Беспроводная система измерения температуры опорных и упорных подшипников скольжения

Изобретение относится к области машиностроения и касается обеспечения контроля температуры подшипников скольжения с самоустанавливающимися колодками или цельной втулкой различного динамического оборудования, например центробежных компрессоров. Беспроводная система измерения температуры опорных и упорных подшипников содержит, по меньшей мере, одно устройство (1) измерения температуры, встроенное в несущий элемент подшипника скольжения (опорная колодка (2) и/или упорная колодка (3)), и соединенное с, по меньшей мере, одним устройством (5) передачи измеренных значений, а также устройство (6) приема сигналов и передачи их в систему автоматического управления и источник электропитания перечисленных устройств. По меньшей мере, одно устройство (5) также встроено в несущий элемент подшипника скольжения. Каждое устройство (1) измерения температуры вместе с соответствующим устройством (5) передачи измеренных значений имеют контур питания. Устройство (6) приема сигналов и передачи их в систему автоматического управления и источник электропитания, снабженный излучателем (9) электромагнитных волн, установлены на удалении от указанного несущего элемента подшипника скольжения с возможностью приема сигналов от устройства (5) и с возможностью передачи электромагнитного излучения для возбуждения ЭДС в катушке питания устройства (1) и устройства (5). Технический результат: обеспечение процесса измерения температуры и передачи данных в систему автоматического управления без взаимного механического воздействия друг на друга деталей подшипника и элементов системы измерения температуры, что повышает надежность работы системы. 5 з.п. ф-лы, 2 ил.

 

Изобретение относится к области машиностроения и касается обеспечения контроля температуры подшипников скольжения с самоустанавливающимися колодками или цельной втулкой различного динамического оборудования, например центробежных компрессоров.

Известны системы измерения температуры опорных и упорных подшипников скольжения динамического оборудования - компрессоров, электродвигателей, турбин и др., когда работу подшипников оценивают по температуре масла на сливе из подшипников. Для этого устанавливают в коллекторе слива масла или непосредственно в сливной камере подшипника датчики температуры, от которых поступают данные в систему автоматического управления.

Недостатком известной системы является то, что контроль состояния подшипников по температуре масла на сливе из подшипников не обеспечивает достаточную надежность работы оборудования, так как датчик фиксирует среднюю температуру сливаемого масла, тогда как температура самих колодок или втулки подшипника может быть значительно выше, особенно в нагруженном участке. Кроме того, такая система измерений температуры имеет большую инерционность.

Известна также система измерения температуры опорных и упорных подшипников скольжения с самоустанавливающимися колодками или цельной втулкой, например, центробежного компрессора, включающая в себя, по крайней мере, одно устройство измерения температуры с датчиком температуры, встроенным в колодку или втулку, устройство передачи измеренных значений, устройство приема сигналов и передачи их в систему автоматического управления, электропитание перечисленных устройств, (В.Б.Шнепп. «Конструкция и расчет центробежных компрессорных машин» издательства «Машиностроение», г.Москва, 1995 г., ББК 31.76, Шн.76, УДК 621.515, раздел 5, подраздел 5.4 «Подшипники центробежных компрессоров», стр.126). Установка датчика температуры в колодке или втулке подшипника предполагает измерение температуры их рабочей поверхности в наиболее нагруженном месте. Это конструктивное решение обеспечивает измерение максимальных температур в подшипнике с большой точностью и позволяет предупредить возможные нештатные ситуации.

Недостаток известной системы заключается в следующем. Информация о значении температуры колодки или втулки от датчика температуры поступает в устройство приема сигналов по проводам, проложенным в колодке или втулке и в корпусах подшипника и компрессора. Нередко происходит обрыв контактов в соединении датчика с проводами и прекращение передачи сигнала, обусловленные, с одной стороны, неквалифицированными действиями персонала при монтаже подшипников и системы измерений температуры, а с другой - постоянными перемещениями самоустанавливающихся колодок или подвижной втулки относительно проводов во время работы оборудования. Увеличение сечения проводов для обеспечения их более надежного соединения с датчиком ограничивает подвижность колодок и препятствует правильной установке последних во время работы.

Задачей изобретения является повышение надежности работы системы.

Технический результат предложенного изобретения заключается в обеспечении процесса измерения температуры и передачи данных в систему автоматического управления без взаимного механического воздействия друг на друга деталей подшипника и элементов системы измерения температуры.

