Система магнитогидродинамического генерирования электроэнергии


 


Владельцы патента RU 2517182:

Глумов Федор Камильевич (RU)

Изобретение относится к электротехнике и может быть использовано для создания систем магнитогидродинамического (МГД) генерирования электроэнергии на основе МГД-генераторов, вырабатывающих электрическую энергию в десятки или сотни кВт. Технический результат состоит в упрощении конструкции, повышении мощности и снижении себестоимости генерируемой электроэнергии. Система МГД генерирования электроэнергии содержит как минимум два МГД-генератора, каждый из которых содержит корпус 1 (7) в виде сопла Лаваля, как минимум одну форсунку 2 (8) для подачи воды или водяного пара на вход этого сопла, пьезоэлемент для образования водяного пара. Электроды 3 (9) для создания высоковольтной дуги установлены во входной части сопла Лаваля. Магнитная система 4 (10), средство 5 (11) съема электрического тока расположены в области расширяющейся части сопла Лаваля. МГД-генераторы установлены последовательно так, что в процессе работы системы рабочее тело, выходящее из расширяющейся части сопла Лаваля 1 предшествующего МГД-генератора, поступает на вход сопла Лаваля 7 последующего МГД-генератора. Средство 5 съема электрического тока предшествующего МГД-генератора электрически связано с электродами 9 для создания высоковольтной дуги последующего МГД-генератора и электромагнитом магнитной системы 10 последующего МГД-генератора. 3 з.п. ф-лы, 1 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к области электроэнергетики и может быть использовано для создания систем магнитогидродинамического (МГД) генерирования электроэнергии на основе МГД-генераторов, вырабатывающих электрическую энергию в десятки или сотни кВт.

Уровень техники

Известен МГД-генератор, содержащий корпус, выполненный в виде полого цилиндра, открытые торцы которого служат для впуска и выведения жидкостной рабочей среды, электромагнитные обмотки, создающие магнитное поле, направленное перпендикулярно оси цилиндра, и размещенные в цилиндре электроды, установленные параллельно направлению магнитного поля (см. патент Японии № 2713216, кл. H02K 44/00, опубл. 1998). В известном генераторе в качестве рабочей электропроводной среды, перемещающейся вдоль оси цилиндра, используется морская вода, например в виде морских волн, а электрическая нагрузка подключена к электродам.

Признаки, являющиеся общими для известного и заявленного технических решений, заключаются в наличии корпуса, магнитной системы (электромагнитные обмотки, создающие магнитное поле) и средства съема электрического тока (размещенные в цилиндре электроды, установленные параллельно направлению магнитного поля).

Причина, препятствующая получению в известном техническом решении требуемого технического результата, заключается в том, что корпус выполнен в виде цилиндра, а в качестве рабочей среды используется морская вода.

Наиболее близким аналогом (прототипом) является МГД-генератор, содержащий камеру сгорания углеводородного топлива, предназначенную для генерирования рабочего тела, корпус, выполненный в виде диффузора, соединенного своим входом с камерой сгорания, обмотку электромагнита, расположенную в области диффузора, а также электроды, установленные в диффузоре вдоль потока рабочего тела (Политехнический словарь / Редкол.: А.Ю.Ишлинский (гл. ред.) и др. - 3-е изд., перераб. и доп.- М.: Большая Российская энциклопедия, 2000. - С.283).

Признаки, являющиеся общими для известного и заявленного решений, заключаются в наличии камеры сгорания, корпуса, выполненного в виде диффузора, магнитной системы (обмотка электромагнита) и средства съема электрического тока (электроды, установленные в диффузоре вдоль потока рабочего тела).

Причина, препятствующая получению в известном техническом решении требуемого технического результата, заключается в использовании углеводородного топлива и в выполнении камеры сгорания и корпуса в виде отдельных устройств.

Сущность изобретения

Задача, на решение которой направлено изобретение, заключается в упрощении конструкции, повышении мощности и снижении себестоимости генерируемой электроэнергии.

