинамической кавитации - ГДК при реализации режима объемной турбулизации потока, возникающего при пропускании воды через роторный узел устройства для ГДК.

Изобретение относится к очистке воды с помощью мембранного модуля, мембранного блока, выполненного путем установки мембранных модулей одного на другой. Мембранный модуль содержит корпус и мембранные элементы, расположенные в указанном корпусе, причем площадь пропускного сечения проточного канала корпуса, через который вытекает очищаемая вода, меньше, чем площадь пропускного сечения проточного канала корпуса, через который очищаемая вода втекает, при этом каждый мембранный элемент представляет собой плоскую мембрану, и в корпусе расположен элемент для направления потока воды, предназначенный для уменьшения площади пропускного сечения проточного канала корпуса, через который вытекает очищаемая вода, причем указанный элемент для направления воды расположен таким образом, что его поверхность проходит параллельно поверхности мембраны.

(57) Группа изобретений относится к технологии минерализации жидкости, преимущественно питьевой воды, и может входить в системы очистки воды, в которых используются обратноосмотические мембраны.

Изобретение может быть использовано в химической, нефтехимической и нефтеперерабатывающей отраслях промышленности для очистки сточных вод от синтетических анионоактивных поверхностно-активных веществ, таких как карбоксилаты, алкилсульфаты, алкилсульфонаты. Для осуществления способа проводят обработку сточных вод титано-алюминиевым коагулянтом. Полученный гравитационный отстой образующейся взвеси отделяют от очищенной воды. В качестве источника титано-алюминиевого коагулянта используют сточную воду со стадии водной отмывки изопренового каучука от катализатора на основе соединений титана и алюминия с соотношением по весу Ti/Al не менее 0,3. Доза коагулянта в расчете на ионы титана и алюминия составляет не менее 50 мг/л обрабатываемой воды, а выдержку смеси сточных вод с коагулянтом проводят при pH 4,5-9,0 и температуре 30-45°C. Способ обеспечивает эффективную несложную экономичную технологию очистки сточных вод от синтетических анионных поверхностно-активных веществ до качества, позволяющего отправлять их на биологическую очистку. 2 пр.

Изобретение относится к получению умягченной воды для нагнетания в пласт. Способ включает (а) выработку умягченной воды путем (i) подачи исходной воды, имеющей общее содержание растворенных твердых веществ вплоть до 15000 мг/л и содержание многовалентных катионов более 40 мг/л, в фильтр, содержащий слой катионообменной смолы в моновалентной катионной форме, (ii) пропуска исходной воды через слой катионообменной смолы, (iii) вывода из фильтра умягченной нагнетаемой воды, имеющей содержание многовалентных катионов вплоть до 40 мг/л; (б) регенерацию катионообменной смолы путем (i) подачи регенерационного рассола в фильтр, причем регенерационный рассол представляет собой природную воду с высоким солесодержанием, имеющую концентрацию моновалентных катионов и многовалентных катионов, такую, что предел умягчения для исходной воды составляет вплоть до 40 мг/л многовалентных катионов, где предел умягчения для исходной воды определяется как коэффициент умягчения, умноженный на концентрацию многовалентных катионов в исходной воде (мг/л), и где коэффициент умягчения определяется как: (молярная концентрация моновалентных катионов в исходной воде)2/(молярная концентрация многовалентных катионов в исходной воде) : (молярная концентрация моновалентных катионов в регенерационном рассоле)2/(молярная концентрация многовалентных катионов в регенерационном рассоле). Технический результат - интенсификация добычи углеводородов из пласта. 2 н. и 22 з.п. ф-лы, 3 ил., 1 табл., 1 пр.
Изобретение относится к средствам очистки окружающей среды, а именно к средствам очистки поверхности акватории от загрязнения нефтью и нефтепродуктами, и может быть использовано при попадании в водную среду нефти и нефтепродуктов. Установка содержит соединенный с горизонтально расположенным валом полый барабан с отверстиями на его поверхности и с центральной полой герметичной емкостью диаметром более четверти диаметра барабана. Свободный от емкости объем барабана заполнен гранулами насадки, выполненной из инертного к действию нефтепродуктов материала с плотностью менее 1 г/см3. Конструкция установки обеспечивает погружение барабана, по меньшей мере, на половину его диаметра в очищаемую воду. Установка выполнена с возможностью вращения барабана за счет энергии волн акватории. Технический результат заключается в улучшении экологической обстановки в зоне очистки поверхности водоема от загрязнения нефтью и нефтепродуктами при сохранении природного биоценоза водоема. 5 з.п. ф-лы.