Технический результат достигается тем, что в беспроводной системе измерения температуры опорных и упорных подшипников, содержащей, по меньшей мере, одно устройство измерения температуры, встроенное в несущий элемент подшипника скольжения и соединенное с, по меньшей мере, одним устройством передачи измеренных значений, а также устройство приема сигналов и передачи их в систему автоматического управления и источник электропитания перечисленных устройств, согласно изменению, по меньшей мере, одно устройство передачи измеренных значений также встроено в несущий элемент подшипника скольжения, каждое устройство измерения температуры вместе с соответствующим устройством передачи измеренных значений имеют контур питания, а устройство приема сигналов и передачи их в систему автоматического управления и источник электропитания, снабженный излучателем электромагнитных волн, установлены на удалении от указанного несущего элемента подшипника скольжения с возможностью приема сигналов от устройства передачи измеренных значений и с возможностью передачи электромагнитного излучения для возбуждения ЭДС в катушке контура питания устройства измерения температуры и устройства передачи измеренных значений.

Несущий элемент подшипника скольжения представляет собой самоустанавливающуюся колодку, или подвижную втулку, или неподвижную втулку.

Кроме того, каждое устройство измерения температуры вместе с соответствующим устройством передачи измеренных значений имеют контур питания с катушкой, предназначенной для возбуждения в ней ЭДС излучателем электромагнитных волн.

Предпочтительно каждое устройство измерения температуры вместе с соответствующим устройством передачи размещены в одном блоке, корпус которого выполнен в виде цилиндра, размещенного в отверстии, выполненном в несущем элементе подшипника скольжения.

Предпочтительно, чтобы каждый блок был установлен в отверстии несущего элемента подшипника скольжения при помощи резьбового соединения.

Предпочтительно, чтобы свободное пространство отверстия несущего элемента подшипника скольжения с установленным в нем блоком было заполнено синтетическим пластикатом.

Сущность предлагаемой беспроводной системы измерений температуры подшипников скольжения поясняется чертежами, где

- на фиг.1 представлена система измерения температуры опорно-упорного подшипника с самоустанавливающимися опорными и упорными колодками центробежного компрессора;

- на фиг.2 представлена система измерения температуры опорного упруго-демпферного подшипника с подвижной втулкой центробежного компрессора.

Беспроводная система измерения температуры опорных и упорных подшипников скольжения содержит, по меньшей мере, одно устройство 1 измерения температуры с датчиком температуры, встроенным в несущий элемент подшипника скольжения - в опорную колодку 2 и/или упорную колодку 3 в опорно-упорном подшипнике (фиг.1) или подвижную, или неподвижную втулку 4 в упорном подшипнике (фиг.2), соединенное с устройством 1 измерения температуры устройство 5 передачи измеренных значений, устройство 6 приема сигналов и передачи их в систему автоматического управления и источник электропитания перечисленных устройств. Устройство 1 измерения температуры и устройство 5 передачи измеренных значений могут быть размещены в одном блоке 7, который встроен в опорную колодку 2, или упорную колодку 3, или втулку 4 подшипника, а электропитание блока 7 и передача от него измеренных значений температуры в устройство 6 приема и передачи сигналов выполнены по беспроводной схеме. Устройство 6 приема сигналов и передачи их в систему автоматического управления установлено на расстоянии от блока 7, например на кожухе 8 подшипника и снабжено излучателем 9 электромагнитных волн для электропитания устройств 1 и 5 и преобразователем сигнала (не показан) в стандартный формат для его дальнейшего транслирования в систему автоматического управления по проводу 10. Одно устройство 6 приема и передачи сигналов может взаимодействовать с несколькими блоками 7, установленными в колодках 2, 3 или втулке 4 подшипников.

Корпус блока 7 может быть выполнен в виде цилиндра, а место для блока 7 в колодках 2, 3 или втулке 4 - в виде отверстия. На наружном диаметре корпуса блока 7 может быть выполнена резьба, и он может быть установлен в колодках 2, 3 или втулке 4 при помощи резьбового соединения.

В колодках 2, 3 или втулке 4 место для блока 7 после установки последнего может быть заполнено синтетическим пластикатом 11 для фиксации блока 7. Корпус 12, 13 подшипника, в котором установлены колодки 2, 3 или втулка 4, может быть выполнен из нержавеющей стали для обеспечения свободного прохождения через него радиоволн.

