Способ прогнозирования течения липидемии


 


Владельцы патента RU 2517054:

Федеральное государственное бюджетное учреждение "Научно-исследовательский институт кардиологии" Сибирского отделения Российской академии медицинских наук (RU)
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)
Государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный медицинский университет" Министерства здравоохранения Российской Федерации (RU)

Изобретение относится к области медицины и может быть использовано в кардиологии и терапии для прогнозирования течения липидемии. Способ включает исследование сыворотки крови до и после лечения, где дополнительно перед исследованием проводят трехкратное замораживание и оттаивание сыворотки крови по 20 минут и 10 минут соответственно, дезинтеграцию, а затем определяют аполипопротеин B, липопротеин(а), их соотношение, общий холестерол, триацилглицерол. При увеличении отношения аполипопротеина B к липопротеину(а) на 40% и более, снижении общего холестерола на 25% и более по сравнению с исходным уровнем и триацилглицерола на 20% и более оценивают прогноз течения липидемии как благоприятный. Изобретение обеспечивает повышение точности и эффективности прогнозирования течения липидемии. 1 пр.

 

Изобретение относится к медицине и может быть использовано в кардиологии и терапии.

Известны способы разделения на фракции липопротеинов крови методом аналитического ультрацентрифугирования (А.Н.Климов, Н.Г.Никульчева. Липиды, липопротеины и атеросклероз. - Питер, пресс, с.98-102).

Известны способы разделения на фракции липопротеинов (ЛП) в полиакриламидном геле (Н.Н.Шацкая. Биохимические исследования в оценке состояния сердечно-сосудистой системы. В кн. «Методы исследований в профпатологии», М., 1988, с.95-97).

Известны также способы разделения на фракции ЛП путем электрофореза в геле агарозе (Лаб. методы исследования / под редакцией В.В.Меньшикова. М.: Медицина. 1987, с.248 -249), SU 1720015 A, 15.03.1992. RU 2063040 C1, 27.06.1996. RU 2115121 C1, 10.07.1998. RU 2097038 C1, 27.11.1997. RU 2060034 C1, 20.05.1996. ЕР 0074610 A, 23.03.1983.

Недостатком данных способов является то, что они не позволяют выявить все фракции апопротеинов, а именно аполипопротеинов B и липопротеинов(а). Под липопротеином(а) понимают аполипопротеин(а), т.е. апо-белок липопротеина(а) (ЛП(а)). Термин используется в каталогах к реагентам биохимического анализатора Konelab (Финляндия) для определения апо-белка ЛП(а). Поэтому в описании способа в связи с применяемым методом анализа используется термин липопротеин(а) вместо аполипротеина(а).

Известен способ прогнозирования течения ишемической болезни сердца. RU 2439582 C1, 10.01.2012. Данный способ является наиболее близким к предлагаемому по технической сущности и достигаемому результату и выбран в качестве прототипа.

Недостатком данного способа является то, что он не позволяет выявить аполипротеин B и липопротеин(а). Это связано с тем, что липопротеин(а), с одной стороны. является наиболее атерогенным, а, с другой, в норме выявляется в очень низкой концентрации и увеличивается в крови при липидемии атерогенного генеза. Следовательно, для ранней диагностики заболевания и оценки прогнозирования течения липидемии особенно важно выявление липопротеина(а) наряду с максимально полным определением аполипопротеина B, соотношения аполипротеина B к липопротеину(а), определения общего холестерола, триацилглицерола крови до и после лечения.

Целью предлагаемого изобретения является повышение точности и эффективности способа.

Указанная цель достигается тем, что сыворотку крови до и после лечения перед исследованием обрабатывают трехкратным замораживанием и оттаиванием по 20 минут и 10 минут соответственно с последующей дезинтеграцией, а затем определяют аполипопротеин В, липопротеин (а), их соотношение, общий холестерол, триацилглицерол, и при увеличении отношения аполипопротеина В к липопротеину (а) на 40% и более по сравнению с исходным уровнем и снижении общего холестерола на 25% и более и триацилглицерола на 20% и более по сравнению с исходным уровнем оценивают прогноз течения липидемии как благоприятный.

Новым в данном способе является предварительная обработка сыворотки крови трехкратным замораживанием и оттаиванием по 20 минут и 10 минут соответственно с последующей дезинтеграцией, что позволяет определить максимальную концентрацию аполипопортеина В и липопротеина (а), их соотношения, общий холестерол, триацилглицерол для оценки поргнозирования течения липидемии.

Следовательно, только комплексная модернизация способа-прототипа позволяет получить желаемый результат.

Каждый вновь введенный в формулу изобретения признак выполняет функцию повышения точности и эффективности способа. Трехкратное замораживание 0,5 мл сыворотки крови с последующим трехкратным оттаиванием в течение 20 минут и 10 минут соответственно с последующей дезинтеграцией позволяет максимально выявить содержание аполипопортеина В и липопротеина (а), общего холестерола, триацилглицерола до и после лечения для прогнозирования течения липидемии.

Исследование аполипопротеинов и липопротеинов разных классов при диагностике липидемии и ишемической болезни сердца (ИБС) рекомендовано Всероссийским научным обществом кардиологов согласно положению рекомендаций Европейского общества по изучению атеросклероза - «Диагностика и коррекция нарушения липидного обмена с целью профилактики и лечения атеросклероза» (г.Москва, 2005 г., Клиническая лабораторная диагностика, 10, 2008 г., с.21-32).

