Устройство для обеспечения заданого усилия натяжения спаренных тяг



Устройство для обеспечения заданого усилия натяжения спаренных тяг
Устройство для обеспечения заданого усилия натяжения спаренных тяг
Устройство для обеспечения заданого усилия натяжения спаренных тяг
Устройство для обеспечения заданого усилия натяжения спаренных тяг
Устройство для обеспечения заданого усилия натяжения спаренных тяг
Устройство для обеспечения заданого усилия натяжения спаренных тяг

 


Владельцы патента RU 2516647:

Открытое акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" (RU)

Изобретение относится к области измерительной техники, а именно к системам измерения усилий в стержнях, тягах и других протяженных элементах конструкций, и может быть использовано в любой отрасли народного хозяйства, и, в частности, в ракетной технике. Устройство работает следующим образом. В двуплечих рычагах делаются отверстия таким образом, чтобы центры отверстий и оси вращения лежали в одной плоскости. Аналогично выполняются ответные отверстия в основании. Систему тяг в «расслабленном» состоянии устанавливают на основание. В совмещенные отверстия на двуплечих рычагах вставляют технологические штыри. После чего одну из тяг при помощи талрепа натягивают до необходимого состояния. Натяжение одной тяги приводит к перекосу системы и зажатию одного из технологических штырей в отверстии. Далее при помощи талрепа начинаем натягивать вторую тягу до полного освобождения штыря от зажима («перекоса»), образовавшегося при натяжении первой тяги. Освобождение другого технологического штыря из отверстия будет свидетельствовать о том, что отверстия в двуплечих рычагах полностью совместились. Далее, на полностью собранную тягу устанавливают предварительно оттарированный съемный элемент с закрепленными на нем тензодатчиками, предварительно закрепляя его с помощью зажимов. Вращая талреп, поднатягивают тягу до момента появления сигналов с тензодатчиков, выбирают провис тяги. После чего полностью ослабляют зажимы и вновь закрепляют съемный элемент уже с усилием, предотвращающим проскальзывание поджатых друг к другу тяги и съемного элемента. С этого момента съемный элемент и тяга работают на растяжение совместно как единый элемент тяги. Таким образом, изменяя площадь поперечного сечения съемного элемента, не меняя при этом геометрических размеров самой тяги, можно изменить степень деформации и измеряемое усилие, а также равномерно распределить управляющий момент на тяге, и тем самым максимально совместить диапазон измерений с рабочим диапазоном используемых тензодатчиков, что автоматически повышает точность измерения и снижает трудоемкость изготовления и контроля. 6 ил.

 

Изобретение относится к области измерительной техники, а именно к системам измерения усилий в стержнях, тягах и других протяженных элементах конструкций, нагруженных осевой силой, и может быть использовано в любой отрасли народного хозяйства, где они применяются, и, в частности, в ракетной технике.

Широко известен способ обеспечения заданного усилия затяжки резьбовых изделий (болтов) с помощью фиксированного момента на головке болта или на гайке (см. Г.Б.Иосилевич, Ю.В.Шарловский, «Затяжка и стопорение резьбовых соединений», издательство «Машиностроение», Москва, 1971 г., глава 1, стр.17, формула 23). В регулируемых тягах для обеспечения заданного усилия натяжения наиболее часто используются стяжные втулки (талрепы), включающие в себя концы с правой и с левой резьбой и элемент для вращения талрепа. В этом случае указанный способ натяжения тяг является самым простым и дешевым. Но, как видно из анализа зависимости между усилием затяжки и крутящим моментом, этим способом фактически «измеряется» момент трения при затяжке. Крутящий момент (момент затяжки) при этом зависит от величины сил трения в резьбовых парах, которые, в свою очередь, очень сильно зависят от материалов резьбовых пар, состояния контактных поверхностей и других трудноучитываемых факторов. Кроме того, величина момента затяжки зависит от усилия затяжки (резьбовые пары быстрее деформируются), количества затяжек (момент второй и каждой последующей затяжки на одно и то же усилие затяжки уменьшается за счет выглаживания контактных поверхностей); моменты затяжки при нагружениии и при снятии нагрузки не совпадают по величине. В силу вышеизложенного можно с приемлемой погрешностью оценить усилие затяжки высоконагруженных (максимально деформированных при нагружении) конструкций, но для мало- и средненагруженных конструкций, работающих в зоне упругой деформации материалов, этот способ малопригоден из-за значительного влияния фактического состояния в момент затяжки материалов резьбовых пар и контактных поверхностей, и, как следствие, большого отклонения фактического значения усилия затяжки от измеренного - фактически определяется достаточно широкий диапазон значений усилий, одно из которых будет действительным.

