Детектор излучения

Изобретение относится в целом к детекторам излучения. В частности, изобретение относится к гибкому несущему механизму для элементов детектора излучения и к способу обслуживания детектора излучения. Детектор (20) излучения содержит инструментальный кожух (24), имеющий по существу цилиндрическую трубчатую форму, датчик (42) излучения, предназначенный для генерирования сигнала в ответ на обнаружение излучения и выполненный с возможностью размещения в инструментальном кожухе (24), процессор (44) сигнала, выполненный с возможностью функционального соединения с датчиком (42) излучения и предназначенный для получения сигнала от датчика излучения и генерирования электрического сигнала как функции принятого сигнала, при этом процессор сигнала выполнен с возможностью размещения в инструментальном кожухе (24), гибкий рукав (22), предназначенный для удержания датчика (42) излучения или процессора (44) сигнала или их обоих в инструментальном кожухе (24) и содержащий по существу цилиндрическую часть (60) и многоугольную часть (62), проходящую коаксиально цилиндрической части с обеспечением зацепления и удерживающего взаимодействия с этой частью. Технический результат - уменьшение повреждений инструментального кожуха при установке или извлечении детектора. 7 з.п. ф-лы, 7 ил.

 

Изобретение относится в целом к детекторам излучения. В частности, изобретение относится к гибкому несущему механизму для элементов детектора излучения и к способу обслуживания детектора излучения.

Детекторы излучения известны в индустрии бурения скважин для регистрации и измерения во время бурения. Когда детектор излучения помещен в регистрирующее приспособление бурового снаряда, используемого для бурения нефтяных, газовых и водоносных скважин, регистрирующее приспособление идентифицирует, определяет местоположение и дифференцирует геологическую породу вдоль ствола скважины. Буровые снаряды и регистрирующие приспособления для нефтяных скважин часто подвержены воздействию агрессивной рабочей среды, включая температуры в диапазоне от 175 градусов С до 200 градусов С и давления в диапазоне от 680 атм (10000 фунт силы/кв.дюйм) до 1360 атм (20000 фунт силы/кв.дюйм) вместе с сильными ударами и вибрацией.

Известный детектор излучения содержит сцинтиллятор, соединенный с трубкой фотоумножителя. Излучение, такое как гамма-лучи, излученные геологической породой вблизи скважины, преобразуется в свет сцинтиллятором и пропускается в трубку фотоумножителя. Трубка фотоумножителя преобразует свет в усиленный электрический сигнал. Усиленный электрический сигнал затем измеряется и используется в отслеживающей электронике как функция излучения, зарегистрированного сцинтиллятором.

Элементы детектора излучения представляют собой чувствительные части оборудования. Элементы обычно устанавливают в кожухе, чтобы они могли противостоять агрессивной рабочей среде, воздействию которой они подвержены. Элементы детектора излучения также нуждаются в периодической индивидуальной проверке, чтобы убедиться, что они обеспечивают правильную и воспроизводимую информацию в течение своего срока службы. Однако было обнаружено, что обычные известные системы установки не предоставляют возможность быть легко разобранными, а их элементы легко отсоединенными. Также было обнаружено, что разборка может повредить элементы детектора излучения, кожух детектора излучения, в котором удерживается детектор излучения, и саму систему установки.

Таким образом, определенным преимуществом является обеспечение детектора излучения, который выполнен с возможностью противостояния агрессивной рабочей среде, воздействию которой он подвержен, одновременно обеспечивая возможность легкой разборки с целью инспекции и ремонта с минимальным повреждением элементов детектора излучения или вовсе без такого повреждения.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Одним аспектом изобретения является детектор излучения, содержащий инструментальный кожух. Инструментальный кожух имеет по существу цилиндрическую трубчатую форму. Детектор излучения генерирует сигнал в ответ на обнаружение излучения. Детектор излучения выполнен с возможностью размещения в инструментальном кожухе. Процессор сигнала выполнен с возможностью функционального соединения с детектором излучения. Процессор сигнала получает сигнал от детектора излучения и генерирует электрический сигнал как функцию принятого сигнала. Процессор сигнала выполнен с возможностью размещения в инструментальном кожухе. Гибкий рукав удерживает детектор излучения или процессор сигнала или их обоих в инструментальном кожухе. Гибкий рукав содержит по существу цилиндрическую часть и многоугольную часть, проходящую коаксиально цилиндрической части с обеспечением зацепления и удерживающего взаимодействия с этой частью.