Изобретение относится к очистным сооружениям и может быть использовано на моечных станциях автотранспорта. Флотационно-фильтрационная установка содержит заборный фильтр 1, всасывающий трубопровод 2, обратный клапан 8, насосный агрегат 3, эжектор 4, соединенный с байпасным трубопроводом 5 и установленный на входе насосного агрегата 3, камеру флотации 22 с фильтром 29 и слоем фильтрующей загрузки 30. На входе в эжектор 4 установлена защитная сетка. Эжектор 4 связан с двухступенчатым сатуратором 15, 16. Вторая ступень сатуратора через обратный клапан связана с распределительным коллектором 21 через сопла 20, расположенные в нижней части камеры флотации 22, содержащей скребковый механизм 25, лоток 26 и переливную трубку, связанную с верхней частью фильтра 29, имеющего слой адсорбирующей фильтрующей загрузки, которая удерживается поддерживающей 31 и прижимной 32 рамками. Адсорбент по форме выполнен в виде цилиндрического кольца, к боковой поверхности которого оппозитно друг другу прикреплены две полусферические поверхности так, что диаметральные плоскости полусфер совпадают соответственно с верхним и нижним основаниями цилиндрического кольца, а вершины полусферических поверхностей направлены навстречу друг другу. Изобретение позволяет повысить эффективность очистки сточных вод до степени, позволяющей использовать ее многократно. 1 з.п. ф-лы, 2 ил.

Изобретение относится к способам очистки проточной воды от загрязнителей, содержащихся в воде в низкой концентрации, и может быть использовано для очистки рек и сточных вод от загрязнений антропогенного и природного происхождения, для очистки воды на водозаборах в системах коммунального водоснабжения и в бытовых системах водоочистки. Способ включает контактирование ферромагнитного углеродного сорбента с водой и извлечение насыщенного загрязнителем сорбента с помощью магнитной сепарации, причем в качестве ферромагнитного углеродного сорбента используют железо-углеродный композит, содержащий 30-60 масс.% железа, который измельчают в присутствии поверхностно-активного вещества до размера частиц 0,1-1 мкм, суспендируют полученную массу в воде путем обработки ультразвуком в режиме кавитации до получения агрегативно- и седиментационно-устойчивой суспензии, содержащей 10-30 масс.% композита, которую вводят в очищаемую воду в таком количестве, чтобы массовая концентрация композита в очищаемой воде превосходила массовую концентрацию загрязнителя в 2-40 раз. Технический результат - повышение степени очистки воды. 2 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к устройствам для доочистки питьевой воды. Водоочиститель на основе получения талой питьевой воды включает зоны замораживания воды, вытеснения примесей из фронта льда и концентрации примесей в виде рассола, перехода воды из твердого состояния в жидкое, которые расположены последовательно в одном продольном сосуде 1. В зоне замораживания установлена кольцевая морозильная камера 2, за которой смонтировано приводное устройство 4 продольного перемещения замороженного стержня воды 3. В зоне вытеснения примесей по центру замороженного стержня 3 размещено разобщающее устройство 6, за которым расположен кольцевой нагревательный элемент 11. Приводное устройство 4 оборудовано дополнительными усилителями перемещения замороженного стержня 3, выполненными в виде приводных шнеков 15, расположенных в продольном сосуде 1 и проходящих через зоны замораживания воды, вытеснения примесей и перехода воды из твердого состояния в жидкое. Положение приводных шнеков 15 относительно продольного сосуда обеспечивается подшипниками скольжения 16, установленными вне продольного сосуда 1. Изобретение позволяет повысить производительность и долговечность водоочистителя. 1 з.п. ф-лы, 1 ил.

Изобретения могут быть использованы для очистки сточных вод, образующихся в процессе получения ароматических карбоновых кислот, от соединений тяжелых металлов. Для осуществления способа сточные воды приводят в контакт с частицами хелатообразующей смолы, имеющими коэффициент однородности 1,4 или менее, при этом pH сточных вод составляет 5,1-5,9 и скорость потока сточных вод составляет 5-14 м/час. Величина снижения адсорбционной емкости хелатообразующей смолы по Cu составляет 11% в месяц или менее. Регенерацию хелатообразующей смолы проводят водным раствором бромистого водорода с концентрацией от 7,1% до 19% по массе. В предпочтительных вариантах осуществления способа температура очищаемых сточных вод составляет от 51°C до 59°C, адсорбционная емкость хелатообразующей смолы по Cu составляет 0,5 ммоль/мл или более, а жидкость регенерации повторно направляют в систему реакции окисления при получении ароматических карбоновых кислот. Изобретения обеспечивают эффективное извлечение ионов тяжелых металлов при их низких концентрациях в очищаемых сточных водах. 3 н. и 8 з.п. ф-лы, 3 ил., 1 табл., 4 пр.