Технический результат, опосредствующий решение указанной задачи, заключается в использовании водяного топлива путем диссоциации воды на водород и кислород и сжигания этого водорода в среде этого кислорода, а также в том, что корпус одновременно выполняет функцию камеры сгорания благодаря выполнению корпуса в виде сопла Лаваля, что дает возможность соединять несколько МГД-генераторов в последовательную цепь с образованием системы (батареи) МГД-генераторов с целью увеличения мощности генерируемой электроэнергии.

Достигается технический результат тем, что система магнитогидродинамического генерирования электроэнергии содержит как минимум два МГД-генератора, каждый из которых содержит корпус, выполненный в виде сопла Лаваля, как минимум одну форсунку для подачи воды или водяного пара на вход этого сопла, электроды для создания высоковольтной дуги, установленные во входной части сопла Лаваля, а также магнитную систему и средство съема электрического тока, расположенные в области расширяющейся части сопла Лаваля, при этом МГД-генераторы установлены последовательно так, что в процессе работы системы рабочее тело, выходящее из расширяющейся части сопла Лаваля предшествующего МГД-генератора, поступает на вход сопла Лаваля последующего МГД-генератора, а средство съема электрического тока предшествующего МГД-генератора электрически связано с электродами для создания высоковольтной дуги последующего МГД-генератора.

Достигается технический результат также тем, что по крайней мере один МГД-генератор содержит как минимум одну дополнительную форсунку для подачи воды или водяного пара в сопло Лаваля в области его сужающейся части.

Достигается технический результат также тем, что магнитная система последующего МГД-генератора содержит электромагнит, электрически связанный со средством съема электрического тока предшествующего МГД-генератора.

Достигается технический результат также тем, что система содержит по крайней мере один пьезоэлемент для образования водяного пара.

Новизна заявленного технического решения заключаются в том, что корпус представляет собой сопло Лаваля, работающее на водяном топливе, а также в последовательном соединении двух и более МГД-генераторов.

Перечень чертежей

На прилагаемой фигуре схематично показана система магнитогидродинамического генерирования электроэнергии.

Сведения, подтверждающие возможность осуществления изобретения

Система магнитогидродинамического генерирования электроэнергии содержит как минимум два последовательно установленных (гидродинамически связанных) МГД-генератора, один из которых является предшествующим, другой - последующим.

Предшествующий МГД-генератор содержит корпус 1, выполненный в виде сопла Лаваля, как минимум одну форсунку 2 для подачи воды или водяного пара на вход этого сопла, пьезоэлемент для образования водяного пара (пьезоэлемент не показан), электроды 3 для создания высоковольтной дуги, установленные во входной части сопла 1, магнитную систему 4, выполненную в виде постоянного магнита или в виде обмотки электромагнита (возможно сочетание того и другого), расположенной в области расширяющейся части (диффузора) сопла, и средство 5 съема электрического тока, выполненное в виде электродов, размещенных в расширяющейся части сопла 1 вдоль потока рабочего тела. При этом средство 5 может быть выполнено индукционным (т.е. безэлектродным). Кроме того, предшествующий МГД-генератор содержит как минимум одну дополнительную форсунку 6 для подачи воды или водяного пара в сопло 1 в области его сужающейся части.

Последующий МГД-генератор содержит корпус 7, выполненный в виде сопла Лаваля, как минимум одну форсунку 8 для подачи воды или водяного пара на вход этого сопла, пьезоэлемент для образования водяного пара (пьезоэлемент не показан), электроды 9 для создания высоковольтной дуги, установленные во входной части сопла 7, магнитную систему 10, выполненную в виде постоянного магнита или в виде обмотки электромагнита (возможно сочетание того и другого), расположенной в области расширяющейся части (диффузора) сопла, и средство 11 съема электрического тока, выполненное в виде электродов, размещенных в расширяющейся части сопла 7 вдоль потока рабочего тела. При этом средство 11 может быть выполнено индукционным (т.е. безэлектродным). Кроме того, последующий МГД-генератор содержит как минимум одну дополнительную форсунку 12 для подачи воды или водяного пара в сопло 7 в области его сужающейся части.