Для гибких (нежестких) тяг можно применять способ контроля усилия натяжения по величине прогиба под действием приложенного к тяге перпендикулярного усилия (см. С.Рузга, «Электрические тензометры сопротивления», издательство «Мир», Москва, 1964 г., стр.325, 326, ст.«Силомер для измерения усилий в тросах»). Но, как указывается там же, для достоверности результатов даже для достаточно гибких реальных тросов надо вводить предварительно определенные эмпирические поправки. Для тяг другого вида, например для лент прямоугольного сечения, эти зависимости становятся и вовсе непригодными в силу повышенной жесткости. Даже по полученным эмпирическим путем данным при предварительной тарировке этих тяг нельзя утверждать о достоверности результатов измерений по той причине, что результаты измерений будут очень сильно зависеть от состояния тяги на измеряемом участке (прямолинейности, местной покоробленности, наличия внутренних напряжений в материале тяги и т.д.). Для жестких тяг этот способ и вовсе неприменим.

Наиболее достоверным и точным способом контроля усилия при натяжении является способ, основанный на применении электрических тензодатчиков (тензорезисторов) (см. Г.Б.Иосилевич, Ю.В.Шарловский, «Затяжка и стопорение резьбовых соединений», издательство «Машиностроение», Москва, 1971 г., стр.36-38, рис.36), закрепленных на элементе, входящем в состав тяги. Этим способом непосредственно измеряется деформация нагружаемого элемента, которая зависит только от приложенного усилия, и это решение принято авторами в качестве прототипа.

Предложенное техническое решение поясняется чертежами на примере натяжения тяг, используемых для управления рулями крылатой ракеты. На фиг.1 представлена конструктивная схема управления рулем крылатой ракеты с помощью тяг приводом, удаленным от руля, и местоположение на тяге съемного блока с тензодатчиками, на фиг.2 и 3 приведен вариант исполнения съемного элемента с тензодатчиками и зажимного устройства, а на фиг.4, 5 и 6 проиллюстрирован способ натяжения спаренных тяг, работающих совместно.

Существуют крылатые ракеты, где в силу различных обстоятельств рулевые агрегаты (приводы) отделены от рулей ракеты и расположены на значительном расстоянии от них. Схематично эти конструкции выглядят следующим образом: закрепленный на корпусе ракеты 1 привод 2 шарнирно соединен с установленным на оси вращения 3 двуплечим рычагом 4, который в свою очередь с помощью двух тяг 5 связан с установленным на оси вращения 6 двуплечим рычагом 7, выполненным заодно с рулем 8. Чаще всего по причине минимизации массы и минимального конструктивного пространства тяги 5 выполняются нежесткими, в силу чего могут работать только на растяжение. Для натяжения тяги снабжены стяжными втулками (талрепами) 9. При этом тяги 5 должны быть натянуты так, чтобы при передаче крутящего рабочего момента на поворот рулей ни одна из тяг не провисала (в противном случае усилие на одной тяге в момент провиса другой скачком возрастает вдвое, что может привести к разрыву тяги). Одним словом, требования к усилиям натяжения тяг достаточно жесткие, - с одной стороны, они не должны быть меньше минимальных (из условий работы), с другой, - не должны быть слишком большие, чтобы не перетяжелять конструкцию ракеты.

Для обеспечения равномерной передачи управляющего момента необходимо, чтобы оси А и Д, проходящие через оси вращения и тяги рычагов, были перпендикулярны плоскости симметрии Е. Этого можно достичь следующим образом.