В настоящее время перспективными являются методы исследования липидов и липопротеинов. В лабораторной практике все больше используются прямые методы определения липопротеинов (ЛП) и их аполипротеинов, а именно методы иммунопреципитации.

Увеличение концентрации ЛП abnormal или ЛП(а) и его аполипротеина(а) в крови считают независимым фактором риска атеросклероза. При содержании в крови ЛП(а) более 300 мкг/мл при норме 0-300 мкг/мл риск возникновения коронарного атеросклероза увеличивается вдвое, а при одновременном повышении уровня ЛП(а), холестерола (ХС) и ХС ЛПНП - в пять раз (J.A. М.А. - 2001. - Vol.285. - P.2486-2497, Eur. Heart. J. - 2003. - Vol.24. - P.1601-1610).

Липопротеин(а) является предиктором атеросклероза, свидетельствует о генетической предрасположенности к сердечно-сосудистым заболеваниям, фатальному и нефатальному инфаркту миокарда и ишемическому инсульту.

В настоящее время особое внимание уделяется исследованию фракции липопротеина(а), в связи с чем разрабатываются способы лабораторной диагностики, позволяющие в максимальной концентрации исследовать этот липопротеин крови. Он относится к апо-В-содержащим липопротеинам, богатым холестеролом (ХС). ЛП(а) идентичен «тонущим» пре- -ЛП (sinking pre- -Lp), имеющим при электрофорезе подвижность пре- -ЛП. ЛП (а) содержат 27% белка, 8% углеводов и 65% липидов, из которых ЭХС составляют 59%, НЭХС 14%, ФЛ 14%.

Белковым компонентом ЛП (а) является высокогликозилированный полипептид - апо(а), имеющий близкое структурное сродство к плазминогену - одному из факторов системы свертывания - противосвертывания крови. При росте концентрации как ЛП (а), так и его модифицированных форм в крови нарушаются процессы микроциркуляции в кровеносных артериях с возможным образованием микротромбов.

Благодаря наличию в структуре апо(а) сиаловых кислот ЛП(а) более отрицательно заряжен по сравнению с - ЛП в электрическом поле, лучше растворим в воде, может взаимодействовать с ионами металлов (кальция). Этот липопротеин и его модифицированные формы гетерогенны. Все это свидетельствует об особой роли ЛП(а) и модифицированных ЛП(а) в атерогенезе.

ЛП(а) может взаимодействовать с ЛПНП-рецепторами, оказывая слабое влияние на активность ГМК-КоА редуктазы, на этерификацию ХС. Период полураспада ЛП(а) длиннее, чем у ЛПНП и составляет 3,3 суток. Содержание ЛП(а) в крови в норме не превышает 30 мг/л. При высокой концентрации в крови ЛП(а) выявляется в местах поражения сосудов в области скопления фибриногена. Повышенная концентрация ЛП(а) часто сочетается с IIа, IIб типами гиперлипопротеинемий, при которых часто выявляются модифицированные ЛП. Поэтому в клинической практике крайне важно определение ЛП(а) одновременно с определением белков острой фазы воспаления. Установлено, что большинство гиполипидемических препаратов не влияет на повышенный уровень ЛП(а).

Фракция ЛП(а) гетерогенна. Установлено, что при электрофорезе ЛП(а) находятся в области - глобулинов, но до 5% ЛП(а) при этом могут выявляться в области - глобулинов. По причине такой выраженной гетерогенности достаточно сложно оценить при электрофорезе всю фракцию ЛП(а), а тем более ее минорные фракции, которые могут оставаться на линии старта, если размер их частиц достаточно велик. Поэтому использование иммуноприципетации при исследовании липопротеина(а) и аполипротеина В позволяет наиболее точно определить уровень этих липопротеинов в крови.

Обработка 0,5 мл сыворотки крови методом трехкратного замораживания и оттаивания с последующей дезинтеграцией позволяет определить максимальную концентрацию аполипротеинов, общего холестерола и триацилглицерола в крови пациента.

Усовершенствование способа касается трехкратного замораживания и оттаивания по 20 минут и 10 минут соответственно с последующей дезинтеграцией крови пациента до и после лечения с определением аполипопротеина B, липопротеина(а), их соотношения и оценки общего холестерола и триацилглицерола.

Указанное выше время обработки сыворотки пробы является оптимальным. Проведение этой процедуры менее 20 минут и 10 минут или более 20 минут и 10 минут соответственно не улучшает результатов исследования аполипопротеинов. Улучшает результат исследования дезинтеграция сыворотки крови.

Поскольку липопротеин(а) наиболее атерогенен, очень важно на ранних стадиях заболевания выявлять максимальное содержание в крови липопротеина(а). Это позволяет диагностировать липидемию при ишемической болезни сердца еще до стадии значительных изменений других клинико-лабораторных показателей, повышает точность диагностики заболевания. В свою очередь таким пациентам рано назначается патогенетически обоснованная терапия. Не менее важно выявление липопротеина(а) для оценки эффективности терапии заболевания и прогнозирования течения липидемии при ишемической болезни сердца.

