Газотурбинный двигатель

Изобретение относится к газотурбинным двигателям. Устройство горения газотурбинного двигателя содержит воздухоприемник, первое измерительное устройство для измерения количества газа в воздухоприемнике, по меньшей мере одну камеру сгорания, множество линий подачи топлива в камеру сгорания, выхлопную трубу, второе измерительное устройство для измерения количества газа в выхлопной трубе и блок управления, приспособленный для изменения подачи топлива в множество линий подачи топлива с возможностью контролировать количество газа в выхлопной трубе, причем данное изменение осуществляется в зависимости как от измеряемого количества газа в воздухоприемнике, так и от измеряемого количества газа в выхлопной трубе. Изобретение позволяет повысить надежность работы двигателя. 15 з.п. ф-лы, 8 ил.

 

Настоящее изобретение относится к устройству горения. Более конкретно, настоящее изобретение относится к устройству горения, содержащему: воздухоприемник; по меньшей мере одну камеру сгорания; множество линий подачи топлива в камеру (камеры) сгорания; выхлопную трубу; измерительное устройство для измерения количества газа в выхлопной трубе; и блок управления, приспособленный для изменения подачи топлива в множество линий подачи топлива с возможностью контролировать количество газа в выхлопной трубе, причем изменение осуществляется в зависимости от измеренного количества газа в выхлопной трубе.

Одно такое устройство горения, которое представляет собой газотурбинный двигатель, показано на фиг.1 в продольном разрезе.

Двигатель содержит воздухоприемник 1, ступень 3 компрессора, камеры 5 сгорания, комплект лопаток 9 ротора, вал 11 ротора и выхлопную трубу 13. Воздух входит в воздухоприемник 1, сжимается в ступени 3 компрессора и смешивается с топливом, и данная смесь сжигается в камерах 5 сгорания. Горячие газы, образующиеся в результате горения, приводят в движение лопатки 9 ротора и соответственно вал 11 ротора. Вал 11 ротора (i) создает механический крутящий момент с возможностью выдачи работы, выполняемой двигателем, и (ii) приводит в движение ступень 3 компрессора с возможностью всасывания дополнительного воздуха через воздухоприемник 1. После прохождения лопаток 9 ротора горячие газы выходят из двигателя через выхлопную трубу 13.

Двигатель дополнительно содержит линию 21 подачи моторного топлива, клапан 23 разделения топлива, линии 17, 19 подачи основного и вспомогательного топлива в каждую камеру 5 сгорания (на фиг.1 показаны линии подачи основного и вспомогательного топлива только в одну камеру сгорания), измерительное устройство 15, расположенное в выхлопной трубе 13 для измерения количества оксидов азота (NOx) в выхлопной трубе, блок 25 управления для регулирования положения клапана 23 разделения топлива на основе измеренного количества NOx в выхлопной трубе. Клапан 23 разделения топлива разделяет топливо, которое он принимает по линии 21 подачи моторного топлива, между линиями 17, 19 подачи основного и вспомогательного топлива в каждую камеру 5 сгорания. На фиг.2 показана подача топлива посредством клапана 23 разделения топлива в камеры 5 сгорания. Блок 25 управления регулирует положение клапана 23 разделения топлива с возможностью контролировать количество NOx в выхлопной трубе.

На фиг.3 и 4 более подробно показана камера 5 сгорания. Фиг.3 представляет собой продольный разрез камеры сгорания, а фиг.4 представляет собой поперечный разрез по линии IV-IV, показанной на фиг.3.

Камера 5 сгорания содержит переднюю концевую часть 27, радиальный завихритель 29, предкамеру 31 и камеру 33 для дожигания. Основное топливо, принятое по линии 17 подачи основного топлива, проходит в сопла 35 основного топлива, расположенные в основаниях 37 проточных отверстий 39, образованных между смежными клинообразными лопатками 41 радиального завихрителя 29. Основное топливо входит в проточные отверстия, где оно смешивается с воздухом, перемещающимся преимущественно радиально внутрь вдоль проточных отверстий. Смесь основного топлива с воздухом перемещается внутрь вдоль проточных отверстий, образуя закрученную смесь основного топлива с воздухом в центральной зоне 43 радиального завихрителя. Вспомогательное топливо, принимаемое по линии 19 подачи вспомогательного топлива, проходит в сопло 45 вспомогательного топлива в торцевой поверхности 47 передней концевой части 27, откуда вспомогательное топливо также проходит в центральную зону 43. Подача (i) смеси основного топлива с воздухом и (ii) вспомогательного топлива в центральную зону 43 поддерживает горение в предкамере 31 и камере 33 для дожигания камеры сгорания.