Наиболее достоверным и точным является способ контроля усилия натяжения с помощью тензодатчиков, а в случае большого количества тяг - с помощью съемного технологического устройства, оснащенного тензодатчиками. Это устройство включает в себя съемный технологический элемент 10, по величине деформации которого определяется усилие натяжения в тяге 5, закрепленные на элементе 10 тензодатчики 11, автономное устройство декодирования сигналов 12 с тензодатчиков 11 и два зажима для крепления элемента 10 на тяге 5. Простейший зажим состоит из опоры 13, предохранительной прокладки 14 и зажимного клина 15. Измеряемая тяга 5 и съемный элемент 10 укладываются внутрь опоры 13 и поджимаются друг к другу через прокладку 14 клином 15. Усилие поджатия тяги и съемного элемента регулируется положением клина относительно боковых щек опоры.

Устройство работает следующим образом.

В двуплечих рычагах 4 и 7 делаются отверстия 16 (см. фиг.4) таким образом, чтобы центры отверстий 16 и оси вращения 3 и 6 лежали в одной плоскости и находились на осях С и Д. Аналогично выполняются ответные отверстия в основании 17. Систему тяг 5 в «расслабленном» состоянии устанавливают на основание 17. В совмещенные отверстия 16 на двуплечих рычагах 4 и 7 вставляют технологические штыри 18. После чего одну из тяг при помощи талрепа 9 натягивают до необходимого состояния. Натяжение одной тяги 5 приведет к перекосу системы, и, как следствие, к зажатию технологического штыря 18 в отверстии 16 (см. фиг.5 и 6). Далее при помощи талрепа 9 начинаем натягивать вторую тягу 5 до полного освобождения штыря 12 от зажима («перекоса»), образовавшегося при натяжении первой тяги 5. Освобождение технологического штыря 18 из отверстия 16 будет свидетельствовать о том, что отверстия 16 в двуплечих рычагах 4 и 7 полностью совместились, и, следовательно, оси С и Д перпендикулярны плоскости Е, что будет соответствовать равному натяжению тяг 5. Далее, на полностью собранную тягу 5 устанавливают предварительно оттарированный на полном аналоге натягиваемой тяги (технологической тяге) съемный элемент 10 с закрепленными на нем тензодатчиками 11, предварительно закрепляя его с помощью зажимов. Вращая талреп 9, поднатягивают тягу до момента появления сигналов с тензодатчиков 11, выбирают провис тяги (см. выше), после чего полностью ослабляют зажимы и вновь закрепляют съемный элемент уже с усилием, предотвращающим в заданном диапазоне измерения проскальзывание поджатых друг к другу тяги 5 и съемного элемента 10 (определяется эмпирически при первых измерениях или используют более сложные зажимы). С этого момента съемный элемент 10 и тяга 5 работают на растяжение совместно как единый элемент тяги с увеличенной за счет съемного элемента площадью в поперечной сечении. Сила натяжения на этом участке будет такая же, как на любом другом участке тяги, но за счет увеличенной площади поперечного сечения напряжение будет меньше, а следовательно, и степень деформации также будет меньше. Кроме того, усилия в съемном элементе и работающей вместе с ним части тяги в силу одинаковой деформации будут пропорциональны их площадям в поперечном сечении. Таким образом, изменяя площадь поперечного сечения съемного элемента, не меняя при этом геометрических размеров самой тяги, можно изменить степень деформации и измеряемое усилие, а также равномерно распределить управляющий момент на тяге, и тем самым максимально полно совместить диапазон измерений с рабочим диапазоном используемых тензодатчиков (тензорезисторов), что автоматически повышает точность измерения и снижает трудоемкость изготовления и контроля.

Литература

1. Аналог - Г.Б.Иосилевич, Ю.В.Шарловский, «Затяжка и стопорение резьбовых соединений», издательство «Машиностроение», Москва, 1971 г., глава 1, стр.17, формула 23, стр.36-38, рис.36.