Все сказанное свидетельствует о крайней важности разработки способов оценки эффективности лечения липидемии и способов прогнозирования течения липидемии, позволяющих наиболее полно выявлять липопротеин(а), а также аполипопротеин В, уровень общего холестерола и триацилглицерола крови.

Существенные признаки, характеризующие изобретение, проявили в заявляемой совокупности новые свойства, явным образом не вытекающие из уровня техники в данной области и неочевидные для специалиста.

Идентичной совокупности признаков не обнаружено при изучении патентной и научно-медицинской литературы.

Данное изобретение может быть использовано в практическом здравоохранении для повышения точности оценки эффективности лечения липидемии у больных ИБС и прогнозирования течения липидемии при ИБС.

Таким образом, следует считать данное техническое решение соответствующим условиям патентоспособности: «Новизна», «Изобретательский уровень», «Промышленная применимость».

Способ осуществляется следующим образом поэтапно.

1. 0,5 мл сыворотки крови трехкратно замораживают и оттаивают по 20 минут и 10 минут соответственно.

2. Далее 0,5 мл сыворотки крови обрабатывают дезинтегратором «Microsonic ТМ» для полной дезинтеграции липопротеинов крови и максимально точного определения концентрации общего холестерола и триацилглицерола крови. Дезинтеграцию липопротеинов осуществляют Ultrasonic cell Disruptor производства Heat systems, JWC, 1938, New Jork 11735, Model Xh 2005, serial NO, работающий с характеристикой электрического тока 50 вольт, 1 ампер, мощностью 50 ватт, частотой тока 20 килогерц.

3. В сыворотке крови пациента определяют липопротеин(а) с помощью набора для Konelab.

Методика определения основана на измерении иммунопреципитации, усиленной полиэтиленгликолем (ПЭГ), при длине волны 340 нм. В анализатор Konelab устанавливается исследуемый образец сыворотки крови пациента либо образец сыворотки крови, разведенный разбавителем для образца в 2 раза в случае высокой концентрации липопротеина(а) в крови. Затем устанавливается реактив с буферным раствором, содержащий избыток специфической антисыворотки. В анализаторе автоматически проводится исследование пробы сыворотки крови пациента. Регистрируется увеличение поглощения света, вызванное иммунопреципитацией. Изменение светопоглощения пропорционально концентрации липопротеина(а), содержащегося в сыворотке крови пациента. Анализатор Konelab автоматически готовит серию из стандартного калибратора липопротеина(а) (код 981916) в соответствии с установленными параметрами. Калибровочная кривая строится исходя из значений, полученных при измерении отклика калибраторов с применением сплайнового сглаживания. Результат исследования пробы сыворотки крови пациента после ее реакции с антисывороткой к липопротеину(а) появляется на калибровочной кривой в виде точки. По горизонтали на графике указывается концентрация липопротеина(а) в мг/л, а по вертикали абсорбция (A). Следовательно, определяется значение абсорбции пробы, которая в автоматическом режиме обозначается результирующей концентрацией липопротеина(а), выраженной в мг/л. Выполнение анализа возможно вплоть до концентрации 8100 мг/л (8,1 г/л) липопротеина(а) и минимальном значении 30 мг/л.

Установленное значение нормы липопротеина(а) 31-150 мг/л. При липидемии атерогенного генеза уровень липопротеина (а) увеличивается в диапазоне 310-4200 мг/л (0,3-4,2 г/л).

Сравнительное исследование проводилось в соответствии с NCCLS документом EP-9А с использованием коммерческой нефелометрической методики, которая служила в качестве эталона с концентрацией липопротеина(а) в образцах 69-1622 мг/л.

4. В сыворотке крови пациента определяют аполипопротеин В с помощью набора для Konelab.

Методика определения основана на измерении иммунопреципитации, усиленной полиэтиленгликолем (ПЭГ), при длине волны 340 нм. В анализатор Konelab устанавливается исследуемый образец сыворотки крови пациента либо образец сыворотки крови, разведенный разбавителем для образца в 2 раза в случае высокой концентрации аполипопротеина B в крови. Затем устанавливается реактив с буферным раствором, содержащий избыток специфической антисыворотки. B анализаторе автоматически проводится исследование пробы сыворотки крови пациента. Регистрируется увеличение поглощения света, вызванное иммунопреципитацией. Изменение светопоглощения пропорционально концентрации аполипопротеина B, содержащегося в сыворотке крови пациента. Анализатор Konelab автоматически готовит серию из стандартного калибратора апо А-1/В: лиофилизированного, на основе человеческого материала (концентрация аполипопротеина B в восстановленном калибраторе указана на этикетке флакона). Калибровочная кривая строится исходя из значений, полученных при измерении отклика калибраторов с применением сплайнового сглаживания. Результат исследования пробы сыворотки крови пациента после ее реакции с антисывороткой к аполипопротеину В появляется на калибровочной кривой в виде точки. По горизонтали на графике указывается концентрация аполипопротеина B в г/л, а по вертикали абсорбция (A). Следовательно определяется значение абсорбции пробы, которая в автоматическом режиме обозначается результирующей концентрацией аполипопротеина В, выраженной в г/л. Выполнение анализа возможно вплоть до концентрации аполипопротеина В, равной 13,1 г/л при минимальном значении 0,05 г/л.