МГД-генераторы установлены последовательно так, что в процессе работы системы рабочее тело, выходящее из расширяющейся части сопла Лаваля 1 предшествующего МГД-генератора, поступает на вход сопла Лаваля 7 последующего МГД-генератора, а средство 5 съема электрического тока предшествующего МГД-генератора электрически (посредством электрической связи 13) связано с электродами 9 для создания высоковольтной дуги последующего МГД-генератора. Кроме того, если магнитная система 10 последующего МГД-генератора содержит электромагнит (выполнена в виде электромагнита), то этот электромагнит электрически связан со средством 5 съема электрического тока предшествующего МГД-генератора (связь не показана).

Работа системы заключается в следующем.

В сопло Лаваля 1 при помощи форсунки 2 подают воду или водяной пар, вырабатываемый пьезоэлементом. Электроды 3 подключают к источнику тока высокого напряжения (не показан). В результате прохождения тока в сопле 1 (в его входной части) происходит разложение воды на водород и кислород и последующее сгорание водорода с образованием в сопле 1 плазмы, температура которой достигает 6000°С. Данная плазма является рабочим телом предшествующего МГД-генератора, которое далее через сужающуюся часть сопла поступает в его диффузор (расширяющуюся часть). Попутно в этот поток плазмы через форсунку 6 поступает дополнительная вода или дополнительный водяной пар, вырабатываемый пьезоэлементом. Эта дополнительная вода (или водяной пар) разлагается под действием высокой температуры плазмы с образованием кислорода и водорода, который сгорает, в результате чего общий объем плазмы, поступающей далее в диффузор (расширяющуюся часть) сопла 1, значительно возрастает. При движении плазмы через диффузор (расширяющуюся часть) сопла 1 эта плазма попадает в магнитное поле, образуемое магнитной системой 4 предшествующего МГД-генератора. В результате в этой плазме, являющейся рабочим телом МГД-генератора, индуцируется электрический ток, который при помощи средства 5 съема электрического тока отводится в электрическую цепь 13, по которой высокое напряжение подается на электроды 9 последующего МГД-генератора. При этом рабочее тело (плазма) с выхода расширяющейся части сопла Лаваля 1 предшествующего МГД-генератора поступает на вход сопла Лаваля 7 последующего МГД-генератора. Одновременно в сопло Лаваля 7 при помощи форсунки 8 подают воду или водяной пар, вырабатываемый пьезоэлементом. В результате прохождения тока в сопле 7 (в его входной части) происходит разложение воды на водород и кислород и последующее сгорание водорода с образованием в сопле 7 плазмы, которая смешивается с плазмой, поступающей с выхода сопла 1. Данная суммарная плазма является рабочим телом последующего МГД-генератора, которое далее через сужающуюся часть сопла последующего МГД-генератора поступает в его диффузор (расширяющуюся часть). Попутно в этот поток плазмы через форсунку 12 поступает дополнительная вода или дополнительный водяной пар, вырабатываемый пьезоэлементом. Эта дополнительная вода (или водяной пар) разлагается под действием высокой температуры плазмы с образованием кислорода и водорода, который сгорает, в результате чего общий объем плазмы, поступающей далее в диффузор (расширяющуюся часть) сопла 7, значительно возрастает. При движении плазмы через диффузор (расширяющуюся часть) сопла 7 эта плазма попадает в магнитное поле, образуемое магнитной системой 10. В результате в этой плазме, являющейся рабочим телом последующего МГД-генератора, индуцируется электрический ток, который при помощи средства 11 съема электрического тока отводится в выходную электрическую цепь (не показана).

Такая конструкция системы магнитогидродинамического (МГД) генерирования электроэнергии дает значительное увеличение результирующей мощности генерации. При этом электрический ток, вырабатываемый предыдущим МГД-генератором цепи, поступает в последующий МГД-генератор данной цепи не только для получения в этом последующем МГД-генераторе высоковольтной дуги, но и для создания в его расширяющейся части магнитного поля (наряду со стационарными магнитами).