2. Прототип - С.Рузга, «Электрические тензометры сопротивления», изд-во «Мир», Москва, 1964 г., стр.325, 326, ст. «Силомер для измерения усилий в тросах»,

Устройство для обеспечения заданного усилия натяжения спаренных тяг, состоящее из тензодатчиков и автономного устройства декодирования сигналов с тензодатчиков, отличающееся тем, что тензодатчики закреплены на съемном технологическом элементе с площадью поперечного сечения, обеспечивающей наиболее полное использование функциональных возможностей тензодатчиков, причем технологический элемент закреплен на тяге в двух разнесенных по ее длине точках быстросъемными зажимами, обеспечивающими усилия поджатия, без скольжения прижатых концов съемного элемента относительно тяги, а рычаги, к которым подсоединены тяги, зафиксированы штырями.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к устройству многокомпонентных тензометрических динамометров с внутренним каналом, и может быть использовано в различных областях техники (например, в робототехнике, экспериментальной гидро- и аэродинамике).

Изобретение относится к области измерительной техники, а именно к системам измерения усилий в стержнях, тягах и других протяженных элементах конструкций, нагруженных осевой силой.

Изобретение может быть использовано для измерения малых давлений с повышенной чувствительностью и точностью. Тензорезисторный преобразователь силы содержит упругий элемент, выполненный за одно целое с опорном кольцом.

Изобретение относится к горному делу, в частности к приборам измерения проявления горного давления, а именно к датчикам для измерения натяжения анкера. .

Изобретение относится к области измерительной техники и может быть использовано для измерения усилий в подъемных устройствах. .

Изобретение относится к области машиностроения и транспорта. .

Изобретение относится к области измерительной техники, а именно к многоканальным измерительным устройствам для измерения сил и моментов, действующих на модель летательных аппаратов в аэродинамической трубе.

Изобретение относится к контрольно-измерительной технике, в частности, для измерения деформаций в различных конструкциях посредством поляризационно-оптических преобразователей и может быть использовано в строительстве, на транспорте, в промышленных производствах, в контрольно-измерительной аппаратуре.

Изобретение относится к приборостроению, в частности к измерительным устройствам для измерения и регистрации сил взаимодействия колеса с рельсом. .

Изобретение относится к силоизмерительной технике и может быть использовано при изготовлении весоизмерительных приборов. .

Изобретение относится к контрольно-измерительной технике и может быть использовано для постоянного измерения усилий в различных резьбовых соединениях строительных элементов и конструкций. Техническим результатом изобретения является повышение чувствительности и точности силоизмерительного датчика, повышение длительности эксплуатации. Силоизмерительный датчик содержит подкладную вогнутую и накладную выпуклую шайбы со сферической поверхностью сопряжения между ними, чувствительный элемент в виде обмотки тензорезистора, работающего на растяжение и жестко установленного на внешней цилиндрической поверхности подкладной шайбы. Накладная шайба снабжена вторым чувствительным элементом в виде обмотки тензорезистора, работающего на сжатие. 4 з.п. ф-лы, 5 ил.

Изобретение относится к весовой технике, в частности к упругим элементам датчиков силы, предназначенных для точного измерения силы небольшой величины в широком диапазоне. Заявленный упругий элемент тензорезисторного датчика силы выполнен за одно целое и содержит упругое кольцо, силовводящие рычаги, примыкающие к внутренней боковой поверхности упругого кольца по всей высоте, поперечные тяги, присоединенные к средней части упругого кольца вблизи плоскости симметрии, перпендикулярной к его оси, и эта плоскость симметрии упругого кольца совпадает с плоскостью симметрии тяг, расположенных симметрично второму диаметральному направлению упругого кольца, причем расстояние между осями тяг не больше половины диаметра внешней боковой поверхности кольца, а в средней части упругого кольца выполнены сквозные пазы, которые имеют высоту, равную толщине поперечных тяг, и расположены симметрично относительно их плоскости симметрии, при этом пазы в окружном направлении расположены между тягами и силовводящими рычагами. Технический результат заключается в повышении точности измерения усилий небольшой величины при малых габаритных размерах упругого элемента, обладающего меньшей жесткостью, что позволяет расширять диапазон измерения в сторону малых нагрузок. 2 ил.