Другой аспект изобретения состоит в детекторе излучения, содержащем инструментальный кожух. Инструментальный кожух имеет по существу цилиндрическую трубчатую форму. Сцинциляционный датчик излучения содержит кристаллический материал для генерации светового сигнала как функции обнаруженного излучения. Сцинциляционный датчик излучения выполнен с возможностью размещения в инструментальном кожухе. Трубка фотоумножителя выполнена с возможностью функционального соединения со сцинциляционным датчиком излучения. Трубка фотоумножителя получает световой сигнал от сцинциляционного датчика излучения и генерирует электрический сигнал как функцию принятого светового сигнала. Трубка фотоумножителя выполнена с возможностью размещения в инструментальном кожухе. Гибкий рукав удерживает синциляционный датчик излучения и трубку фотоумножителя в инструментальном кожухе. Гибкий рукав содержит по существу цилиндрическую часть и коаксиально проходящую многоугольную часть для зацепления и удерживающего взаимодействия с цилиндрической частью.

Еще один аспект изобретения заключается в способе инспектирования и обслуживания детектора излучения, имеющего гибкий рукав, удерживающий сцинциляционный датчик излучения и трубку фотоумножителя в инструментальном кожухе. Гибкий рукав содержит по существу цилиндрическую часть, расположенную радиально внутри относительно более короткой многоугольной части. Способ включает этапы удаления гибкого рукава, сцинциляционного датчика излучения и трубки фотоумножителя из инструментального кожуха без повреждения инструментального кожуха. Сцинциляционный датчик излучения и трубку фотоумножителя удаляют изнутри гибкого рукава. Сцинциляционный датчик излучения и трубку фотоумножителя инспектируют на пригодность к эксплуатации. Либо сцинциляционный датчик излучения, либо трубку фотоумножителя заменяют, если во время этапа инспекции определяют, что какой-либо из вышеперечисленных элементов непригоден к эксплуатации. Сцинциляционный датчик излучения и трубку фотоумножителя заменяют внутри гибкого рукава. Гибкий рукав, пригодный к эксплуатации датчик излучения и пригодную к эксплуатации трубку фотоумножителя устанавливают в инструментальный кожух без нанесения повреждения инструментальному кожуху.

ОПИСАНИЕ ЧЕРТЕЖЕЙ

Эти и другие признаки, аспекты и преимущества изобретения будут лучше понятны из последующего подробного описания со ссылкой на приложенные чертежи, на которых:

Фиг.1 представляет собой вертикальный вид сбоку, частично в разрезе, изображающий детектор излучения, выполненный в соответствии с одним аспектом изобретения, в инструментальном кожухе,

Фиг.2 представляет собой вертикальный вид сбоку на детектор излучения, изображенный на Фиг.1,

Фиг.3 представляет собой увеличенный вертикальный вид сбоку на гибкий рукав детектора излучения, изображенного на Фиг.1 и 2,

Фиг.4 представляет собой вид с торца на гибкий рукав, взятый приблизительно вдоль линии 4-4, изображенной на Фиг.3,

Фиг.5 представляет собой вид в аксонометрии на часть гибкого рукава, изображенного на Фиг.3,

Фиг.6 представляет собой вид в аксонометрии на детектор излучения в разобранном виде, изображенный на Фиг.1,

Фиг.7 представляет собой вид сверху на листовой материал, используемый для изготовления гибкого рукава детектора излучения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Детектор 20 излучения в соответствии с одним аспектом изобретения показан на Фиг.1-2. Детектор 20 излучения может быть использован для определения и измерения уровней энергии гамма- излучения из различных источников и в различных применениях. Детектор 20 излучения содержит гибкий рукав 22, выполненный в соответствии с одним аспектом изобретения, для установки и удержания детектора излучения в инструментальном кожухе 24. Инструментальный кожух 24 является трубчатым и имеет по существу цилиндрическую наружную поверхность. Инструментальный кожух 24 выполнен из любого подходящего материала, такого как металл, включающий бериллиевую медь, инконел или нержавеющую сталь. Инструментальный кожух 24 предохраняет детектор 20 излучения от воздействия агрессивной среды, в которой он работает.

Детектор 20 излучения содержит такие основные функциональные элементы, как сцинциляционный датчик 42 излучения (Фиг.6), трубку 44 фотоумножителя и электронный блок 48. Сцинциляционный датчик 42 излучения имеет по существу цилиндрическую форму. Сцинциляционный датчик 42 излучения содержит кристалл (не показан), предназначенный для генерации сигнала, указывающего на то, что произошло сцинциляционное событие, такое, например, когда детектировано или измерено излучение определенного уровня энергии. Например, излучение, такое как гамма-лучи, преобразуется в свет посредством кристаллического сцинциллятора датчика 42 как функция измеренного излучения. Например, кристалл может представлять собой цилиндрический кристалл натрий йода, легированного таллием (NaI(TI)). Также, в качестве примера, кристалл может иметь диаметр 2,54 см (1 дюйм) и длину до 12,7 см (5 дюймов). Сцинциляционный датчик 42 излучения может содержать другие устройства, которые способны осуществлять сцинцилляцию излучения.