1. Система магнитогидродинамического генерирования электроэнергии, которая содержит как минимум два МГД-генератора, каждый из которых содержит корпус, выполненный в виде сопла Лаваля, как минимум одну форсунку для подачи воды или водяного пара на вход этого сопла, электроды для создания высоковольтной дуги, установленные во входной части сопла Лаваля, а также магнитную систему и средство съема электрического тока, расположенные в области расширяющейся части сопла Лаваля, при этом МГД-генераторы установлены последовательно так, что в процессе работы системы рабочее тело, выходящее из расширяющейся части сопла Лаваля предшествующего МГД-генератора, поступает на вход сопла Лаваля последующего МГД-генератора, а средство съема электрического тока предшествующего МГД-генератора электрически связано с электродами для создания высоковольтной дуги последующего МГД-генератора.

2. Система по п.1, в которой по крайней мере один МГД-генератор содержит как минимум одну дополнительную форсунку для подачи воды или водяного пара в сопло Лаваля в области его сужающейся части.

3. Система по п.1, в которой магнитная система последующего МГД-генератора содержит электромагнит, электрически связанный со средством съема электрического тока предшествующего МГД-генератора.

4. Система по п.1, которая содержит по крайней мере один пьезоэлемент для образования водяного пара.



 

Похожие патенты:

Относится к области энергетики и может быть использовано в магнитогидродинамических генераторах, преимущественно вырабатывающих электрическую энергию в десятки или сотни кВт.

Изобретение относится к области исследования плазмы. Магнитогидродинамическое моделирующее устройство включает в себя плазменный контейнер, в который помещен первый ионизируемый газ, первый электрический контур, расположенный рядом с плазменным контейнером, содержащий промежуток, электрические контакты на первой и второй сторонах промежутка, и первое вещество, имеющее, по меньшей мере, низкую магнитную восприимчивость и высокую проводимость.

Изобретение относится к плазменной энергетике, конкретно к гибридным источникам энергии для получения электричества, горячего воздуха, горячей воды и горячего водяного пара в интересах коммунального хозяйства, товариществ собственников жилья (ТСЖ), садовых кооперативов, отдельных коттеджей и/или промышленных производств.

Изобретение относится к области энергетики, преимущественно к созданию аварийных энергетических установок большой мощности, работающих на принципе магнитогазодинамического преобразования энергии.

Изобретение относится к электротехнике, к магнитогидродинамическим (МГД) генераторам. .

Изобретение относится к магнитогидродинамическому преобразованию тепловой энергии в электрическую энергию. .

Изобретение относится к электротехнике, к магнитогидродинамическому преобразованию энергии, в частности концентрированного солнечного излучения высокой плотности в электрическую энергию.

Изобретение относится к источникам тепла, а именно к источникам тепла, обеспечивающим нагрев газа для использования его в магнитогидродинамическом генераторе (МГД-генераторе).

Изобретение относится к области электротехники и направлено на усовершенствование электрических машин, используемых в силовой электроэнергетике. .

Изобретение относится к области электротехники, может быть использовано в автономных источниках, работающих в условиях постоянного воздействия силы тяжести, и с успехом применено в промышленности для производства электроэнергии.

Изобретение относится к электротехнике, к магнитной гидродинамике, к электромагнитным насосам и может быть использовано в металлургии, в ядерной и нетрадиционной энергетике, машиностроении, химической промышленности, а также в космической технике. Технический результат состоит в введении возможности пропускания через рабочий канал как жидкой (электролиты, расплавы металлов), так газообразной (ионизированный газ) проводящих сред. Магнитогидродинамическое (МГД) устройство включает канал, входные и выходные патрубки, магнитную систему. Магнитная система выполнена в виде сплошного цилиндра из проводящего материала, торцы которого соединены электрическими проводами с рабочими электродами, подключенными к источнику питания. В патрубки вмонтированы рабочие электроды. В первом варианте МГД устройства внутренняя стенка канала является цилиндрической, а внешняя - конической с углом наклона α в диапазоне от 0° до 90°. В патрубки вмонтированы рабочие электроды. Во втором варианте МГД устройства внешняя и внутренняя стенки канала являются цилиндрическими, причем функцию одной пары электродов выполняют стенки канала. 2 н.п. ф-лы, 6 ил.