Установленное значение нормы для м. 0,63-1,88 г/л, для ж. 0,56-1,82 г/л. При липидемии атерогенного генеза уровень аполипопротеина В увеличивается в диапазоне 1,9-13,1 г/л.

Сравнительное исследование проводится в соответствии с инструкцией к анализатору NCCLS документом EP-9А с использованием коммерческой нефелометрической методики, которая служила в качестве эталона с концентрацией аполипопротеина B в образцах 0,4-2,21 г/л.

Для более точной характеристики ранней стадии липидемии впервые было определено отношение аполипопротеина В к липопротеину (а) как наиболее атерогенной фракции липопротеинов.

Установлено нормально значение отношения аполипропротеина B к липопротеину(а), превышающее 20,6. Значение этого соотношения снижается при липидемии и становится меньше 20,5.

5. Холестерол определяли набором ThermoFisher для Konelab. Холестерол определяли энзиматическим методом. Холестерол окисляется холестеролоксидазой до холестенона и перекиси водорода. В результате реакции пероксида водорода с несколькими реагентами образуется хромофор, оцениваемый количественно при 550 нм. Результат вычисляется автоматически с использованием калибровочной кривой.

6. Тригицерол определяли набором ThermoFisher для Konelab энзиматическим методом.

Принцип метода:

триацилглицерол ЛПЛ→глицерол+жирная кислота

глицерол+АТФ ГК→глицерол-3 фосфат+АДФ

глицерол-3 фосфат+O2→дигидроксиацетон+Н2O2

ДГБС+2Н2O2+4-ААП ПОД→Хинонимин+4Н2O

Интенсивность окраски реакционной смеси прямо пропорциональна концентрации триацилглицеролов в пробе. Нормальные величины в сыворотке крови - до 1,71 ммоль/л.

В анализатор Konelab устанавливается исследуемый образец сыворотки крови пациента. Затем устанавливается рабочий реагент. Автоматически производится исследование пробы. Регистрируется оптическая плотность раствора, пропорциональная полученной окраске раствора. Калибровочная кривая строится исходя из значений, полученных при измерении отклика калибраторов с применением сплайнового сглаживания.

Описываем возможные осложнения при выполнении исследования и способы их устранения.

Предотвращение возможных ложноположительных и ложноотрицательных результатов связано с предельно точным выполнением методов исследования. Ложноположительный результат возможен крайне редко и может быть обусловлен только нарушением техники разведения сыворотки крови при высокой концентрации в ней липидов. Перед установкой реагентов на борт анализатора Konelab необходимо удостовериться в отсутствии пузырьков во флаконах и на поверхности реагентов.

Для подтверждения работоспособности предлагаемого способа и достижения технического результата были обследованы группа контроля (n=10) и группа больных ишемической болезнью сердца (ИБС), т.к. в основе патогенеза ИБС лежит липидемия атерогенного генеза (n=30). Обе группы обследованы с помощью предлагаемого способа и способа-прототипа. В группе контроля в случае использования способа-прототипа и предлагаемого способа липопротеины(а) не выявлены, либо выявлены в минимальной концентрации до лечения и после лечения кардиостатином (ловастатином), код C10АА02 одновременно с симптоматической терапией.

В группе больных ИБС выявлены липопротеины низкой и очень низкой плотности, липопротеины(а), оценен уровень общего холестерола, триацилглицерола, но аполипротеины не определяются. Липидемия атерогенного генеза до лечения выявлена в 73% случаев, т.е. у 22 пациентов из 30 больных ИБС, а после лечения в 40% случаев, т.е. 12 пациентов. Таким образом, эффективность лечения липидемии составила 33%.

В группе больных ИБС, обследованных по предлагаемому способу, определены аполипопротеины B, липопротеины(а) с расчетом их соотношения, значительно сниженного по сравнению с нормой, т.е. значительно ниже 20,5, уровень общего холестерола и триацилглицерола до лечения. Липидемия выявлена у 26 из 30 обследованных пациентов на самых ранних стадиях заболеваниях, т.е. в 86% случаев.

Далее в течение 4 недель этим пациентам назначалась гипохолестеринемическая диета, которая не привела к нормализации указанных показателей. Холестерол составил у них 6,8±0,4 ммоль/л, триацилглицерол 1,6±0,2 ммоль/л, а отношение аполипопротеина В к липопротеину(а) 6,0±0,5. Следующим этапом лечения было назначение кардиостатина в дозе 10 мг/сут с исследованием уровня липидов через 4 недели. После проведенной терапии уровень холестерола крови составил 5,1±0,5 ммоль/л, триацилглицерол 1,2±0,1 ммоль/л, аполипопротеин B снизился с 1,8±0,2 до 1,1±0,1 г/л, липопротеин(а) составил после лечения 0,06±0,006 г/л, отношение аполипоротеина B к липопротеину(а) было равно 19,1±1,4, что свидетельствовало о высокой эффективности лечения липидемии. Липидемия у больных ИБС после лечения выявлена в 10% случаев. Следовательно, эффективность лечения липидемии при ИБС составила 76%, так как вместо 86% до лечения была выявлена после лечения в 10% случаев. При этом клинические данные свидетельствовали об отсутствии ксантоматоза, а течение стенокардии стало стабильным и характеризовалось снижением функционального класса заболевания с III до II, т.е. отмечалось улучшение клинического состояния пациентов.

