Струйный аппарат для перепуска затрубного газа



Струйный аппарат для перепуска затрубного газа
Струйный аппарат для перепуска затрубного газа

 


Владельцы патента RU 2517287:

Государственное бюджетное образовательное учреждение высшего профессионального образования "Альметьевский государственный нефтяной институт" (RU)

Изобретение относится к области нефтегазодобывающей промышленности и может быть применено для перепуска затрубного газа в колонну насосно-компрессорных труб (НКТ) в скважинах, эксплуатируемых установками погружных электроцентробежных насосов. Задачей предлагаемого изобретения является повышение надежности и эффективности работы установки погружного электроцентробежного насоса посредством повышения коэффициента полезного действия установки погружного электроцентробежного насоса. Поставленная задача решается применением струйного аппарата для перепуска затрубного газа в колонну НКТ, который установлен выше динамического уровня и сообщает затрубное пространство с полостью колонны НКТ через обратный клапан, причем струйный аппарат для перепуска затрубного газа выполнен из двух симметричных половин в продольном разрезе, одна из которых установлена неподвижно с обратным клапаном, а вторая имеет возможность продольного перемещения внутри колонны НКТ и связана через постоянные магниты с поршнем, подпружиненным снизу и размещенным в параллельном с осью колонны НКТ цилиндре, нижний конец которого сообщается с затрубным пространством, а верхний - с полостью колонны НКТ. Использование струйного аппарата для перепуска затрубного газа в колонну НКТ позволяет осуществлять снижение давления газа в затрубном пространстве скважин, эксплуатируемых установками погружных электроцентробежных насосов, позволяя повысить уровень пластовой жидкости над погружным электроцентробежным насосом, увеличить дебит скважины, избежать образования гидратных пробок в затрубном пространстве за счет снижения давления газа в затрубном пространстве. Кроме того, использование струйного аппарата для перепуска затрубного газа позволяет повысить КПД установки погружного электроцентробежного насоса, уменьшить глубину подвески погружного электроцентробежного насоса за счет повышения уровня пластовой жидкости в затрубном пространстве и тем самым снизить расход колонны НКТ и увеличить межремонтный период работы погружных электроцентробежных насосов. 2 ил.

 

Изобретение относится к области нефтегазодобывающей промышленности и может быть применено для перепуска затрубного газа в колонну насосно-компрессорных труб (НКТ) в скважинах, эксплуатируемых установками погружных электроцентробежных насосов.

Известен способ сброса газа из затрубного пространства [паспорт «Клапан лифтовый для стравливания газа», ООО «Татнефть-РНО-МехСервис», г.Альметьевск, 2008 г., копия прилагается], который предусматривает расположение клапана лифтового для эксплуатационных колонн в колонне НКТ под трубодержателем на глубине не менее 30 метров от устья скважины. Клапан лифтовый для эксплуатационных колонн предназначен для автоматического стравливания газа из затрубного пространства скважины в верхнюю часть колонны НКТ и далее в нефтепровод.

Недостатком данного клапана является то, что срабатывание клапана лифтового для эксплуатационных колонн происходит только при превышении давления газа в затрубном пространстве скважины более 0,2…0,3 МПа.

Наиболее близким к предлагаемому изобретению является автоматическое клапанное устройство, состоящее из обратного клапана и устройства для управления его работой, выполненного в виде поршня и корпуса. Поршень связан с выкидной линией при помощи двух концентрично установленных под ним гофрированных трубок и толкателя. В стенках корпуса имеются клиновидные толкатели с пружинами. Обратный клапан соединен с выкидной линией посредством гидравлического канала [Авт. свид. СССР №625021, Е21В 33/03, опубл. 25.09.1978]. Перепуск газа устройством-прототипом осуществляется независимо от величины давления затрубного газа. Область применения устройства типами насосных установок не ограничена.

Конструкция устройства-прототипа не функционирует в условиях низких температур, вследствие замерзания обратного клапана, расположенного на выкидной линии, а также замерзания гофрированных трубок, которое приводит к их разрыву и нарушению герметичности устройства для управления работой обратного клапана. Конструкция автоматического клапанного устройства в целом отличается сложностью и громоздкостью.