Смесь основного топлива с воздухом, когда она поступает в центральную зону 43, представляет собой предварительно смешанный компонент бедной смеси подачи для горения. Вспомогательное топливо, когда оно поступает в центральную зону 43, представляет собой предварительно не смешанный компонент богатой смеси подачи для горения. Предварительно смешанный компонент бедной смеси имеет преимущество в том, что он образует относительно малое количество NOx, а недостаток его состоит в том, что он обеспечивает относительно неустойчивое горение (относительно неустойчивое пламя). Предварительно несмешанный компонент богатой смеси имеет преимущество в том, что он обеспечивает относительно устойчивое горение (относительно устойчивое пламя), а недостаток его состоит в том, что он образует относительно большое количество NOx.

Таким образом, когда посредством измерительного устройства 15 замерен недопустимо высокий уровень NOx, блок 25 управления регулирует положение клапана 23 разделения топлива, чтобы уменьшить долю топлива, выдаваемую в линии 19 подачи вспомогательного топлива, и таким образом соответственно увеличить долю топлива, выдаваемого в линии 17 подачи основного топлива. Это приводит к снижению уровня NOx, но с риском возможного получения неустойчивого горения.

Обнаружено, что при использовании газотурбинного двигателя, показанного на фиг.1-4, в некоторых случаях, когда долю топлива, подаваемого в линии подачи вспомогательного топлива, уменьшают до уровня, при котором NOx обычно снижается до приемлемого уровня, этого не происходит, в результате чего блок управления дополнительно уменьшает данную долю, приводя к неустойчивому горению и отказу двигателя.

В соответствии с настоящим изобретением создано устройство горения, содержащее: воздухоприемник; первое измерительное устройство для измерения количества газа в воздухоприемнике; по меньшей мере одну камеру сгорания; множество линий подачи топлива в камеру (камеры) сгорания; выхлопную трубу; второе измерительное устройство для измерения количества газа в выхлопной трубе; и блок управления, приспособленный для изменения подачи топлива в множество линий подачи топлива с возможностью контролировать количество газа в выхлопной трубе, причем данное изменение осуществляется в зависимости как от измеряемого количества газа в воздухоприемнике, так и от измеряемого количества газа в выхлопной трубе.

Ниже изобретение будет описано в качестве примера со ссылкой на прилагаемые чертежи, из которых:

Фиг.1, уже упоминаемый, представляет собой продольное сечение газотурбинного двигателя;

Фиг.2, уже упоминаемый, изображает подачу топлива посредством клапана разделения топлива двигателя, показанного на фиг.1, в камеры сгорания двигателя, показанные на фиг.1;

Фиг.3, уже упоминаемый, представляет собой продольный разрез камеры сгорания двигателя, показанной на фиг.1;

Фиг.4, уже упоминаемый, представляет собой поперечный разрез по линии IV-IV, показанной на фиг.3;

Фиг.5 представляет собой продольный разрез газотурбинного двигателя в соответствии с настоящим изобретением;

Фиг.6 схематично изображает измерительное устройство первого типа, которое может быть использовано в двигателе, показанном на фиг.5;

Фиг.7 схематично изображает измерительное устройство второго типа, которое может быть использовано в двигателе, показанном на фиг.5;

Фиг.8 представляет собой график зависимости нетто-выбросов газотурбинного двигателя от нагрузки двигателя и включает в себя три предельные кривые: предельную кривую нетто-выбросов, предельную кривую динамики и предельную кривую температуры.

Газотурбинный двигатель в соответствии с настоящим изобретением, показанный на фиг.5, подобен газотурбинному двигателю, показанному на фиг.1-4, за исключением того, что в двигателе, показанном на фиг.5, (i) измерительное устройство 51 расположено в воздухоприемнике 1 для измерения количества NOx в воздухоприемнике, и (ii) блок 25 управления для контроля количества NOx в выхлопной трубе регулирует положение клапана 23 разделения топлива на основе измеренного количества NOx в выхлопной трубе за вычетом измеренного количества NOx в воздухоприемнике.

Было выяснено, что вышеупомянутая проблема отказа двигателя, показанного на фиг.1-4, была связана с уровнем NOx в воздухе внешней среды, в которой работает двигатель. Данный фоновый уровень NOx будет присутствовать в выхлопной трубе двигателя в дополнение к количеству NOx, создаваемому двигателем. Если фоновый уровень NOx является значительным по сравнению с количеством NOx, требуемым от двигателя, то фоновый уровень NOx должен учитываться при управлении двигателем, поскольку в противном случае требования к двигателю будут завышены, т.е. это приведет к чрезмерно большому уменьшению доли топлива, подаваемого в линии 19 подачи вспомогательного топлива, вызывая неустойчивое горение и отказ двигателя. Например, если фоновый уровень NOx составляет, скажем, 1 часть на миллион, а количество NOx, которое в соответствии с требованиями создает двигатель составляет, скажем, 5 частей на миллион, то фоновый уровень NOx является значительным по сравнению с количеством NOx, которое в соответствии с требованиями создает двигатель, и должен учитываться при управлении двигателем.