Прогноз течения липидемии оценивался через 1 месяц при повторном обследовании пациентов амбулаторно для повторного назначения по клиническим показаниям кардиостатина. Обследовано 26 больных ИБС с диагнозом: стенокардия напряжения, ФК II-III. В течение месяца больным назначалась гипохолестеринемическая диета. В результате клинико-лабораторного обследования у них установлен уровень холестерола 5,0±0,3 ммоль/л, триацилглицерол 1,3±0,1 ммоль/л, аполипопротеин B 1,2±0,1 г/л, липопротеин(а) 0,058±0,006 г/л, отношение апоВ/апо(а) 21,1±2,0, что свидетельствовало о высокой эффективности прогнозирования течения липидемии. Течение стенокардии у всех обследованных больных ИБС было стабильным. Функциональный класс заболевания не превышал II. Следовательно, использованный способ является надежным критерием прогнозирования течения липидемии.

Таким образом, предлагаемый способ прогнозирования течения липидемии после медикаментозной коррекции уровня липидов кардиостатином оказался наиболее точным, а также наиболее информативным по сравнению со способом-прототипом, поскольку новый способ в большинстве случаев позволяет выявлять уровень липопротеина(а) кроме остальных фракций липопротеинов и липидов при липидемии, соотношение аполипопротеина В к липопротеину(а), уровень общего холестерола, триацилглицерола, что позволило провести эффективное лечение липидемии и оценить прогноз течения липидемии.

Способ прогнозирования течения липидемии позволил выявить начальные стадии липидемии атерогенного генеза, провести патогенетически обоснованную терапию малыми дозами кардиостатина, оценить динамику течения липидемии и получить положительный результат. Это стало возможным благодаря усовершенствованию обработки сыворотки крови перед исследованием, использованию нового коэффициента (отношение аполипопротеина В к липопротеину (а)), характеризующего ранние стадии липидемии атерогенного генеза и одновременному определению концентрации холестерола и триацилглицерола в крови.

Для лечения больных липидемией при ИБС впервые были предложены расширенные показания к назначению кардиостатина, не только не противоречащие установленным МЗ Соцразвития РФ рекомендациям по применению кардиостатина, но и входящие согласно инструкции по применению кардиостатина в область официнально рекомендуемых показаний уровня холестерола для назначения препарата. Используемая нами верхняя граница популяционной нормы значения холестерола оказалась несколько ниже общепринятой и составила 6,5 ммоль/л. Это позволило разработать новый способ оценки эффективности лечения липидемии с применением кардиостатина и оценить прогноз течения липидемии после лечения кардиостатином.

При оценке действия кардиостатина было установлено не только снижение уровня ХС, ТАГ, аполипопротеина B, но и уровня липопротеина (а), что было установлено впервые. Впервые с помощью комплекса указанных выше показателей оценен прогноз течения липидемии при ИБС.

Итак, новый способ прогнозирования течения липидемии позволил расширить диапазон исцользования кардиостатина для лечения ранних стадий липидемии атерогенного генеза и профилактики липидемии, не протеворечащих узаконенным рекомендациям по назначению кардиостатина, изложенным в инструкции по применению препарата.

Наиболее диагностически значимым критерием является выявление самых низких значений уровня липопротеина(а), что по нашим результатам важно как для лечения, так и для прогноза течения липидемии при лечении больных в липидной клинике.

Новый анализ полученных результатов позволяет выявлять липидемию на ранних стадиях заболевания и проводить своевременную гиполипидемическую терапию кардиостатином и прогнозировать течение липидемии, что повышает точность и специфичность способа. Поэтому критерии по интерпретации результатов уточняют наличие ранних стадий липидемии атерогенного генеза и позволяют прогнозировать течение липидемии при атеросклерозе.

Клинический пример: пациент Д., 55 лет. Жалобы при поступлении на боли за грудиной и в области сердца, возникающие при физической нагрузке. Боли купируются нитроглицерином. Больного беспокоит одышка при физической нагрузке. АД 170/90 мм рт.ст., пульс в покое 66 ударов в минуту.

Результаты лабораторных исследований: ХС общий 7,1 ммоль/л, триацилглицерол 1,8 ммоль/л, ХС ЛПВП 1,0 ммоль/л, ХС ЛПНП 6,2 ммоль/л, ХС ЛПОНП 0,64 ммоль/л, аполипопротеин В 2,2 г/л, липопротеин (а) 0,33 г/л, отношение аполипопротеина В к липопротеину (а) 6,9.

Диагноз: ишемическая болезнь сердца, стенокардия напряжения, ФК III-IV, гиперхолестеролемия.

В течение 4 недель проводилось лечение кардиостатином в дозе 10 мг/сут.

Результаты повторного обследования: ХС общий 5,2 ммоль/л, триацилглицерол 1,4 ммоль/л, ХС ЛПВП 1,2 ммоль/л, ХС ЛПНП 3,4 ммоль/л, ХС ЛПОНП 0,61 ммоль/л, аполипопротеин В 1,7 г/л, липопротеин (а) 0,088 г/л, отношение аполипопротеина В к липопротеину (а) 20,0.