Кристалл датчика 42, как известно, генерирует световой сигнал как функцию измеренного излучения за счет излучения, взаимодействующего с кристаллом. Например, световой сигнал генерируется как функция наличия гамма-излучения, пришедшего к датчику 42, и величины этого излучения. Датчик 42 дополнительно содержит кожух сцинциллятора для удержания кристалла. Кожух сцинциллятора может быть выполнен из любого подходящего материала, такого как титан, обработанный алюминий или нержавеющая сталь. Датчик 42 может также содержать несущую конструкцию, расположенную между кожухом сцинциллятора и кристаллом.

Известно, что кристаллы обычно являются колкими и хрупкими. Поэтому очень важно, чтобы кристалл датчика 42 надлежащим образом удерживался кожухом сцинциллятора и чтобы детектор 20 излучения надлежащим образом удерживался инструментальным кожухом 24 для предотвращения нанесения повреждения кристаллу во время использования. Известно, что кристалл может реагировать на температуры, давления, удары и вибрацию, воздействию которых он подвержен во время своего срока эксплуатации. Поэтому желательно периодически проводить инспекцию датчика 42 самого по себе, чтобы определять его пригодность к эксплуатации.

Трубка 44 фотоумножителя имеет по существу цилиндрическую форму. Трубка 44 расположена аксиально вблизи датчика 42 в детекторе 20 излучения. Трубка 44 функционально и электрически соединена с кристаллом датчика 42. Трубка 44 получает световой сигнал от кристалла и генерирует электрический сигнал как функцию принятого светового сигнала. Трубка 44 содержит фотодетектор для приема светового сигнала от кристалла датчика 42 и электронику для обработки электрического сигнала.

Трубка 44 может представлять собой любую трубку из известных трубок фотоумножителя. В приведенном примере трубка 44 имеет наружный диаметр, который по существу совпадает с наружным диаметром датчика 42.

Трубка 44 содержит кожух, который удерживает трубку фотоумножителя. Кожух трубки может быть выполнен из любого подходящего материала, такого как титан, обработанный алюминий или нержавеющая сталь. Датчик 42 и трубка 44 на своей наружной поверхности могут иметь канавку 46, предназначенную для размещения провода или кабеля, идущего от электронного блока 48. Трубка 44 может также содержать конструкцию, удерживающую фотодетектор внутри кожуха трубки.

Датчик 42 и трубка 44 защищены от агрессивной рабочей среды посредством инструментального кожуха 24. Гибкий рукав 22 удерживает датчик 42 и трубку 44 в инструментальном кожухе 24 таким образом, что удары и вибрации, передаваемые детектору 20 излучения от инструментального кожуха 24, сведены к минимуму. Гибкий рукав 22 также, в соответствии с одним аспектом изобретения, обеспечивает возможность относительно легкой установки и извлечения детектора 20 излучения с минимальным повреждением инструментального кожуха 24, датчика 42 и трубки 44 или вовсе без повреждения.

Гибкий рукав 22 содержит цилиндрическую часть 60 (см. Фиг.3-6) и многоугольную часть 62. Цилиндрическая часть 60 предпочтительно выполнена как единое целое с многоугольной частью 62. Цилиндрическая часть 60 зацепляет многоугольную часть 62 и взаимодействует с этой частью для удержания датчика 42 и трубки 44 относительно кожуха 24. Многоугольная часть 62 проходит коаксиально цилиндрической части 60 и окружает по меньшей мере ее часть.

Цилиндрическая часть 60 имеет внутренний диаметр, по существу равный наружным диаметрам датчика 42 и трубки 44. Многоугольная часть 62 имеет большое количество вершин 64 (см. Фиг.4-5), образованных в наиболее удаленном от центра месте многоугольной части между смежными гранями 66. На иллюстрированном чертеже показано девять вершин 64 и восемь граней 66. Должно быть очевидно, что может быть предусмотрено любое количество вершин 64. Вершины 64 многоугольной части 62 зацепляются с внутренней поверхностью инструментального кожуха 24 для размещения и удержания детектора 20 излучения в инструментальном кожухе. Гибкий рукав 22 сжат внутри инструментального кожуха 24, чтобы предварительно нагрузить пружинное действие гибкого рукава и обеспечить аксиальную амортизацию благодаря трению. Максимальная чувствительность детектора 20 излучения часто требует обеспечения максимального диаметра датчика 42, одновременно сводя к минимуму количество материала, расположенного между датчиком 42 и кожухом 24 для поддержания и ослабления вибраций и ударов детектора излучения.