Задачей предлагаемого изобретения является повышение надежности и эффективности работы установки погружного электроцентробежного насоса посредством повышения коэффициента полезного действия (КПД) установки погружного электроцентробежного насоса.

Поставленная задача решается применением струйного аппарата для перепуска затрубного газа в колонну НКТ, который установлен выше динамического уровня и сообщает затрубное пространство с полостью колонны НКТ через обратный клапан, причем струйный аппарат для перепуска затрубного газа выполнен из двух симметричных половин в продольном разрезе, одна из которых установлена неподвижно с обратным клапаном, а вторая имеет возможность продольного перемещения внутри колонны НКТ и связана через постоянные магниты с поршнем, подпружиненным снизу и размещенным в параллельном с осью колонны НКТ цилиндре, нижний конец которого сообщается с затрубным пространством, а верхний - с полостью колонны НКТ.

Схема расположения струйного аппарата для перепуска затрубного газа представлена на фиг.1 и 2 (продольный разрез и поперечное сечение по А-А).

Предлагаемый струйный аппарат для перепуска затрубного газа монтируется в колонне НКТ 1 (см. фиг.1). Струйный аппарат для перепуска затрубного газа состоит из двух симметричных половин - неподвижной 3, снабженной обратным клапаном 4, и подвижной 5, связанной через постоянные магниты 6 с подпружиненной пружиной 7, поршнем 8 (см. фиг.2, А-А), размещенным в параллельном с осью колонны НКТ 1 (см. фиг.1) цилиндре 9 (см. фиг.2), имеющим отверстие 10 (см. фиг.1) в нижней части для сообщения с затрубным пространством 11 (см. фиг.2), образованным колонной НКТ 1 (см. фиг.1) и обсадной колонной 12 (см. фиг.2) с подпоршневой полостью 2, и отверстие 13 (см. фиг.1) для сообщения подпоршневой полости 2 (см. фиг.2) с полостью колонны НКТ 1 (см. фиг.1). Пластовая жидкость через струйный аппарат для перепуска затрубного газа перекачивается погружным электроцентробежным насосом 14.

Струйный аппарат для перепуска затрубного газа работает следующим образом.

Во время добычи на приеме погружного электроцентробежного насоса 14 происходит разгазирование нефти. Часть газа попадает в полость погружного электроцентробежного насоса 14 и по колонне НКТ 1 извлекается на дневную поверхность, а другая часть попадает в затрубное пространство 11 (см. фиг.2) и накапливается над динамическим уровнем, повышая давление газа. При повышении давления газа в затрубном пространстве 11 данное давление действует через отверстие 10 (см. фиг.1) на нижний торец поршня 8 (см. фиг.2, А-А). Под действием подпружиненной пружины 7 (см. фиг.1) и давления газа, которое начинает превышать давление пластовой жидкости, созданное через отверстие 13, поршень 8 (см. фиг.2, А-А) перемещается вверх, увлекая за собой через постоянные магниты 6 (см. фиг.1) подвижную симметричную половину 5 струйного аппарата для перепуска затрубного газа. При достижении подвижной симметричной половиной 5 верхнего крайнего положения струйный аппарат для перепуска затрубного газа начинает действовать в рабочем режиме, снижая давление в сужении Н (см. фиг.2), при этом обратный клапан 4 (см. фиг.1) открывается и газ из затрубного пространства 11 (см. фиг.2) перепускается в колонну НКТ 1 (см. фиг.1), снижая давление газа в затрубном пространстве 11 (см. фиг.2). После снижения давления газа в затрубном пространстве 11 подвижная симметричная половина 5 (см. фиг.1) струйного аппарата для перепуска затрубного газа перемещается вниз под собственным весом, увлекая за собой через постоянные магниты 6, поршень 8 (см. фиг.2, А-А), сжимая подпружиненную пружину 7 (см. фиг.1), увеличивая проходное сечение между неподвижной 3 и подвижной 5 симметричными половинами струйного аппарата для перепуска затрубного газа, тем самым уменьшив гидравлическое сопротивление пластовой жидкости, движущейся по колонне НКТ 1.