Двигатель, показанный на фиг.5, создан с целью определения количества NOx, реально создаваемого двигателем, посредством регулирования клапана 23 разделения топлива на основе количества NOx, реально создаваемого двигателем, которое определяется как количество NOx в выхлопной трубе минус количество NOx, измеренное в воздухоприемнике (фоновый уровень NOx). Если разность между количеством NOx, измеренным в выхлопной трубе, и количеством NOx, измеренным в воздухоприемнике, соответствует недопустимо высокому уровню NOx, то для того чтобы уменьшить данный уровень, блок 25 управления регулирует положение клапана 23 разделения топлива, чтобы уменьшить долю топлива, выдаваемого в линии 19 подачи вспомогательного топлива (что, конечно, также соответственно увеличивает долю топлива, выдаваемого в линии 17 подачи основного топлива).

Измерительные устройства 15, 51 двигателя, показанные на фиг.5, могут представлять собой измерительное устройство первого типа, показанное на фиг.6. Измерительное устройство первого типа представляет собой измерительное устройство, выполненное поперечно каналу, содержащее либо: (i) передатчик 61 и приемник 63, расположенные на противоположных сторонах канала 65 (выхлопной трубы или воздухоприемника), или (ii) приемопередатчик 67, расположенный на одной стороне канала 65, и зеркало 69, расположенное на противоположной стороне канала.

Свет передают посредством передатчика 61 на приемник 63 или посредством приемопередатчика 67 на зеркало 69 и затем обратно на приемопередатчик 67. Газ, проходящий вдоль канала 65, поглощает часть света, вследствие чего возникает разница между интенсивностью передаваемого света и интенсивностью принимаемого света. Данная разница в интенсивности является мерой количества газа, проходящего вдоль канала - чем больше разница в интенсивности, тем больше количество проходящего газа.

Диапазон длин волн в передаваемом свете выбирают в зависимости от конкретного элемента или элементов в измеряемом газе. Например, в случае NOx может быть использован инфракрасный свет. Свет, принимаемый приемником 63 или приемопередатчиком 67, подвергается анализу, чтобы определить разницу в интенсивности между передаваемым и принимаемым светом для разных длин волн, имеющихся в свете. Это обеспечивает измерение количества газообразного элемента (элементов). Данная информация передается в блок 25 управления.

Измерительные устройства 15, 51 двигателя, показанные на фиг.5, могут представлять собой измерительное устройство второго типа, показанное на фиг.7. Измерительное устройство второго типа представляет собой измерительное устройство с зондом, которое аналогично измерительному устройству, выполненному поперечно каналу, показанному на фиг.6, за исключением того, что передатчик 61/приемопередатчик 67 и приемник 63/зеркало 69 расположены в противоположных концах 71 зонда 73, размещенного на траектории газа так, чтобы пересекать данную траекторию.

Измерительное устройство с зондом имеет преимущество над измерительным устройством, выполненным поперечно каналу, в том, что при использовании измерительного устройства с зондом не требуется центрирование передатчика с приемником или приемопередатчика с зеркалом. Однако измерительное устройство с зондом имеет недостаток в том, что оно измеряет меньшее количество проходящего газа.

Измерительное устройство, выполненное поперечно каналу, так же как и измерительное устройство с зондом, измеряет проходящий газ на месте, т.е. без извлечения пробы газа изнутри канала в какое-либо другое место, где данная проба подвергается анализу. Это является предпочтительным с точки зрения быстроты реагирования блока 25 управления двигателя, показанного на фиг.5, на изменение уровня NOx: извлечение пробы занимает время, а значит регулирование клапана 23 разделения топлива посредством блока 25 управления, основанное на анализе данной пробы, будет запаздывать по сравнению с регулированием на основе анализа без необходимости извлечения пробы. Извлечение пробы также имеет недостаток в том, что оборудование, используемое для осуществления извлечения, может изменять химический состав извлекаемой пробы. Кроме того, извлечение проб требует частой повторной калибровки, является трудоемким в техническом обслуживании и дорогим.