Цилиндрическая часть 60 имеет длину L1 (Фиг.3), взятую в направлении параллельно продольной центральной оси А гибкого рукава 22. Многоугольная часть 62 имеет длину L2 (Фиг.3), взятую в направлении параллельно продольной центральной оси А гибкого рукава 22, которая меньше длины L1 цилиндрической части 60. Гибкий рукав 22, таким образом, имеет пару цилиндрических выступов 80 (Фиг.3 и 5), проходящих от аксиально противоположных концов. Эти цилиндрические выступы 80 зацепляют соответствующие фланцы 82 детектора 20.

Установка детектора 20 излучения в инструментальном кожухе 24 приводит к поглощению аксиальной силы цилиндрической частью 60 гибкого рукава 22. При этом многоугольной части 62 не передается никакое усилие сборки, которое могло бы деформировать или сместить многоугольную часть. Таким образом, во время операции разборки недеформированная многоугольная часть 62 обеспечивает достаточно легкое удаление детектора 20 излучения из инструментального кожуха 24, чтобы осуществить при необходимости инспекцию или ремонт. Многоугольная часть 62 выполнена так, чтобы работать как большое количество пластинчатых пружин между датчиком 42, трубкой 44 и внутренним диаметром кожуха 24. Возможность удержания и упругость действия пластинчатых пружин многоугольной части 62 распространяется по всей длине датчика 42 и трубки 44. Интегральная цилиндрическая часть 60 включает любые элементы на наружном диаметре датчика 42 и трубки 44. Это обеспечивает совместную подвеску содержащегося внутри датчика 42, трубки 44 и электронного блока 48.

Гибкий рукав 22 предпочтительно выполнен из по существу плоского цельного куска 22р (Фиг.7) из подходящего упругого листового материала, такого как закаленная нержавеющая сталь. Посредством примера, цельный кусок 22р предпочтительно имеет толщину 0,1 мм (0,004 дюйма), но также может иметь любую подходящую толщину. Цельный кусок 22р имеет снятые заусеницы и углы 84, так что в окончательно обработанном гибком рукаве 22 нет никаких острых краев или углов, которые могли бы зацепиться за внутреннюю поверхность инструментального кожуха 24.

Область 62р цельного куска 22р, которая образует многоугольную часть 62, предпочтительно содержит подходящий уменьшающий трение материал (не показан), нанесенный на то, что в конечном счете будет наружной поверхностью гибкого рукава 22. Нанесение уменьшающего трение материала может быть выполнено как до, так и после завершения придания формы гибкому рукаву 22. Одним таким подходящим уменьшающим трение материалом является политетрафторэтилен (ПТФЭ). Уменьшающий трение материал на наружной поверхности гибкого рукава 22 обеспечивает возможность гибкому рукаву 22 оставаться неподвижным на сцинциляционном датчике 42 излучения, трубке 44 фотоумножителя и электронном блоке 48, но в то же самое время поворачиваться внутри внутреннего диаметра инструментального кожуха 24 во время операций по установке и выниманию. Уменьшающий трение материал может быть распылен, при этом он может быть нанесен только на области, которые образуют вершины 64 для осуществления контакта с инструментальным кожухом 24. Уменьшающий трение материал может быть, в качестве альтернативы, нанесен на внутреннюю поверхность инструментального кожуха 24.

Исключительно посредством примера, цельный кусок 22р согнут в равноотстоящих друг от друга местах 64р, которые будут образовывать вершины 64 и задавать грани между соседними вершинами. Многоугольная часть 62 на этот момент еще не имеет законченную конструкцию. Затем формируется цилиндрическая часть 60. Затем многоугольная часть 62 оборачивается вокруг цилиндрической части 60. Должно быть очевидно, что для формирования частей гибкого рукава 22 могут быть использованы другие операции и порядок операций.

Другой аспект изобретения заключается в способе инспектирования и обслуживания детектора 20 излучения. Детектор 20 излучения сконструирован, как описано выше. Детектор 20 излучения имеет гибкий рукав 22, предназначенный для удержания датчика 42 излучения и трубки 44 внутри трубчатого инструментального кожуха 24. Гибкий рукав 22 имеет по существу цилиндрическую часть 60, которая расположена радиально внутри относительно более короткой многоугольной части 62.