Диагноз после курсового лечения кардиостатином: ишемическая болезнь сердца, стенокардия напряжения ФК II (липидемия отсутствует).

При повторном обследовании через месяц уровень ХС общий составил 5,3 ммоль/л, триацилглицерол 1,5 ммоль/л, ХС ЛПВП 1,1 ммоль/л, ХС ЛПНП 3,55 ммоль/л, ХС ЛПОНП 0,65 ммоль/л, аполипопротеин В 1,85 г/л, липопротеин (а) 0,09 г/л, отношение аполипопротеина В к липопротеину (а) 20,4. Следовательно прогноз течения липидемии оценен как благоприятный. Состояние больного стабилизировалось. Прогрессирование липидемии атерогенного характера не наблюдается.

Таким образом, эффективность нового способа связана с выявлением ранних стадий липидемии для медикаментозной коррекции заболевания кардиостатином, оценки прогноза течения липидемии и заключается в возможности более точной лабораторной диагностики ранних стадий липидемии, ее коррекции при стенокардии и возможности длительного наблюдения за течением заболевания. Точность медицинской технологии связана с высокой воспроизводимостью.

Экономическая эффективность нового способа заключается в повышении точности выявления ранних стадий липидемии при ишемической болезни сердца (ИБС) для медикаментозной коррекции заболевания кардиостатином и оценки прогнозирования течения липидемии, что уменьшает продолжительность лечения заболевания кардиостатином, значительно снижает стоимость профилактики обострений заболевания. При этом преимуществом предлагаемого способа является низкая трудоемкость, затратность, невысокая стоимость применяемого препарата и невысокая стоимость повторного обследования для прогнозирования течения липидемии. Метод не требует для исполнения дополнительных дорогостоящих реактивов и оборудования. Исключаются методические ошибки в анализе, что делает предлагаемый способ экономически целесообразным.

Использование предлагаемого способа повышает точность оценки прогнозирования течения липидемии. При этом предлагаемый способ прост в использовании и интерпретации полученных результатов.

Способ прогнозирования течения липидемии путем исследования сыворотки крови до и после лечения, отличающийся тем, что дополнительно перед исследованием проводят трехкратное замораживание и оттаивание сыворотки крови по 20 мин и 10 мин соответственно и дезинтеграцию, а затем определяют аполипопротеин B, липопротеин(а), их соотношение, общий холестерол, триацилглицерол, и при увеличении отношения аполипопротеина B к липопротеину(а) на 40% и более и снижении общего холестерола на 25% и более по сравнению с исходным уровнем и снижении триацилглицерола на 20% и более по сравнению с исходным уровнем оценивают прогноз течения липидемии как благоприятный.



 

Похожие патенты:
Изобретение относится к медицине, а именно к патологической анатомии, и может быть использовано для диагностики задержки внутриутробного развития легких у плода или новорожденного в практике детских патологоанатомов.

Изобретение относится к области медицины и касается рекомбинантных химерных полипептидов, несущих эпитопы различных иммунодоминантных белков спирохет комплекса Borellia Burgdorferisensu lato, и способа серодиагностики иксодового клещевого боррелиоза.
Изобретение относится к области медицины и предназначено для ранней диагностики тромбоэмболии легочной артерии. Для ранней диагностики тромбоэмболии легочной артерии при наличии у пациента клинических признаков, указывающих на вероятность ТЭЛА (тахипноэ, тахикардия, боль в грудной клетке, кровохарканье), определяют уровень D-димера фибрина в сыворотке крови.
Изобретение относится к области медицины, а именно к методам медицинской диагностики. Сущность способа: в сыворотке крови определяют TNFα, в липидах мембран эритроцитов ω-6 и ω-3 полиненасыщенные жирные кислоты, затем вычисляют коэффициент соотношения K=Σω-6/Σω-3, где Σω-6 - сумма показателей линолевой и арахидоновой кислот в %, Σω-3-сумма показателей α-линоленовой, эйкозапентаеновой и докозагексаеновой кислот в %.

Изобретение относится к области медицинской диагностики и может быть использовано для прогнозирования сроков формирования абсцесса в фазу секвестрации острого панкреатита и, как следствие, неблагоприятного течения заболевания.

Предлагаемое изобретение относится к медицине, а именно к медицинской генетике и психиатрии, и может быть использовано для прогнозирования риска развития параноидной шизофрении.

Настоящее изобретение относится к способам диагностики фиброза печени у субъекта, включающим определение уровней экспрессии плазминогена урокиназного типа, матричной металлопротеиназы 9 и β-2-микроглобулина, вычисление на их основании балльной оценки и постановку диагноза.
Изобретение относится к области медицины и предназначено для комплексного определения генетической предрасположенности к развитию зависимости от психоактивных веществ.

Изобретение относится к медицине и описывает способ определения in vitro типа воспалительного ревматического заболевания, а именно дифференциации ревматоидного артрита от реактивного артрита и артрита при кожных заболеваниях, где определяют присутствие или отсутствие белка Hdj2 в синовиальной жидкости на ранней стадии заболевания, т.е.