В вышеприведенном описании реагирование на увеличение количества NOx осуществляется посредством регулирования клапана 23 разделения топлива, чтобы уменьшить количество топлива, подаваемого через линии 19 подачи вспомогательного топлива. Данное уменьшение сопровождается соответствующим увеличением количества топлива, подаваемого через линии 17 подачи основного топлива, так что общее количество топлива, подаваемого во все камеры 5 сгорания и в каждую отдельную камеру 5 сгорания, остается неизменным. Как вариант, можно допустить изменение общего количества топлива, подаваемого в каждую отдельную камеру сгорания, при этом, однако, гарантируя, что общее количество топлива, подаваемого во все камеры сгорания, остается неизменным. Пример этого описан в следующем абзаце.

Вспомогательное топливо, подаваемое в первую половину всех камер сгорания, уменьшают посредством уменьшения общего количества топлива, подаваемого в каждую камеру сгорания данной первой половины. Общее количество топлива, подаваемого в каждую камеру сгорания второй половины всех камер сгорания, соответственно увеличивают, чтобы не допустить уменьшения общего количества топлива, подаваемого во все камеры. Пусть Х - общее количество топлива, подаваемого в каждую камеру сгорания второй половины. Для каждой камеры сгорания второй половины распределение Х между основной и вспомогательной подачами камеры сгорания регулируют так, чтобы уменьшить вспомогательную подачу и соответственно увеличить основную подачу.

В вышеприведенном описании каждая камера 5 сгорания содержит подвод основного топлива и подвод вспомогательного топлива. В качестве альтернативных вариантов: (i) каждая камера сгорания содержит два подвода основного топлива и один подвод вспомогательного топлива, и (ii) каждая камера сгорания содержит два подвода основного топлива и не содержит подвода вспомогательного топлива, при условии, что как в (i), так и в (ii) можно изменять один из подводов в камеру сгорания, чтобы контролировать NOx.

В вышеприведенном описании NOx измеряют как в воздухоприемнике, так и в выхлопной трубе с целью управления двигателем на основе измерений с возможностью контроля NOx. Контролируемым газом необязательно является NOx, это может быть, например, окись углерода (СО) или метан (СН4), при этом интересующий газ замеряют как в воздухоприемнике, так и в выхлопной трубе, и управление двигателем осуществляется на основе данных измерений с возможностью контроля интересующего газа. Кроме того, можно контролировать несколько газов, при этом замеры всех интересующих газов осуществляются как в воздухоприемнике, так и в выхлопной трубе, и управление двигателем осуществляется на основе данных измерений с возможностью контроля интересующих газов.

График, показанный на фиг.8, относится к контролю нескольких газов. Фиг.8 представляет собой график зависимости так называемых выбросов газотурбинного двигателя от нагрузки на двигатель. Выбросы содержат несколько газов: NOx, СО, СН4 и др. На оси выбросов графика показаны величины нетто-выбросов, т.е. результаты измерений выбросов в выхлопной трубе за вычетом измерений выбросов в воздухоприемнике. Данный график включает в себя три предельные кривые: предельную кривую нетто-выбросов, предельную кривую динамики и предельную кривую температуры. Предельная кривая нетто-выбросов представляет собой нетто-выбросы, которые двигатель не должен превышать - как можно видеть, данные нетто-выбросы одинаковые для всех нагрузок. Предельная кривая динамики относится к изменению давления в камерах сгорания двигателя (которое, как было отмечено выше, является мерой устойчивости горения в камерах сгорания). Нетто-выбросы не должны уменьшаться ниже предельной кривой динамики, в противном случае может возникнуть неустойчивое горение. Предельная кривая температуры относится к температуре в двигателе, и нетто-выбросы не должны увеличиваться выше предельной кривой температуры, в противном случае в двигателе может возникать перегрев. Можно видеть, что управление двигателем должно осуществляться таким образом, чтобы удерживать нетто-выбросы в пределах зоны, образованной между предельной кривой динамики и предельной кривой нетто-выбросов/предельной кривой температуры.

В вышеприведенном описании регулирование клапана 23 разделения топлива осуществляется на основе измерений уровней газа в воздухоприемнике и выхлопной трубе. Кроме того, регулирование клапана 23 разделения топлива может осуществляться на основе других измерений в двигателе, например температуры двигателя и давления внутри двигателя, при этом окончательное регулирование клапана 23 разделения топлива посредством блока 25 управления будет определяться на основе анализа, т.е. обработки блоком 25 управления результатов измерений уровней газов, температуры двигателя и давления в двигателе.

При регулировании клапана 23 разделения топлива посредством блока 25 управления может учитываться скорость и направление ветра во внешней среде, в которой работает газотурбинный двигатель.