Способ включает удаление всего целиком детектора 20 излучения из инструментального кожуха 24. Этот процесс осуществляют путем аксиального удаления гибкого рукава 22, датчика 42, трубки 44 и электронного блока 48 детектора 20 излучения в виде одного узла из инструментального кожуха 24. Повреждение кожуха 24 при этом избегают, поскольку используется детектор 20 излучения, выполненный в соответствии с одним из аспектов изобретения.

Датчик 42, трубку 44 и электронный блок 48 удаляют из гибкого рукава 22 датчика 20 излучения. Датчик 42, трубку 44 и блок 48 отсоединяют друг от друга и по отдельности проверяют на эксплуатационную пригодность. Если во время проверки обнаруживают, что хотя бы один узел из датчика 42, трубки 44 и блока 48 непригоден к эксплуатации, то этот узел заменяют. Пригодный к эксплуатации датчик 42, пригодную к эксплуатации трубку 44 и блок 48 помещают внутри гибкого рукава 22. При этом если есть подозрения на эксплуатационную непригодность, то может быть использован новый гибкий рукав. Гибкий рукав 22, пригодный к эксплуатации датчик 42, пригодную к эксплуатации трубку 44 и пригодный к эксплуатации электронный блок 48 детектора 20 излучения вставляют в инструментальный кожух 24 без повреждения последнего.

Хотя изобретение было описано с точки зрения различных конкретных вариантов выполнения, специалисты в этой области должны понимать, что изобретение распространяется также и на не описанные в конкретных вариантах выполнения другие альтернативные варианты выполнения и/или использования систем, способов и на очевидные модификации и эквиваленты описанных вариантов выполнения. Таким образом, подразумевается, что объем раскрытого изобретения не должен быть ограничен описанными выше конкретными вариантами выполнения

ПЕРЕЧЕНЬ ЭЛЕМЕНТОВ

детектор излучения 20
гибкий рукав 22
инструментальный кожух 24
сцинциляционный датчик излучения 42
трубка фотоумножителя 44
канавка 46
электронный блок 48
цилиндрическая часть 60
многоугольная часть 62
вершины 64
грани 66
цилиндрические выступы 80
фланцы 82
углы 84

1. Детектор (20) излучения, содержащий:
инструментальный кожух (24), имеющий по существу цилиндрическую трубчатую форму,
датчик (42) излучения, предназначенный для генерирования сигнала в ответ на обнаружение излучения и выполненный с возможностью размещения в инструментальном кожухе (24),
процессор (44) сигнала, выполненный с возможностью функционального соединения с датчиком (42) излучения и предназначенный для получения сигнала от датчика излучения и генерирования электрического сигнала как функции принятого сигнала, при этом процессор сигнала выполнен с возможностью размещения в инструментальном кожухе (24),
гибкий рукав (22), предназначенный для удержания датчика (42) излучения, или процессора (44) сигнала, или их обоих в инструментальном кожухе (24) и содержащий по существу цилиндрическую часть (60) и многоугольную часть (62), проходящую коаксиально цилиндрической части с обеспечением зацепления и удерживающего взаимодействия с этой частью.

2. Детектор (20) по п.1, в котором цилиндрическая часть (60) и многоугольная часть (62) гибкого рукава (22) выполнены из цельного куска упругого листового материала.

3. Детектор (20) по п.1, в котором одна из частей гибкого рукава (22), цилиндрическая часть (60) или многоугольная часть (62), окружает по меньшей мере часть другой из этих частей гибкого рукава.

4. Детектор (20) по п.1, в котором цилиндрическая часть (60) гибкого рукава (22) расположена радиально внутри его многоугольной части (62).

5. Детектор (20) по п.1, в котором гибкий рукав (22) удерживает внутри инструментального кожуха (24) как датчик (42) излучения, так и процессор (44) сигнала.

6. Детектор (20) по п.1, в котором цилиндрическая часть (60) гибкого рукава (22) длиннее его многоугольной части (62).

7. Детектор (20) по п.1, в котором по меньшей мере на части многоугольной части (62) гибкого рукава (22) или инструментального кожуха (24) имеется уменьшающий трение материал.

8. Детектор (20) по п.1, в котором многоугольная часть (62) гибкого рукава (22) не имеет острых краев и заусенцев, которые могли бы повредить инструментальный кожух (24) во время их перемещения относительно друг друга.



 

Похожие патенты:

Изобретение относится к области детектирования частиц ионизирующего излучения, в частности к сцинтилляционным детекторам на основе пластмассовых или кристаллических сцинтилляторов, в которых для вывода излучения применяются спектросмещающие волокна.

Изобретение относится к системам формирования изображений, таким как радиографические или рентгенографические системы, в частности, касается многоячеистых детекторных сборок, используемых в указанных системах, и способа изготовления указанных сборок.