Изобретение относится к электротехнике, к производству электрической энергии на основе магнитогидродинамического эффекта и может быть использовано в устройствах обработки информации или приемо-передающих устройствах, размещаемых на объектах, движущихся с ускорением. Технический результат состоит в обеспечении электрической энергией маломощных устройств, установленных на движущихся объектах путем преобразования кинетической энергии рабочего тела в электрическую энергию. Магнитогидродинамический генератор содержит магнит, расположенный таким образом, что магнитное поле пересекает канал для перемещения рабочего тела. Два электрода расположены вдоль канала. Два вертикальных резервуара подключены с двух разных сторон к каналу. Устройство располагается на объектах, движущихся с ускорением. 1 ил.

Изобретение относится к электротехнике, к возобновляемым источникам электрической энергии. Технический результат состоит в упрощении конструкции и повышении надежности. Устройство содержит эластичный передаточный элемент (1), связанный с преобразователем энергии, подключенным к электрической нагрузке и выполненным в виде МГД генератора (2), состоящего из цилиндра (4) из непроводящего материала с двумя поршнями (5) и (6), один из которых (6), подпружинен пружиной (7). Внутренний объем цилиндра (4) между поршнями (5) и (6) заполнен электропроводной жидкостью, а с торцов (9) и (10) - воздухом. По внутренней поверхности цилиндра (4) размещены противоположно расположенные электроды (11) и (12), связанные с накопителем (14) и далее - с электрической нагрузкой, а на его внешней поверхности установлен магнит (15). Эластичная емкость (1) сообщена каналом (16) с цилиндром (4) со стороны поршня (5). При воздействии внешней силы Q при посредстве заполненной воздухом эластичной емкости (1) усилие передается на поршень (5), который, перемещаясь, оказывает давление на электропроводную жидкость (8), частицы которой начинают двигаться, пересекая силовые линии магнита (15), одновременно оказывая воздействие на подпружиненный поршень (6). В процессе движения жидкости (8) через магнитное поле по ней протекает электрический ток, который, замыкаясь через электроды (11) и (12), поступает в накопитель (14), а от него - к электрической нагрузке. Движение жидкости (8) носит колебательный характер, что позволяет достигать резонансных характеристик системы. 1 ил.

Изобретение относится к области гиперзвуковых летательных аппаратов (ГЛА). Способ управления аэродинамическими характеристиками гиперзвукового летательного аппарата включает установку плоских МГД-генераторов попарно симметрично относительно плоскости симметрии элементов оперения ГЛА, а между ними располагают магнитоэкранирующие пластины, выполненные из ферромагнитного материала с точкой Кюри, превышающей рабочую температуру элементов ГЛА, обеспечивающих устойчивость, управляемость и балансировку. Управляющие команды от бортовой системы управления подают на соленоиды плоских МГД-генераторов, расположенных под той обтекаемой поверхностью элементов оперения ГЛА, на которую производят управляющее усилие. Магнитоэкранирующую пластину изготавливают из кобальта. Изобретение направлено на расширение функциональных возможностей управления ГЛА по каналам тангажа, рыскания и крена. 1 з.п. ф-лы, 4 ил.

Изобретение относится к средствам питания скважинной аппаратуры. Техническим результатом является повышение надежности и ресурса работы устройства, а также упрощение конструкции и его эксплуатации. Предложен турбогенератор, содержащий внутренний статор с обмоткой и внешний ротор с корпусом и рабочими лопатками турбины, установленный на подшипниках скольжения. При этом внутренние и внешние рабочие поверхности подшипников скольжения выполнены из твердого износостойкого материала с высокой теплопроводностью. Кроме того, турбогенератор содержит герметизирующий элемент, предотвращающий сквозной проток промывочной жидкости через зазор между статором и ротором. При этом герметизирующий элемент может быть выполнен в виде контактного уплотнения, установленного ниже верхнего подшипника. При этом на корпусе ротора выполнен один ряд окон, вход в которые расположен между верхним подшипником и контактным уплотнением на внутренней стороне корпуса ротора, а выход из которых расположен ниже рабочего колеса на внешней стороне ротора. Герметизирующий элемент может быть также выполнен в виде установленной на верхнем торце ротора крышки. 2 ил.
Наверх