1. Газотурбинный двигатель, содержащий: воздухоприемник (1); первое измерительное устройство (51) для измерения количества газа в воздухоприемнике (1); по меньшей мере одну камеру (5) сгорания; множество линий (17, 19) подачи топлива в камеру (камеры) (5) сгорания; выхлопную трубу (13); второе измерительное устройство (15) для измерения количества газа в выхлопной трубе (13); и блок (25) управления, выполненный с возможностью изменения подачи топлива в множество линий (17, 19) подачи топлива с возможностью контролировать количество газа в выхлопной трубе (13), причем упомянутое изменение осуществляется в зависимости как от измеряемого количества газа в воздухоприемнике (1), так и от измеряемого количества газа в выхлопной трубе (13).

2. Газотурбинный двигатель по п.1, в котором первое и второе измерительные устройства (51, 15) представляют собой устройства измерения на месте, которые измеряют количество газа на месте без извлечения из воздухоприемника (1) и выхлопной трубы (13).

3. Газотурбинный двигатель по п.2, в котором устройства измерения на месте передают и принимают свет с целью анализа принимаемого света для определения количества света, поглощенного газом, причем количество поглощенного света является мерой количества газа.

4. Газотурбинный двигатель по п.1, в котором множество линий (17, 19) подачи топлива содержит по меньшей мере одну линию (17) подачи основного топлива и по меньшей мере одну линию (19) подачи вспомогательного топлива, причем изменение подачи топлива в множестве линий (17, 19) подачи топлива включает изменение подачи топлива в по меньшей мере одной линии (19) подачи вспомогательного топлива.

5. Газотурбинный двигатель по п.2, в котором множество линий (17, 19) подачи топлива содержит по меньшей мере одну линию (17) подачи основного топлива и по меньшей мере одну линию (19) подачи вспомогательного топлива, причем изменение подачи топлива в множестве линий (17, 19) подачи топлива включает изменение подачи топлива в по меньшей мере одной линии (19) подачи вспомогательного топлива.

6. Газотурбинный двигатель по п.4, в котором при изменении подачи топлива в множестве линий (17, 19) подачи топлива общее количество топлива, подаваемое через множество линий (17, 19) подачи топлива, остается неизменным.

7. Газотурбинный двигатель по п.6, в котором при изменении подачи топлива в множестве линий (17, 19) подачи топлива общее количество топлива, подаваемого через множество линий (17, 19) подачи топлива в одну или каждую камеру (5) сгорания, остается неизменным.

8. Газотурбинный двигатель по п.7, в котором одна или каждая камера (5) сгорания снабжается через линию (17) подачи основного топлива и линию (19) подачи вспомогательного топлива, и изменение подачи топлива в множестве линий (17, 19) подачи топлива включает изменение подачи топлива в линии (19) подачи вспомогательного топлива одной или каждой камеры сгорания и соответственно противоположное изменение подачи топлива в линии (17) подачи основного топлива одной или каждой камеры сгорания.

9. Газотурбинный двигатель по любому из пп.4-8, в котором топливо, подаваемое в камеру (камеры) (5) сгорания через линию (линии) (17) подачи основного топлива, смешивают с воздухом в камере (камерах) (5) сгорания перед подачей в зону (зоны) (43) камеры (камер) (5) сгорания, в которой происходит горение, и топливо, подаваемое в камеру (камеры) (5) сгорания через линию (линии) (19) подачи вспомогательного топлива, не смешивают с воздухом в камере (камерах) (5) сгорания перед подачей в зону (зоны) (43) камеры (камер) (5) сгорания, в которой происходит горение.

10. Газотурбинный двигатель по любому из пп.1-8, в котором изменение подачи топлива в множестве линий (17, 19) подачи топлива осуществляется в зависимости от измеренного количества газа в выхлопной трубе (13) за вычетом измеренного количества газа в воздухоприемнике (1).

11. Газотурбинный двигатель по п.9, в котором изменение подачи топлива в множестве линий (17, 19) подачи топлива осуществляется в зависимости от измеренного количества газа в выхлопной трубе (13) за вычетом измеренного количества газа в воздухоприемнике (1).

12. Газотурбинный двигатель по любому из пп.1-8, в котором газом является NOx.

13. Газотурбинный двигатель по любому из пп. 1-8, 11, в котором газ содержит несколько газов, и изменение подачи топлива в множестве линий (17, 19) подачи топлива регулирует количества нескольких газов в выхлопной трубе (13) так, чтобы они оставались: (а) выше предела, ниже которого в камере (камерах) (5) сгорания возникает неустойчивое горение; и (b) ниже предела, выше которого (i) количества нескольких газов будут превышать установленные для них пределы, и (ii) в устройстве будет возникать перегрев.