Изобретение относится к способу обезвреживания нефтешламов, может найти применение в технологии комплексной переработки нефтезагрязненных отходов и почвогрунтов, в частности, образующихся в результате деятельности предприятий магистральных нефтепроводов. Способ обезвреживания нефтешламов включает получение обезвреживающей композиции путем извлечения из нефтешлама тяжелой фракции, содержащей высокомолекулярные углеводороды, перемешивания указанной фракции с реагентом на основе оксидов щелочноземельных металлов, проведения экзотермической реакции гидратации с получением гранул, содержащих высокомолекулярные углеводороды, и с использованием указанных гранул для фильтрации водной фракции нефтешлама при последующем их обезвреживании. Гранулы обезвреживающей композиции получают с содержанием высокомолекулярных углеводородов в количестве не менее 15-25 мас.%, для фильтрации водной фракции нефтешлама указанные гранулы используют в смеси с керамзитом, затем загрязненные после фильтрации гранулы в смеси с керамзитом и оставшимися фракциями нефтешлама перемешивают с реагентом на основе оксидов щелочноземельных металлов, проводят реакцию гидратации и карбонизации с получением обезвреженного продукта. Технический результат - повышение производительности процесса фильтрации на 15-20%, обеспечивается повышенная несущая способность конечного продукта обезвреживания при использовании его в качестве строительного материала, коэффициент конечной емкости сорбента составляет 1,2-1,4. 7 з.п. ф-лы,1 табл.,1 пр.

Изобретение может быть использовано на предприятиях цветной металлургии и золотодобывающей промышленности для очистки цианидсодержащих пульп и сточных вод, образующихся при переработке руд и концентратов и содержащих в твердой фазе минералы. Для осуществления способа цианидсодержащие пульпы обрабатывают при перемешивании «активным» хлором, который периодически или непрерывно вводят в зону реакции. При этом «активный» хлор подают таким образом, чтобы его концентрация в жидкой фазе пульпы не превышала 10 мг/л, а окислительно-восстановительный потенциал составлял 50-200 мВ, и в этих условиях пульпу выдерживают в течение 0,5-3 часов. Очистку проводят в нетермостатированных реакторах при одновременной постоянной и/или импульсной подаче «активного» хлора и щелочного агента. Способ не требует нагрева и/или термостатирования и обеспечивает глубокое удаление цианидов, тиоцианатов и тяжелых металлов при минимальном расходе реагентов. 2 пр.

Способ ликвидации сточных вод при газогидродинамических исследованиях скважины и система для его осуществления относится к горной промышленности, а именно к технологическому оборудованию для утилизации отходов бурения газовых скважин при их испытаниях. Техническим результатом является повышение эффективности ликвидации сточных вод и повышение экологической защиты окружающей среды, а также снижение себестоимости. Система для осуществления способа содержит емкость, в виде мерника, в котором в процессе газогидродинамических исследований скважины накапливают сточные воды. Емкость связана с линией приема сточных вод, выполненной в виде системы трубопроводов, оборудованной обратным клапаном. При этом клапан связан с насосом. Линия приема сточных вод оснащена также предохранительным клапаном, который посредством трубопровода связан с резервным мерником. Линия приема сточных вод связана с одним концом змеевика, жестко закрепленным в горизонтально расположенном цилиндрическом корпусе. Стенки горизонтально расположенного цилиндрического корпуса в его верхней части и нижней части выполнены с отверстиями. Змеевик вторым концом связан с форсункой, расположенной в зоне пламени факела газофакельной установки. Оголовок газофакельной установки закрепляется в торце цилиндрического корпуса. В емкости первоначально накапливали сточные воды, после чего насосом их подавали под давлением по линии приема в змеевик, где производили распыление на мельчайшие фракции и обеспечивали их направление к распылительной форсунке. При этом форсунку помещали в зону пламени факела газофакельной установки. 2 н. и 1 з.п. ф-лы, 1 ил.
Наверх