Предлагаемая система измерения температуры подшипников скольжения работает следующим образом. При подаче электроэнергии в устройство 6 приема и передачи сигналов в работу включаются его элементы, в том числе и излучатель 9 магнитных волн. Электроволны, испускаемые излучателем 9, инициируют (возбуждают) ЭДС в катушке контура питания, размещенного в блоке 7, вследствие чего в устройство 1 измерения температуры и в устройство 5 передачи измеренных значений поступает электропитание. Датчик температуры устройства 1 измеряет температуру колодок 2, 3 или втулки 4, и по внутренней связи блока 7 сигнал поступает в устройство 5 передачи измеренных значений. Сигнал из устройства 5 передается в виде радиоволн в устройство 6 приема сигналов, которое может располагаться на расстоянии до 0,5 метров от блоков 7, например на кожухе 8 подшипника. Корпус 12, 13 подшипника, выполненный из нержавеющей стали, а также синтетический пластикат 11, фиксирующий положение блока 7 в колодках 2, 3 или втулке 4, не препятствуют свободному прохождению через них радиоволн. Из устройства 6 приема сигналов данные о температурах в колодках 2, 3 или втулке 4 с помощью преобразователя сигнала в стандартный формат передаются по проводу 10 в систему автоматического управления.

Такое выполнение системы измерения температуры подшипников скольжения исключает механическое воздействие подвижных деталей подшипника - колодок или втулки - на соединение датчика температуры с системой управления динамического оборудования, так как соединение выполнено беспроводным. По этой же причине нет и влияния элементов системы измерений на колодки или втулку подшипника, а значит и на его работу. Выполнение в одном блоке устройства измерения температуры и устройства передачи измеренных значений обеспечивает жесткую связь между ними и возможность создания компактной конструкции, которая свободно размещается в колодке или втулке подшипника. При этом упрощаются сборка и монтаж подшипника.

Таким образом, выполнение системы измерения температуры с помощью встроенного в колодку или втулку подшипника блока измерений и передачи сигнала с беспроводным питанием и беспроводной передачей значений температуры повышает надежность работы системы измерений, подшипников и динамического оборудования в целом, упрощает сборку и монтаж подшипников.

1. Беспроводная система измерения температуры опорных и упорных подшипников скольжения, содержащая, по меньшей мере, одно устройство измерения температуры, встроенное в несущий элемент подшипника скольжения, и соединенное с, по меньшей мере, одним устройством передачи измеренных значений, а также устройство приема сигналов и передачи их в систему автоматического управления и источник электропитания перечисленных устройств, отличающаяся тем, что, по меньшей мере, одно устройство передачи измеренных значений также встроено в несущий элемент подшипника скольжения, каждое устройство измерения температуры вместе с соответствующим устройством передачи измеренных значений имеют контур питания, а устройство приема сигналов и передачи их в систему автоматического управления и источник электропитания, снабженный излучателем электромагнитных волн, установлены на удалении от несущего элемента подшипника скольжения с возможностью приема сигналов от устройства передачи измеренных значений и с возможностью передачи электромагнитного излучения для возбуждения ЭДС в катушке контура питания соответствующих устройства измерения температуры и устройства передачи измеренных значений.

2. Система по п.1, отличающаяся тем, несущий элемент подшипника скольжения представляет собой самоустанавливающуюся колодку.

3. Система по п.1, отличающаяся тем, несущий элемент подшипника скольжения представляет собой подвижную или неподвижную втулку.

4. Система по п.1, отличающаяся тем, что каждое устройство измерения температуры вместе с соответствующим устройством передачи размещены в одном блоке, корпус которого выполнен в виде цилиндра, размещенного в отверстии, выполненном в несущем элементе подшипника скольжения.

5. Система по п.4, отличающаяся тем, что указанный блок установлен в отверстии несущего элемента подшипника скольжения при помощи резьбового соединения.

6. Система по п.4, отличающаяся тем, что свободное пространство отверстия несущего элемента подшипника скольжения с установленным в нем блоком заполнено синтетическим пластикатом.



 

Похожие патенты:

Изобретение относится к вибродиагностике машин и механизмов и может использоваться для диагностирования машин в условиях производства или/и эксплуатации при отсутствии машин-эталонов с известными погрешностями, т.е.

Изобретения относятся к измерительной технике, в частности к области контроля состояния газотурбинных двигателей, и могут быть использованы для контроля вибрационных явлений, появляющихся в газотурбинном двигателе летательного аппарата во время работы.

Устройство относится к электроизмерительной технике, в частности к измерению износа подшипниковых узлов погружных электродвигателей, и может быть использовано в народном хозяйстве для бесперебойного водоснабжения.