14. Газотурбинный двигатель по п.9, в котором газ содержит несколько газов, и изменение подачи топлива в множестве линий (17, 19) подачи топлива регулирует количества нескольких газов в выхлопной трубе (13) так, чтобы они оставались: (а) выше предела, ниже которого в камере (камерах) (5) сгорания возникает неустойчивое горение; и (b) ниже предела, выше которого (i) количества нескольких газов будут превышать установленные для них пределы, и (ii) в устройстве будет возникать перегрев.

15. Газотурбинный двигатель по п.10, в котором газ содержит несколько газов, и изменение подачи топлива в множестве линий (17, 19) подачи топлива регулирует количества нескольких газов в выхлопной трубе (13) так, чтобы они оставались: (а) выше предела, ниже которого в камере (камерах) (5) сгорания возникает неустойчивое горение; и (b) ниже предела, выше которого (i) количества нескольких газов будут превышать установленные для них пределы, и (ii) в устройстве будет возникать перегрев.

16. Газотурбинный двигатель по п.12, в котором газ содержит несколько газов, и изменение подачи топлива в множестве линий (17, 19) подачи топлива регулирует количества нескольких газов в выхлопной трубе (13) так, чтобы они оставались: (а) выше предела, ниже которого в камере (камерах) (5) сгорания возникает неустойчивое горение; и (b) ниже предела, выше которого (i) количества нескольких газов будут превышать установленные для них пределы, и (ii) в устройстве будет возникать перегрев.



 

Похожие патенты:

Изобретение относится к области теплоснабжения и может быть использовано на котельных, имеющих два и более котла с различными характеристиками. Способ предназначен для водогрейных и паровых котельных, на которых установлено не менее двух котлов с различными характеристиками.

Изобретение относится к энергетике. .

Изобретение относится к способам управления горением в газовой турбине. .

Изобретение относится к устройствам для термической нейтрализации огневым методом жидких отходов, например промышленных стоков, образующихся на газоконденсатных и нефтяных месторождениях.

Изобретение относится к области теплоэнергетики и предназначено для сжигания жидкого топлива в котлах, нагревательных устройствах и камерах сгорания. .

Изобретение относится к газорегулирующей арматуре. .

Изобретение относится к области теплоэнергетики и может быть применено на тепловых электростанциях, использующих энергетические бурые угли открытых разрезов. .

Изобретение относится к области уничтожения отходов. .

Изобретение относится к области автоматического контроля наличия пламени при горении газообразного топлива, в частности для контроля наличия пламени поджигающих и горелочных устройств.

Изобретение относится к энергетике. .

Предохранительное устройство для анализа топочного газа для работающей на газе или нефти установки, имеющей электрическое соединение и топочный канал для горючих газов, содержит элемент для обнаружения опасного газа, выполненный с обеспечением возможности размещения в топочном канале для отслеживания топочного газа, и контроллер для автоматического регулирования соотношения газа и воздуха в топочном газе на основании сигнала от элемента для обнаружения опасного газа. Контроллер выполнен с обеспечением возможности прекращения подачи электроэнергии к работающей на газе или нефти установке, если соотношение газа и воздуха в топочном газе не может быть регулировано с достижением заданного безопасного параметра. Предпочтительно элемент для обнаружения опасного газа содержит беспроводной передатчик, а контроллер содержит беспроводной приемник таким образом, что элемент для обнаружения опасного газа выполнен с возможностью беспроводного сообщения с контроллером. Также предложены работающая на газе или нефти установка, содержащая указанное устройство и способ. Технический результат - уменьшение риска отказа работающей на газе или нефти установки и уменьшение опасного воздействия на окружающую среду дефектно работающей на газе или нефти установки. 3 н. и 13 з.п.ф-лы, 7 ил.

Изобретение относится к способу регулирования процесса сгорания, в частности, в топочном пространстве парогенератора, отапливаемого ископаемым топливом, в котором в топочном пространстве определяются пространственно разрешимые измеренные значения. Пространственно разрешимые измеренные значения преобразуются в параметры состояния, оцениваемые посредством техники регулирования, которые затем в качестве фактических значений подаются в контуры регулирования. Определенные в контурах регулирования изменения параметров регулирования в информации обратного преобразования с учетом цели оптимизации распределяются на исполнительные органы. Изобретение также относится к соответствующей системе сжигания. Изобретение позволяет повысить эффективность процесса горения. 3 н. и 18 з.п. ф-лы, 1 ил.