Изобретение относится к медицине, а именно к урологии и нефрологии, и может быть использовано для диагностики мочекаменной болезни (уролитиаза). Сущность способа: исходную пробу мочи разделяют на два одинаковых образца, получают гистограммы распределения частиц по размерам, по которой определяют процентное содержание олигомерной формы Т&НЕ(7) белка Тамма-Хорсфалла и сравнивают гистограммы образцов.
Изобретение относится к медицине, а именно к способу прогнозирования риска развития рецидива воспалительных заболеваний кишечника. Сущность способа состоит в том, что у больных с воспалительными заболеваниями кишечника с помощью иммуноферментного анализа в крови определяют уровень α-дефензина (αД) в нг/мл в плазме крови и содержание β-дефензина (βД) в нг/г и кальпротектина (ФК) в мкг/г в кале, рассчитывают вероятность развития рецидива воспалительного заболевания кишечника (p) в % по формуле. При полученном значении вероятности, равном или превышающем 50%, прогнозируют высокий риск развития рецидива, а при полученном значении вероятности менее 50% прогнозируют низкий риск развития рецидива. Использование заявленного способа позволяет своевременно спрогнозировать риск развития рецидива воспалительных заболеваний кишечника. 2 пр.

Настоящее изобретение относится к области медицины, а именно к клинической лабораторной диагностике, и описывает способ дифференциальной диагностики послеоперационного развития ишемических или некротических изменений печени при острой печеночной недостаточности. Способ включает биохимическое послеоперационное исследование сыворотки крови, проводимое на 3-и сутки, определение концентраций лактатдегидрогеназы и глютамата дегидрогеназы и расчет индекса ишемического изменения печени (ИИП). Некротическое изменение печени диагностируется в случае значения индексов ИИП меньше, чем значения индексов, характерных для нормы. Ишемическое изменение печени диагностируется в случае значения индексов ИИП, превышающих значения индексов, характерных для нормы. 1 з.п. ф-лы, 2 пр.
Изобретение относится к области медицины, а именно к способу прогнозирования исхода абдоминального сепсиса. Сущность способа состоит в том, что у больного с абдоминальным сепсисом исследуют венозную кровь дважды с интервалом от 1 до 7 суток, определяют уровень васкулярного эндотелиального фактора роста (VEGF) в пг/мл с помощью иммуноферментного анализа, вычисляют индекс прогноза (ИП) исхода абдоминального сепсиса по формуле. При величине ИП меньше 100% прогнозируют неблагоприятный исход абдоминального сепсиса. Использование заявленного способа позволяет повысить точность и упростить прогнозирование исхода абдоминального сепсиса. 4 пр.

Изобретение относится к способу маркировки парных спиральных филаментов (PHF), включающему взаимодействие PHF с соединением и детектирование присутствия указанного соединения, где соединение имеет формулу , в которой -R- означает , -Q- выбран из: -NHC(O)-, -N=N-, -CH=CH-; -P выбран из: ; -T выбран из: ; X представляет собой N или CH; -W1-6, -G1-4, -Р1-5 являются такими, как указано в формуле изобретения. Также изобретение относится к способу маркировки агрегированного тау-белка, включающему взаимодействие агрегированных молекул тау-белка с соединением и детектирование присутствия указанного соединения, и к самим соединениям формулы , в которой значения заместителей являются такими, как указано в формуле изобретения. Технический результат - соединения формулы в качестве меток тау-белка и парных спиральных филаментов (PHF). 6 н. и 22 з.п. ф-лы, 5 ил., 225 пр.

Группа изобретений относится к медицине, а именно к нефрологии, и может быть использована для оценки почечной токсичности у индивидуума после введения соединения, которое, предположительно, может вызывать почечную токсичность. При этом почечную токсичность определяют путем измерений количества биомаркера в образце мочи, полученном от индивидуума, и сравнения измеренного количества биомаркера с соответствующим количеством у здорового индивидуума. Почечная токсичность представляет собой изменение или повреждение клубочков, а в качестве биомаркера используют белок β-2-микроглобулина. Также предложены способ диагностики или предсказания изменения или повреждения клубочков и способ мониторинга эффекта лечения почечной токсичности у пациента агентом. Группа изобретений обеспечивает достоверную оценку почечной токсичности у пациента за счет определения специфического и чувствительного биомаркера повреждения клубочков. 3 н. и 1 з.п. ф-лы, 9 ил., 2 табл.

Изобретение относится к способам определения эффективности лиганда ионного канала. Ex vivo способ определения эффективности лиганда ионного канала in vivo в зависимости от присутствия плазмы, включает стадии: a) приведение клетки, экспрессирующей ионный канал, в контакт с i) плазмой животного и ii) лигандом ионного канала и b) определение эффекта лиганда ионного канала на клетку, или a) приведение клетки, экспрессирующей ионный канал, в контакт с i) плазмой животного и ii) соединением, которое определяют как лиганд ионного канала, и b) определение эффекта соединения на клетку, или a) приведение клетки, экспрессирующей ионный канал, в контакт с плазмой животного, которому был введен лиганд ионного канала, и b) определение эффекта лиганда ионного канала на клетку. Способ по изобретению может использоваться для скрининга лекарственного препарата для предупреждения и/или лечения заболевания, затрагивающего дисфункцию ионного канала, особенно для предупреждения и/или лечения сердечно-сосудистого заболевания или рака. Изобретение обеспечивает повышение эффективности способа и снижение затрат на скрининг лекарственных препаратов. 13 з.п.ф-лы, 4 табл., 2 пр., 3 ил.