Изобретение относится к детекторам радиационного излучения. Узел (20) детектора радиационного излучения содержит сцинтилляционный детектор (22) радиационного излучения, предназначенный для генерации светового сигнала, являющегося функцией регистрируемого радиационного излучения.

Изобретение относится к детектору спектральной визуализации. Одномерный многоэлементный фотодетектор (120), содержащий матрицу фотодиодов (122), включающую в себя первый верхний ряд фотодиодных пикселей и второй нижний ряд фотодиодных пикселей, при этом матрица фотодиодов (122) является частью фотодетектора (120), причем фотодетектор (120) является двухсторонним; матрица сцинтилляторов (126), включающая в себя первый верхний ряд и второй нижний ряд сцинтилляторных пикселей, причем первый верхний и второй нижний ряды сцинтилляторных пикселей соответственно оптически связаны с первым верхним и вторым нижним рядами фотодиодных пикселей; считывающее электронное устройство (124), при этом считывающее электронное устройство (124) является частью фотодетектора (120), и электрические соединения (512), которые осуществляют взаимосвязь фотодиодных пикселей и считывающего электронного устройства (124).

Изобретение относится к медицинской технике, а именно к спектральной компьютерной визуализации. Система визуализации содержит стационарный гентри, поворотный гентри, установленный на стационарном гентри, рентгеновскую трубку, закрепленную на поворотном гентри, которая поворачивается и испускает полихроматическое излучение, пересекающее область исследования.

Изобретение относится, в частности, к системам построения ядерных изображений, в особенности, включающим в себя гигроскопические сцинтилляционные кристаллы и т.п.

Изобретение относится к области неразрушающего контроля материалов и изделий радиографическими методами и может быть использовано в производственных и полевых условиях для обнаружения опасных материалов на контрольно-пропускных пунктах, на железнодорожных станциях, в аэропортах, таможенных службах, а также в научных исследованиях.
Изобретение может быть использовано при детектировании ионизирующего излучения и для создания источников белого света на основе нитридных гетеропереходов. Предложена гибкая (самонесущая) поликарбонатная пленка, наполненная неорганическими люминофорами из твердых растворов алюминатов и силикатов редкоземельных элементов.

Использование: для регистрации различных видов ионизирующих излучений, в том числе альфа-частиц, в ядерной физике для контроля доз и спектрометрии указанных излучений, в космической технике, медицине, в устройствах, обеспечивающих контроль, в промышленности.

Изобретение относится к сцинтилляционной технике, прежде всего к эффективным, быстродействующим сцинтилляционным детекторам. Описан способ получения прозрачной керамики, заключающийся в том, что предварительно в металлический порошкообразный цинк добавляют металлический порошкообразный магний, далее газофазным методом проводят синтез порошка для получения гранул в форме тетраподов и имеющих трехмерную наноструктуру, содержащую оксид магния в количестве 0,5-2,3 мас.%, затем полученную смесь подвергают горячему прессованию при температуре 1100-1200°C и давлении 100-200 МПа.

Изобретение относится к области диагностической визуализации. Сущность изобретения заключается в том, что модуль детектора излучения для использования в визуализации содержит множество детекторных пикселов, причем каждый детекторный пиксел включает в себя сцинтиллятор (35), оптически связанный с по меньшей мере одним сенсорным фотодиодом (34), работающим в режиме счетчика Гейгера; по меньшей мере один экранированный от света опорный фотодиод (36), который работает в режиме счетчика Гейгера при таких же условиях, что и по меньшей мере один сенсорный фотодиод (34); схему управления (42), которая измеряет напряжение (84) пробоя на опорном фотодиоде (36) импульсов (68) темнового тока, сгенерированных посредством опорного фотодиода (36) при пробое опорного фотодиода (36); регулирует напряжение (80) смещения на по меньшей мере одном опорном фотодиоде (36) и по меньшей мере одном сенсорном фотодиоде (34) для приведения импульсов (68) темнового тока, сгенерированных по меньшей мере одним опорным фотодиодом (36), по существу в равенство с предварительно выбранным характерным логическим уровнем (70) напряжения. Технический результат - повышение чувствительности фотодиодов. 4 н. и 11 з.п. ф-лы, 7 ил.