Использование струйного аппарата для перепуска затрубного газа в колонну НКТ позволяет снизить давление газа в затрубном пространстве скважин, эксплуатируемых установками погружных электроцентробежных насосов, позволяя повысить уровень пластовой жидкости над погружным электроцентробежным насосом, увеличить дебит скважины, избежать образования гидратных пробок в затрубном пространстве за счет снижения давления газа в затрубном пространстве.

Использование струйного аппарата для перепуска затрубного газа позволяет повысить КПД установки погружного электроцентробежного насоса, уменьшить глубину подвески погружного электроцентробежного насоса за счет повышения уровня пластовой жидкости в затрубном пространстве и тем самым снизить расход колонны НКТ и увеличить межремонтный период работы погружных электроцентробежных насосов.

Струйный аппарат для перепуска затрубного газа, расположенный в колонне насосно-компрессорных труб, установленный выше динамического уровня и содержащий обратный клапан, который сообщает затрубное пространство с полостью колонны насосно-компрессорных труб, отличающийся тем, что струйный аппарат для перепуска затрубного газа выполнен из двух симметричных половин в продольном разрезе, одна из которых установлена неподвижно с обратным клапаном, а вторая имеет возможность продольного перемещения внутри колонны насосно-компрессорных труб и связана через постоянные магниты с поршнем, подпружиненным снизу и размещенным в параллельном с осью колонны насосно-компрессорных труб цилиндре, нижний конец которого сообщается с затрубным пространством, а верхний - с полостью колонны насосно-компрессорных труб.



 

Похожие патенты:

Изобретение относится к нефтяной и газодобывающей промышленности, в частности к способам приготовления и нагнетания различных смесей рабочих агентов в пласты продуктивных залежей, и может быть эффективно использовано при разработке месторождений в целях утилизации попутного нефтяного газа, осуществления водогазового, физико-химического воздействий на подземные пласты для повышения нефтеотдачи, увеличения рентабельности и экологической чистоты проектов добычи, в том числе на нефтяных месторождениях с трудноизвлекаемыми запасами, может быть также эффективно использовано для осуществления операций обработки призабойных зон скважин (ПЗП), связанных с закачкой в скважины пенных систем.

Изобретение относится к вихревым установкам для разделения сред с неоднородным полем плотностей и с разной молекулярной массой компонентов, работа которых осуществляется в соответствии с законом свободно вращающегося вихревого потока с неоднородным полем плотностей и с разной молекулярной массой компонентов, открытым автором в 1994 году, и может быть использовано по своему прямому назначению для раздельного выделения горючей составляющей и углекислого газа из воздуха, а также возможно использование установки для его реализации при различных вариантах конструктивного выполнения установки для разделения сред в вихревых потоках в различных отраслях производства, в частности химической промышленности, тепловой и атомной энергетике, нефтегазодобывающей и перерабатывающей промышленности и многих производствах.

Изобретение относится к области жидких флегматизированных монотоплив и их использования в камерах двигателей внешнего сгорания. .

Эжектор // 2354856

Эжектор // 2353820
Изобретение относится к струйной технике и может быть использовано в нефтегазодобывающей промышленности. .

Эжектор // 2348836
Изобретение относится к области струйной техники, включает в себя множество решений по конструкции струйных насосов, связанных зависимостями, в том числе с числом 3,14 при отводе около 100 градусов и с числами до 2000 и более, при отводе 175 и более градусов (для больших, сверхзвуковых подач рабочего продукта).

Изобретение относится к стендовому оборудованию для ускоренных ресурсных испытаний струйных аппаратов и струйной техники для перекачки пульпы. .

Изобретение относится к струйным установкам для испытания и освоения скважин. .

Устройство для удаления пластовой жидкости из газовой скважины относится к оборудованию для эксплуатации газовых скважин и предназначено для удаления пластовой жидкости из газовых скважин.