Изобретение относится к области микробиологии, а именно к способам (вариантам) идентификации микроорганизмов с помощью масс-спектрометрии. Сущность способа состоит в том, что осуществляют идентификацию микроорганизма из тестируемого образца, в том числе из гемокультуры. Способ включает следующие стадии: получение тестируемого образца, о котором известно, что он содержит или может содержать микроорганизмы; селективный лизис и солюбилизацию клеток не микроорганизмов в тестируемом образце лизирующим раствором, который имеет рН от приблизительно 8 до приблизительно 13, с получением лизированного образца; наслаивание указанного лизированного образца на гомогенный плотностный буфер в контейнере и центрифугирование контейнера для разделения и отделения указанного микроорганизма от других компонентов указанного лизированного образца, при этом указанный микроорганизм проходит через указанный плотностный буфер с образованием осадка микроорганизмов на дне указанного контейнера; исследование указанного осадка указанного микроорганизма с помощью масс-спектрометрии для снятия масс-спектра этого микроорганизма; идентификацию этого микроорганизма в указанном осадке путем сравнения измеренного масс-спектра с референсными масс-спектрами и/или с известными или предсказанными массами клеточных компонентов известных микроорганизмов. Использование заявленного способа позволяет быстро идентифицировать микроорганизмы на уровне рода, вида или штамма с помощью масс-спектрометрии. 2 н. и 14 з.п. ф-лы, 2 табл., 3 ил., 3 пр.

Группа изобретений относится к способам идентификации аллергенных белков и пептидов. Более конкретно, данное изобретение относится к способам идентификации аллергенных белков и/или пептидов молока: альфаS1-, альфаS2-, бета- или каппа-казеина, включающим стадии: получение по меньшей мере одной экспрессионной библиотеки, содержащей ДНК или кДНК, полученную из ткани молочной железы лактирующего млекопитающего, предпочтительно, лактирующей коровы; экспрессии по меньшей мере одного белка или пептида, кодируемого указанной экспрессионной библиотекой; определения связывающей способности по меньшей мере одного белка или пептида с IgE по меньшей мере одной сыворотки индивидуума, который чувствителен к молоку млекопитающего, предпочтительно, молоку коровы; контактирования по меньшей мере одного белка или пептида, проявляющего IgE-связывающую способность, определенную в стадии с), с базофильными клетками, эозинофильными клетками или тучными клетками, и идентификации по меньшей мере одного белка или пептида как аллергена, если указанные базофильные клетки, эозинофильные клетки или тучные клетки выделяют по меньшей мере один медиатор после контакта с указанным по меньшей мере одним белком или пептидом стадии d). Данные способы высокоэффективны в определении аллергенных белков и пептидов в различных биологических источниках. 2 н. и 11 з.п. ф-лы, 13 ил., 3 табл., 4 пр.

Изобретение относится к медицине, а именно к способу определения стадии патологического состояния печени на основе оценки параметров свободнорадикального гомеостаза. Сущность способа состоит в том, что проводят определение уровня ферментативной активности аконитатгидратазы и концентрации цитрата в сыворотке крови, рассчитывают коэффициент состояния свободнорадикального гомеостаза (СГ) по формуле. При значении СГ 0,99 и менее, судят об отсутствии патологического состояния печени. При значении СГ выше 0,99, но менее 1,83, судят о наличии процессов патологического состояния печения в стадии ремиссии. При значении СГ выше 1,83 определяют стадию обострения патологического процесса. Использование заявленного способа позволяет более эффективно определить стадии патологического состояния печени. 1 табл., 3 пр.

Изобретение относится к биотехнологии и представляет собой способ оценки воспаления и/или резистентности к инсулину у животного путем количественного определения присутствия анализируемого вещества в сыворотке или плазме. Способ включает получение биологического образца животного, причем образец содержит набор анализируемых веществ, включающий, по меньшей мере, цитокин, хемокин, гормон и адипокин. Проводят взаимодействие образца с коллекцией молекулярных зондов, иммобилизованных отдельно друг от друга к панели для мультипараметрического анализа, для определения присутствия каждого вещества из заданного набора анализируемых веществ. Для каждого анализируемого вещества в наборе коллекция молекулярных зондов включает, по меньшей мере, один зонд, подходящий для детектирования присутствия этого анализируемого вещества. Причем каждый зонд способен производить независимо детектируемый сигнал, если анализируемое вещество присутствует в образце. Детектируют независимо сигналы, полученные после взаимодействия образца с коллекцией. Устанавливают корреляцию между сигналами и присутствием вещества из набора анализируемых веществ в образце. Устанавливают корреляцию между присутствием вещества из набора анализируемых веществ в образце и известными параметрами состояния здоровья. Оценивают состояние здоровья животных в соответствии с полученными результатами. Изобретение позволяет сократить количество биологического материала, реактивов, время анализа при осуществлении способа оценки воспаления и/или резистентность к инсулину у животного. 10 з.п. ф-лы, 1 ил., 7 табл., 2 пр.
Наверх