Изобретение может быть использовано при проектировании систем управления нагревом свечей накаливания (запальных свечей), применяемых в камерах сгорания дизелей. Способ заключается в том, что определяют электроэнергию, подаваемую на запальную свечу (С), и температуру камеры сгорания. При этом прогнозируют температуру С и используют прогнозируемую температуру С для управления подачей электроэнергии на С. Прогнозируемую температуру С получают из числового решения дифференциального уравнения (ДУ) для температуры С, причем ДУ для температуры С является нелинейным по температуре С. ДУ для температуры С получают из уравнения баланса мощности, содержащего, по меньшей мере, четыре члена Pg, Pi, Pe, Pc, где Pg моделирует электроэнергию, подаваемую на С, Pi моделирует энергию, аккумулируемую в С за единицу времени, Pe моделирует энергию излучения за единицу времени, и Pc моделирует тепловую энергию за единицу времени, причем тепловая энергия передается посредством конвекции или теплопроводности. Технический результат заключается в повышении точности управления температурой С. 5 н. и 9 з.п. ф-лы, 5 ил.

Изобретение относится к энергетике. Система управления электростанцией с мельницей для измельчения материала для ввода в систему сгорания содержит первый датчик, второй датчик, систему регулирования, компонент модуля оценки состояния, выполненный с возможностью принимать сигналы, причем компонент модуля оценки состояния выполнен с возможностью использовать первый сигнал, второй сигнал и третий сигнал, чтобы вырабатывать сигнал индикатора параметра материала и сигнал индикатора состояния системы, и компонент вывода, для выработки выходного управляющего сигнала. Изобретение позволяет повысить точность системы при реагировании на возмущения и уменьшить время реакции электростанции на изменение нагрузки. 2 н. и 12 з.п. ф-лы, 2 ил.

Изобретение относится к области энергетики. Устройство для сжигания жидкого топлива содержит удлиненное отделение для сгорания, содержащее боковые стенки, имеющие внешнюю поверхность и внутреннюю поверхность, определяющие радиальную периферию отделения для сгорания, имеющего центральную ось, проходящую от ближнего конца к дальнему концу этого отделения в продольном направлении, при этом дальний конец является открытым, обеспечивая сообщение по текучей среде изнутри отделения для сгорания и наружу этого отделения; средство для создания воздушного потока для обеспечения потока воздуха в направлении от ближнего конца отделения для сгорания к дальнему концу в направлении, параллельном центральной оси этого отделения; топливную форсунку для аэрации жидкого топлива внутри отделения для сгорания; средство для подачи топлива для подачи жидкого топлива в топливную форсунку; средство обеспечения давления для приложения давления к жидкому топливу, поданному через средство для подачи топлива; слой тепловой изоляции, расположенный радиально между центральной осью отделения для сгорания и боковыми стенками отделения, уменьшающий передачу тепла в направлении от центральной оси отделения для сгорания к боковым стенкам; термопоглощающий слой, расположенный радиально между центральной осью отделения для сгорания и изолирующим слоем, обеспечивающий поглощение тепловой энергии, созданной внутри отделения для сгорания, и ее излучение назад в отделение для сгорания в направлении к центральной оси, когда между отделением для сгорания и термопоглощающим слоем достигнуто тепловое равновесие. Средство для подачи жидкого топлива содержит устройство для циркуляции топлива, это устройство содержит топливный резервуар, выпускную трубу из топливного резервуара, впускную трубу в топливный резервуар, приводное устройство для циркуляции жидкости, регулирующий клапан для регулирования давления внутри устройства для циркуляции топлива и средство ввода жидкости для увеличения количества жидкости внутри устройства для циркуляции топлива, при этом выпускная труба или впускная труба находится в сообщении по текучей среде с аэрационной форсункой упомянутого устройства для сжигания текучего топлива таким образом, что устройство для циркуляции может подавать определенное количество топлива в это устройство, и при этом любой избыток топлива рециркулируется в топливный резервуар. Изобретение позволяет повысить качество сжигания топлива, снизить вредные выбросы. 2 н. и 14 з.п. ф-лы, 7 ил.

Изобретение относится к энергетике. Способ регулировки мобильного топливного отопителя содержит следующие этапы: включение отопителя в работу; соединение диагностического прибора с отопителем; измерение фактического содержания СО2 в отработавших газах отопителя и/или фактического коэффициента λ избытка воздуха в камере сгорания отопителя; определение заданной величины содержания СО2 и/или λ в зависимости от по меньшей мере одного текущего рабочего параметра отопителя в устройстве управления отопителя или в диагностическом приборе и вывод заданной величины содержания СО2 и/или λ через интерфейс. Изобретение позволяет повысить надежность регулировки мобильного отопителя. 3 н. и 12 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике. Работа печи контролируется посредством контроля за статистической переменной, вычисляемой из измерения тяги, и контроля за переменной процесса, связанной с работой печи. Аномальная работа печи определяется на основе статистической переменной и переменной процесса. Изобретение позволяет повысить эффективность контроля. 3 н. и 21 з.п. ф-лы, 16 ил.