Группа изобретений относится к области регистрации ионизирующих излучений с помощью сцинтилляционных детекторов, а именно к регистрации формы импульсов рентгеновского и электронного излучений, в частности к области волоконно-оптической дозиметрии. Сущность изобретения заключается в том, что осуществляют преобразование ионизирующего излучения в световой сигнал в сцинтилляторе, передачу сигнала по волоконно-оптическому каналу и раздвоение сигнала с последующим выделением из одного сигнала черенковского излучения, а из другого - сцинтилляционного излучения с долей черенковского путем пропускания каждого сигнала через свой узкополосный светофильтр, отличающийся один от другого спектральным диапазоном, преобразование сигналов в электрические, которые учитывают при обработке для определения характеристик ионизирующего излучения, при этом обработку электрических сигналов осуществляют с помощью аналогового вычитающего устройства, где производят вычитание одного сигнала из другого с последующей регистрацией: формы полученного сигнала, дозы за импульс, длительности, максимальной мощности без влияния черенковского излучения, причем на любом участке прохождения одного из сигналов до его преобразования в электрический или после осуществляют задержку этого сигнала для синхронизации прихода обоих преобразованных электрических сигналов на аналоговое вычитающее устройство. Технический результат - расширение функциональных возможностей. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для регистрации ядерных излучений, в частности к криогенным детекторам на основе жидкого аргона, и может быть использовано при решении ряда фундаментальных физических задач, а также при регистрации ядерных излучений в системах ядерной энергетики, безопасности, медицины, неразрушающего контроля. Способ калибровки криогенного детектора частиц на основе жидкого аргона заключается в определении коэффициента пропорциональности между энергией детектируемой частицы и амплитудой сигнала криогенного детектора, при этом для определения коэффициента калибровки используют ядра отдачи с известной энергией, возникающие при неупругом рассеянии на малый угол моноэнергетичных нейтронов на ядрах аргона. Для реализации способа калибровки источник нейтронов, криогенный детектор и детектор рассеянных нейтронов устанавливаются таким образом, чтобы геометрический центр мишени источника нейтронов, геометрический центр криогенного детектора частиц и ось симметрии сцинтиллятора детектора рассеянных нейтронов располагались на одной прямой. Технический результат - повышение скорости набора статистики при определенной точности калибровки. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к способам нанесения люминесцентных покрытий на экраны, с помощью которых регистрируется и/или преобразуется изображение, в частности к способам формирования структурированного сцинтиллятора на поверхности фотоприемника, предназначенного для регистрации рентгеновского или гамма-излучения. Сущность изобретения заключается в том, что в способе формирования структурированного сцинтиллятора на поверхности пикселированного фотоприёмника формируют, по меньшей мере, один структурный элемент непосредственно на фоточувствительной зоне поверхности фотоприёмника, материал которого наносят посредством двухкоординатного или трёхкоординатного устройства дискретного нанесения однородных жидких или гетерогенных веществ. Технический результат - повышение технологичности при одновременном расширении области применения. 4 н. и 27 з.п. ф-лы, 7 ил.

Изобретение относится к сбору информации, а также находит конкретное применение в компьютерной томографии (СТ). Сущность изобретения заключается в том, что детектор формирования изображения содержит матрицу (204) фотодетекторов, имеющую светочувствительную сторону и противоположную считывающую сторону; матрицу (202) сцинтилляторов, оптически соединенную со светочувствительной стороной матрицы (204) фотодетекторов; и обрабатывающие электронные схемы (208), электрически соединенные со считывающей стороной матрицы (204) фотодетекторов, причем матрица (204) фотодетекторов, матрица (202) сцинтилляторов и обрабатывающие электронные схемы (208) находятся в термическом контакте, а значение термического коэффициента обрабатывающих электронных схем (208) приблизительно равно отрицательному значению суммы термического коэффициента матрицы (204) фотодетекторов и термического коэффициента матрицы (202) сцинтилляторов. Технический результат - повышение эффективности формирования изображения. 4 н. и 10 з.п. ф-лы, 13 ил., 1 табл.

Изобретение относится к технологиям визуализации и, в частности, к системе измерения данных, пригодной для средств КТ (компьютерной томографической) и другой визуализации. Сущность изобретения заключается в том, что система визуализации содержит источник излучения, который поворачивается вокруг центральной z-оси системы визуализации для выполнения визуализирующих сканирований; матрицу органических фотодиодов, содержащую несколько дискретных органических фотодиодов, расположенных рядами и столбцами на изогнутой подложке таким образом, что каждый ряд органических фотодиодов выровнен вдоль кривой изгиба изогнутой подложки, и каждый столбец органических фотодиодов выровнен параллельно центральной z-оси системы визуализации; и токопроводящие пути, функционально соединяющие каждый из органических фотодиодов с одним или более активными электронными компонентами, расположенными на изогнутой подложке; причем изогнутая подложка состоит более чем из одного слоя, содержащего верхний слой и один или более нижних слоев, причем органические фотодиоды расположены на верхнем слое, и каждый нижний слой содержит верхнюю поверхность, которая является ближней к верхнему слою, и на которой расположен по меньшей мере один из токопроводящих путей. Технический результат - повышение точности формирования детекторной матрицы. 3 н. и 26 з.п. ф-лы, 1 табл., 20 ил.