Изобретение относится к нефтедобывающей промышленности, а именно к мониторингу и управлению добывающей нефтяной скважиной. Технический результат направлен на повышение нефтедобычи, коэффициента извлечения нефти (КИН) из пласта или нескольких пластов, дренируемых скважиной, за счет произведения прямого замера параметров газожидкостного столба на различных его уровнях, управления производительностью погружного насоса и дебитом нефтедобычи с учетом наиболее благоприятных условий нефтеотдачи пласта.

Изобретение относится к нефтегазодобывающей промышленности, а именно к эксплуатации газовых скважин на завершающей стадии разработки и, в частности, к эксплуатации газовых скважин, в которых скорость газового потока недостаточна для выноса жидкости с забоя.

Группа изобретений относится к мониторингу показателей скважин с забойным и устьевым оборудованием. Более конкретно, настоящие изобретения раскрывают систему и способ по определению и вычислению расходов в скважинах, которые создают электропогружные насосы.

Группа изобретений относится к системам и способам для управления многочисленными скважинными инструментами. Многочисленные скважинные инструменты можно приводить в действие между рабочими положениями.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при добыче нефти с повышенным газосодержанием. Обеспечивает возможность увеличения КПД насоса при работе на газосодержащей смеси при увеличении допустимого газосодержания смеси на входе в насос, а также возможность периодического откачивания скопления газа при малых и даже нулевых количествах жидкой фазы.

Изобретение относится к области нефтедобывающей промышленности, в частности к средствам подъема жидкости из скважины. Обеспечивает возможность регулирования объемов отбора нефти и воды при изменении уровня водонефтяного контакта в скважине в процессе работы, получения на поверхности скважины продукции, не требующей последующей сепарации на отдельные фазы, и снижения вероятности образования водонефтяных эмульсий и отложения парафина на внутренней поверхности труб.

Изобретение относится к нефтяной промышленности и может быть использовано при разработке обводненной нефтяной залежи. Обеспечивает расширение области применения за счет использования в качестве водозаборных скважин как бывших добывающих, так и действующих обводненных добывающих скважин, и повышение эффективности за счет исключения остановок насосной установки для ее перевода в режим вытеснения нефти и на время проведения ремонтных работ на водопроводе.
Изобретение предназначено для использования при газлифтной эксплуатации скважин. Обеспечивает повышение эффективности работы газлифтной скважины путем снижения вязкости водонефтяной эмульсии, получения не застывающего потока как в скважине, так и в подводном трубопроводе за счет использования высокой температуры на забое и рационального применения реагентов в зависимости от температуры на забое.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при разработке нефтяных залежей, представленных слоисто-неоднородными коллекторами, в том числе пластами с высокой расчлененностью и аномально низким пластовым давлением.

Группа изобретений относится к эксплуатации подземной скважины и, в частности, к вариантам системы регулирования потока текучих смесей из геологического пласта в скважину или из скважины в геологический пласт. Такое регулирование обеспечивает, например, минимизацию добычи воды и/или газа, максимизацию добычи нефти и/или газа с балансированием добычи между зонами. Обеспечивает повышение надежности работы системы за счет ее саморегулирования. Сущность изобретения по одному из вариантов: система переменной сопротивляемости потоку содержит первый проточный канал и первую сеть из одного или нескольких отводных каналов, пересекающих первый проточный канал. При этом обеспечена возможность отведения части текучей смеси из первого проточного канала к первой сети отводных каналов, варьирования ее в зависимости, по меньшей мере, от вязкости текучей смеси или от скорости текучей смеси в первом проточном канале. Первая сеть отводных каналов способна направлять текучую смесь к первому управляющему каналу переключателя путей потока, который способен выбирать один из множества путей потока, по которому после переключателя проходит преобладающая часть текучей среды, по меньшей мере, частично в зависимости от части текучей смеси, отводимой к первому управляющему каналу. 3 н. и 13 з.п. ф-лы, 10 ил.
Наверх