Изобретение относится к весовой технике, в частности к тензорезисторным датчикам силы, предназначенным для точного измерения сил, в том числе в агрессивных средах. Тензорезисторный датчик силы содержит жесткий центр, силовводяшую оболочку, кольцевой силопреобразователь, ограниченный изнутри цилиндрической поверхностью, имеет в своей нижней части кольцевой выступ, ограниченный изнутри той же цилиндрической поверхностью, опорную оболочку большего диаметра и опорное кольцо, соединенные между собой последовательно и выполненные за одно целое. Силовводящая оболочка выполнена вогнутой и в средней части ограничена снаружи и изнутри цилиндрическими поверхностями и плавно изнутри сопрягается с участками конических поверхностей одинаковой конусности и сужающиеся части конусов направлены к средней части симметрично. Верхнее подрезисторное кольцо ограничено цилиндрическими поверхностями и снаружи имеет два симметричных выступа, ограниченных коническими поверхностями одинаковой конусности, а их сужающиеся части направлены к середине, и запрессовано по этим поверхностям в среднюю часть силовводящей оболочки. Кольцевой выступ кольцевого силопреобразователя также ограничен снаружи конической поверхностью и его сужающаяся часть конуса направлена к кольцевому силопреобразователю, и по ней запрессовано нижнее подрезисторное кольцо и упирается в кольцевой силопреобразователь. Техническим результатом изобретения является повышение надежности и точности измерений. 3ил.

Изобретение относится к весовой технике, в частности к датчикам силы, для точного измерения небольших усилий в широком диапазоне. Силочувствительный элемент содержит упругое кольцо с тензорезисторами, два жестких кольца меньшего и большего диаметров, радиальные рычаги по своим концам снабжены верхними и нижними балками равной толщины и длины, выполненными в виде трапеций с криволинейными основаниями. При этом ширина меньшего основания каждой нижней балки равна половине ширины также меньшего основания верхней балки. Жесткое кольцо меньшего диаметра соединено с верхними балками для каждого рычага, расположенного внутри упругого кольца. Нижние балки соединены с верхней частью внутри упругого кольца, а внизу снаружи оно соединено с верхними балками для каждого рычага, расположенного вне кольца. Нижние балки соединены с жестким кольцом внутри и все они изготовлены за одно целое. Техническим результатом изобретения является расширение диапазона измерения сил в сторону малых нагрузок с повышенной точностью. 4 ил.

Изобретение относится к датчикам силы. Датчик силы содержит корпус, который выполнен в виде короба, основание которого с внешней стороны снабжено крестообразным хомутом для закрепления корпуса в держателе штатива, а к противоположной стороне хомута закреплено основание, посредством которого датчик силы устанавливается на лабораторном столе, корпус снабжен съемной крышкой, один торец которой выполнен с П-образным окном для выхода порта. Внутри корпуса расположена тензобалка, выполненная S-образной формы, при этом тензобалка на внутренней поверхности основания корпуса закреплена своей нижней полкой, на нижней поверхности средней полки закреплены тензорезисторы, собранные по мостовой схеме, при этом выходы тезорезисторов соединены с электронным блоком, а верхняя полка тензобалки снабжена вертикальным стержнем, проходящим сквозь отверстие в крышке и ось которого расположена на одной оси с осью крестообразного хомута корпуса, причем свободный конец стержня снабжен осевым углублением для установки чаши весов и поперечным отверстием для приложения силы, направленной вверх. Технический результат - обеспечение измерения сил различного действия, приложенных в различных направлениях, а также возможность использования для измерения веса. 3 з.п. ф-лы, 5 ил.

Изобретение относится к буровой технике и предназначено для измерения параметров силового воздействия на буровое долото режуще-скалывающего действия в процессе разрушения им породы. Лабораторная установка для определения нагрузки, действующей на буровое долото, содержит измерительную балку, жестко закрепленную на базовой плите, с установленным на ней долотом. На измерительной балке смонтированы тензометрические датчики, образующие шесть тензометрических мостов для измерения осевой нагрузки Rza на измерительную балку вдоль ее оси, Mza - момента, скручивающего измерительную балку относительно ее оси, Mxa, Mxb - моментов соответственно в поперечных сечениях измерительной балки, отстоящих друг от друга на расстоянии a, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, Mya, Myb - моментов соответственно в поперечных сечениях измерительной балки, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат. Техническим результатом изобретения является повышение точности измерений. 8 ил.