Изобретение относится к сбору данных и находит конкретное применение в компьютерной томографии (СТ). Сущность изобретения заключается в том, что детектор формирования изображения содержит матрицу (202) сцинтилляторов; матрицу (204) фотодатчиков, оптически сопряженную с матрицей (202) сцинтилляторов; преобразователь (314) тока в частоту (I/F), содержащий интегратор (302) и компаратор (310), который преобразует, во время текущего периода интегрирования, заряд, выведенный матрицей (204) фотодатчиков, в цифровой сигнал, имеющий частоту, указывающую на заряд; логику (312), которая устанавливает усиление интегратора (302) для следующего периода интегрирования на основе цифрового сигнала для текущего периода интегрирования, и переключатель (308) сброса, который сбрасывает интегратор (302) на основе усиления, установленного логикой (312), причем переключатель (308) сброса содержит, по меньшей мере, первый конденсатор (402) сброса с первой емкостью и второй конденсатор (406) сброса с второй отличающейся емкостью. Технический результат - повышение пространственного разрешения. 2 н. и 11 з.п. ф-лы, 10 ил., 2 табл.

Изобретение относится к устройствам для регистрации гамма-излучения, предназначено для определения положения бурового инструмента относительно кровли и подошвы разбуриваемого пласта и может быть использовано в скважинных приборах телеметрических систем. Скважинный гамма-детектор содержит установленные в корпусе сцинтилляционный кристалл, фотоэлектронный умножитель (ФЭУ), делитель напряжения, элементы крепления и компенсации тепловых деформаций, при этом корпус выполнен из материала, коэффициент теплового расширения которого обеспечивает превышение величины удлинения корпуса по сравнению с суммарным удлинением кристалла и ФЭУ при нагревании, компенсатор теплового расширения выполнен в виде втулки из материала, коэффициент теплового расширения которого меньше, чем у материала корпуса, кристалл и ФЭУ совместно установлены в корпус, а оставшееся свободное пространство корпуса заполнено полимерным материалом, залитым под вакуумом с последующей полимеризацией. Технический результат - повышение чувствительности детектора и его стойкости к механическим воздействиям в широком температурном интервале. 2 з.п. ф-лы, 1 ил.

Изобретение относится к системе измерения данных, пригодной для КТ (компьютерной томографии) и других способов формирования изображения. Система формирования изображения содержит источник излучения, который поворачивается вокруг центральной z-оси системы формирования изображения для выполнения формирующих изображения сканирований; и матрицу неорганических фотодетекторов, включающую в себя несколько дискретных неорганических фотодетекторов, расположенных на изогнутой подложке таким образом, что каждый ряд неорганических фотодетекторов ориентирован вдоль кривой изгиба изогнутой подложки, и каждый столбец неорганических фотодетекторов ориентирован параллельно центральной z-оси системы формирования изображения, причем изогнутая подложка содержит гибкий лист и токопроводящие пути, оперативно соединяющие каждый из неорганических фотодетекторов, по меньшей мере, с одним активным электронным компонентом, расположенным на изогнутой подложке, причем токопроводящие пути расположены на дистальной поверхности изогнутой подложки, которая, по существу, противоположна поверхности подложки, на которой расположены неорганические фотодетекторы, при этом система дополнительно содержит отверстия в подложке, заполненные проводящим материалом для электрического соединения токопроводящих путей с неорганическими фотодетекторами. Технический результат - повышение качества изображения. 2 н. и 12 з.п. ф-лы, 23 ил.

Изобретение относится к области измерения ядерных излучений, а именно к подсчету количества гамма квантов от различных источников излучения в диапазоне энергий от сотен кэВ до единиц МэВ с загрузкой до 109 имп./мин и может быть использовано для точной регистрации интенсивных потоков гамма излучения. Сцинтилляционный счетчик ионизирующего излучения содержит сцинтиллятор на основе ортогерманата висмута Bi4Ge3O12 (BGO), который через оптический герметик связан с кремниевым фотоэлектронным умножителем, который связан с источником питания, подключенным к усилителю дискриминатору, который соединен с микроконтроллером и делителем частоты, который подключен к микроконтроллеру, который подключен к персональному компьютеру. Технический результат - создание миниатюрного устройства, способное подсчитывать гамма кванты высокой интенсивности. 2 ил.
Наверх