Изобретение относится к машине и способу контролирования состояния предохранительного подшипника машины. Способ контролирования состояния предохранительного подшипника (14) машины (12) заключается в том, что предохранительный подшипник (14) улавливает роторный вал (1) машины (12) при выходе из строя магнитного подшипника (6) машины (12).

Изобретение относится к области измерительной техники и может быть использовано для контроля состояния новых и бывших в эксплуатации подшипников. Способ заключается в следующем: подготавливают подшипник к сборке в соответствие с регламентированной технологическим процессом процедурой, устанавливают его на стендовое оборудование, имитируют условия и режимы работы в изделии и измеряют нормированное интегральное время микроконтактирования, по которому определяют вид смазки в подшипнике путем его сравнения со значением, соответствующим переходу к граничной смазке, 0 или 1.

Изобретение относится к контролю и диагностике технического состояния межроторных подшипников (МРРП) двухвальных авиационных газотурбинных двигателей (ГТД) и может быть использовано в авиадвигателестроении для раннего выявления дефектов в процессе изготовления, эксплуатации, технического обслуживания и/или ремонта ГТД.

Изобретение относится к области подшипниковой техники и направлено на точное выявление дефектов работающих подшипников качения на ранней стадии их возникновения, что обеспечивается за счет того, что вибрации работающего подшипника, измеренные в виде временной диаграммы аналогового сигнала волнового процесса, преобразуют в цифровые данные и предварительно фильтруют известным способом.

Изобретение относится к роторно-статорным узлам, в которых используются магнитные подшипники и, в частности, к способам тестирования для тестирования узла ротора и вала до изоляции.

Изобретение относится к области измерительной техники в машиностроении и направлено на повышение качества сборки шпиндельных узлов металлорежущих станков, что обеспечивается за счет того, что изобретение содержит корпус и установленные в нем вращающийся образцовый шпиндель с двухрядным роликоподшипником.

Изобретение относится к области эксплуатации машин и может быть использовано при диагностировании двигателей внутреннего сгорания (ДВС). .

Изобретение относится к области температурных измерений и может быть использовано для измерения скорости изменения температуры в автоматизированных системах управления нагревом изделий, а также колодцев и печей в металлургической промышленности.

Изобретение относится к винодельческой промышленности и может быть использовано, в частности, при производстве шампанских вин. Регулирование распределения температуры в цилиндрическом резервуаре с виноматериалом, имеющем снаружи "рубашку" с циркулирующим в ней хладоносителем по замкнутому контуру, включающем вентиль, управляемый электроприводом, компрессор и соединяющие их и "рубашку" трубопроводы, осуществляют путем измерения в центре резервуара температуры виноматериала.

Изобретение относится к винодельческой промышленности и может быть использовано, в частности, при производстве шампанских вин. Регулирование распределения температуры в цилиндрическом резервуаре с виноматериалом, имеющем снаружи "рубашку" с циркулирующим в ней хладоносителем по замкнутому контуру, включающем вентиль, управляемый электроприводом, компрессор и соединяющие их и "рубашку" трубопроводы, осуществляют путем задания требуемой температуры хладоносителя в «рубашке» резервуара, для чего измеряют в центре резервуара температуру виноматериала.

Изобретение относится к устройствам контроля температуры сыпучих материалов при их длительном хранении и может быть использовано в устройствах, контролирующих температурный режим в складах силосного типа.

Изобретение относится к устройствам, предназначенным для измерения параметров потока флюида (нефть, вода, газ и их смеси), таких как температура, скорость и фазовый состав, и может быть использовано при проведении геофизических исследований скважин, а также при контроле за транспортировкой жидких углеводородов по трубопроводной системе.

Изобретение относится к области приборостроения и может быть использовано в медицинских целях для измерения температуры тела пациентов. Заявлен электронный термометр, в котором состояние контакта с человеческим телом может подтверждаться с помощью простой, удобной для сборки конфигурации.

Изобретение относится к измерительной технике и может быть использовано при производстве графитированных углеродных конструкционных материалов и графитированных электродов для электрометаллургических печей.

Изобретение относится к области термометрии и может быть использовано в нефтяной, газовой, химической, пищевой промышленности, а также в других областях техники. .

Изобретение относится к электромашиностроению и может быть использовано в системах контроля температуры и влажности тяговых электрических машин в процессе эксплуатации.

Изобретение относится к области термометрии и может быть использовано при измерении температуры тела человека. .

Устройство относится к электроизмерительной технике, в частности к измерению износа подшипниковых узлов погружных электродвигателей, и может быть использовано в народном хозяйстве для бесперебойного водоснабжения.
Наверх