Изобретение относится к области теплоэнергетики. Способ работы парового котла, по которому в топку котла подают воздух и используемый в качестве топлива природный газ, теплоту продуктов сгорания топлива отводят котловой воде и пару, после чего уходящие газы удаляют из котла в атмосферу, из барабана котла отводят продувочную воду. В топку котла впрыскивают продувочную воду, благодаря чему снижают температуру продуктов сгорания топлива в наиболее теплонапряженной части топки и подавляют образование оксидов азота в топке, количество впрыскиваемой продувочной воды регулируют по импульсу от датчика содержания оксидов азота в уходящих газах котла, уходящие газы охлаждают ниже температуры конденсации водяных паров, образующихся при впрыске в топку продувочной воды, а образовавшийся при охлаждении уходящих газов конденсат используют в пароводяном цикле котла, например, подают в деаэратор питательной воды. Изобретение направлено на снижение температуры в наиболее теплонапряженной части топки и предотвращение образования оксидов азота. 1 ил.

Изобретение относится к области теплоэнергетики. Способ работы парового котла, по которому в топку котла подают воздух и используемый в качестве топлива природный газ, теплоту продуктов сгорания топлива отводят котловой воде и пару, после чего уходящие газы удаляют из котла в атмосферу, из барабана котла отводят продувочную воду. В топку котла впрыскивают продувочную воду, благодаря чему снижают температуру продуктов сгорания топлива и подавляют образование оксидов азота в топке, количество впрыскиваемой продувочной воды регулируют по импульсу от датчика температуры продуктов сгорания топлива в наиболее теплонапряженной части топки, уходящие газы охлаждают ниже температуры конденсации водяных паров, образующихся при впрыске в топку продувочной воды, а образовавшийся при охлаждении уходящих газов конденсат используют в пароводяном цикле котла, например подают в деаэратор питательной воды. Изобретение направлено на повышение экологической безопасности работы котельной установки путем снижения температуры в наиболее теплонапряженной части топки. 1 ил.

Термостат // 2641177
Изобретение относится к области газовых бытовых кухонных плит и, в частности, к термостату для бытовых кухонных плит. Термостат для бытовых кухонных плит, работающих от газа, содержит корпус, в котором образованы впускной канал и выпускной канал, выполненные с возможностью получения газового потока от подающего источника и для подачи такого газового потока в газовую горелку. Также содержит камеру, имеющую цилиндрическую форму и сообщающуюся по текучей среде с впускным каналом. Камера выполнена с возможностью сообщения по текучей среде с выпускным каналом, либо непосредственно, через основное отверстие, образованное на ее одном конце, либо опосредованно, через вспомогательный канал, который образован в корпусе термостата и проходит в выпускной канал, обходя указанное основное отверстие. Указанные основное отверстие и вспомогательный канал соответственно имеют такие размеры, чтобы обеспечить максимальный и минимальный расходы газа. Термостат дополнительно содержит клапан, имеющий цилиндрическую форму и осуществляющий регулирование расхода газа. Указанный клапан представляет собой выполненный как одно целое клапан, размещенный в камере соосно с ней и перемещаемый между первым положением, в котором основное отверстие полностью освобождено, таким образом обеспечивая проход потока газа в выпускной канал, и вторым положением, в котором основное отверстие полностью закрыто клапаном, и газовый поток достигает выпускного канала только через вспомогательный канал. Клапан содержит пару фланцев, образованных на его свободных концах. Первый фланец обращен к основному отверстию камеры и имеет диаметр, обеспечивающий его закрывание в указанном втором положении. Второй фланец закрывает камеру на ее противоположном конце. Второй фланец имеет окружную канавку, выполненную с возможностью размещения уплотнительного элемента клапана, предотвращающего выпуск газа из камеры, при этом диаметры первого и второго фланцев, по существу, соответствуют диаметру камеры. Впускной канал и выпускной вспомогательный канал находятся в сообщении по текучей среде через цилиндрическую камеру для любого осевого положения клапана. Благодаря этим признакам, конструктивная конфигурация корпуса термостата и его каналов является гораздо более компактной, функциональной и дешевой, чем конструктивная конфигурация термостатов, известных в данной области техники. 11 з.п. ф-лы, 4 ил.
Наверх