Изобретение относится к измерительной технике, а именно к тензометрическим средствам измерения. Технический результат: расширение динамического диапазона преобразования напряженно-деформированных состояний сенсорной консоли вследствие воздействия на ее поверхность скоростного напора (динамического давления) газовых или жидкостных потоков. Сущность: тензорезистивный преобразователь содержит сенсорную консоль, работающую на изгиб, выполненную из упругой подложки тонкопленочного эластичного полимера, двух фольговых тензорезисторов, планарно расположенных на противоположных сторонах подложки, продольные оси которых параллельны между собой, или четырех фольговых тензорезисторов, планарно и попарно расположенных на противоположных сторонах подложки, продольные оси которых симметричны относительно ее продольной оси и параллельны между собой. Тензорезисторы включены в смежные плечи полу- или полномостовую схему измерительного моста. Сенсорная консоль ориентирована ортогонально вектору приложенной силы. В преобразователь введены кольцевой сегмент с кривизной поверхности, соответствующей максимально возможному упругому изгибу сенсорной консоли, хонейкомб, и флюгерный элемент. Кольцевой сегмент выполнен с проницаемой поверхностью. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, а именно к датчикам давления контактного типа, в частности к тензометрическим средствам измерений консольного типа. Техническим результатом изобретения является расширение динамического диапазона тензорезистивного преобразования напряженно-деформированных состояний при прямом контактном воздействии на упруго-чувствительный элемент скоростного напора газовых или жидкостных потоков в электрический сигнал. Тензорезистивный преобразователь содержит упруго-чувствительный элемент консольного типа, выполненный из тензорезисторов, планарно и попарно расположенных на его противоположных сторонах, и электрических выводов со стороны его заделки, измерительный мост и индикатор, включенный в измерительную диагональ измерительного моста. При этом упруго-чувствительный элемент работает на изгиб ортогонально вектору приложенной силы. Также в преобразователь введены, по меньшей мере, один и более упругих слоев, выполненных из тонкопленочного эластичного полимера, имеющих одинаковую с упруго-чувствительным элементом ширину, но различные длины и расположены на нем последовательно с уменьшением длины в сторону его заделки. Упругие слои планарно жестко связаны между собой и упруго-чувствительным элементом, либо планарно свободны, но собраны воедино в заделке в сэндвич-структуру, обладающей качеством тела равного сопротивления изгибу. 2 з.п. ф-лы, 6 ил.

Изобретение относится к приборостроению, в частности к измерительным устройствам для измерения и регистрации сил взаимодействия между колесом и рельсом. Техническим результатом является повышение точности измерения сил взаимодействия колеса с рельсом за счет уменьшения влияния на измерения вертикальных сил, поперечного смещения колеса относительно рельса и расширения частотного диапазона измеряемых вертикальных и боковых (горизонтальных) сил, возникающих при контакте колеса с рельсом при прохождении по геометрическим, стыковым неровностям пути и волнообразным неровностям на поверхности катания рельса. Устройство для измерения вертикальных и боковых сил взаимодействия между колесом и рельсом содержит железнодорожную колесную пару, тензометрические датчики, размещенные на внутренней и наружной стороне диска колеса по разные стороны от оси на концентричных диаметрах внутренней стороны дисков колес и включенные в полумостовые схемы, тензометрические усилители, програмируемый контроллер, блок передачи сигналов по радиоканалу, связанный с блоком приема сигналов и бортовым компьютером. Тензореристоры на наружной стороне диска колеса диаметрально расположены в створе с тензорезисторами на внутренней стороне, а угол α между соседними диаметрами на внутренней или наружной стороне диска колеса, на которых размещены диаметрально расположенные тензодатчики, составляет от 36° до 60° дуги окружности. 4 з.п. ф-лы, 12 ил.
Наверх