Способ и установка для переработки водорода в узле очистки устройства для очистки терефталевой кислоты

Изобретение относится к способу переработки водорода в узле очистки устройства для очистки терефталевой кислоты. Способ осуществляют путем охлаждения и декомпрессии несконденсированных газов, выделяемых в ходе кристаллизации и мгновенного испарения, для удаления из них водяного пара и переработки водорода. Несконденсированные газы охлаждают и декомпрессируют, используя этапы, указанные в п.1 формулы изобретения. Также изобретение относится к установке, предназначенной для осуществления указанного способа. Установка содержит водородный компрессор и оборудование для снижения температуры и давления. Впускной канал оборудования для снижения температуры и давления соединен с выпускным каналом для несконденсированных газов группы кристаллизатора и его выпускной канал соединен с впускным каналом водородного компрессора; оборудование для снижения температуры и давления содержит группу нагревателя, первый ограничитель потока, второй теплообменник, второй ограничитель потока и третий теплообменник. Технический результат - снижение энергетических затрат при переработке водорода в узле очистки устройства для очистки терефталевой кислоты. 2 н. и 5 з.п. ф-лы, 1 ил.

 

Область техники

Настоящее изобретение относится к способу и установке для переработки водорода в узле очистки устройства для очистки терефталевой кислоты (ОТК), главным образом относится к области техники, связанной с ОТК.

Уровень техники

Устройство для ОТК состоит из двух производственных единиц и включает узел окисления и узел очистки; узел окисления используется для окисления параксилола (ПК) в терефталевую кислоту (ТК), которая затем кристаллизуется, фильтруется с целью отделения и высушивается для получения неочищенной терефталевой кислоты (НТК), указанная НТК содержит 4КБА (4-карбоксибензальдегид), п-ТК (4-толуоловую кислоту) и другие примеси и проходит обработку и очистку в узле очистки; указанный узел очистки преобразовывает 4КБА в п-ТК способом гидроочистки.

Благодаря растворимости п-ТК, ее можно удалять из ТК при помощи кристаллизации, фильтрации и промывки; другой функцией гидрогенизации является преобразование двойной связи окрашенной группы в окрашенных примесях в одинарную связь, которая таким образом обесцвечивается. Содержание 4КБА и других примесей в НТК зависит от производственного процесса в узле окисления, и обычное содержание 4КБА составляет 2500~3500 частиц на миллион. При производстве ОТК расход водорода на тонну продукта составляет 0,35~0,4 кг, но в химической реакции используется лишь 25-30% добавки, то есть, расход водорода примерно в 4 раза больше теоретического расхода водорода при гидрогенизации 4КБА.

В традиционном производственном процессе очистки, большое количество водорода, не вступившего в реакцию (около 70% добавки), обрабатывается с регулировкой давления кристаллизатором, и затем несконденсированный водород выпускается из конденсатора в опорожняющуюся башню для выщелачивания; так как водород является легковоспламеняющимся и взрывоопасным веществом, в целях безопасности должно добавляться большое количество азота при выходе водорода в атмосферу из башни для выщелачивания, следовательно, расходуется большое количество азота и водорода. В настоящее время отечественные и зарубежные устройства для ОТК используют традиционную технологию очистки, которая не включает способ восстановления и измерения водорода.

Суть изобретения

Целью настоящего изобретения является преодоление недостатков существующей технологии, и предоставление способа и установки для переработки водорода в узле очистки устройства для очистки терефталевой кислоты, для того, чтобы перерабатывать водород для повторного использования, таким образом, экономя энергию и водород.

Настоящее изобретение осуществляется с помощью следующих технических схем:

Способ переработки водорода в узле очистки устройства для очистки терефталевой кислоты включает: охлаждение и декомпрессию несконденсированных газов, выделяемых в ходе кристаллизации и мгновенного испарения, для удаления из них водяного пара и последующего образования водорода с чистотой, необходимой для переработки.

Чистота водорода для переработки обычно не ниже 99% по объему.

Обычно, водород, образованный в ходе вышеупомянутой обработки, нужно обнаружить; очистка должна выполняться в том случае, когда содержание вредного газа превышает стандартное значение; очистка проводится в режиме серийной обработки или таким способом, что часть водорода очищается и затем смешивается с неочищенным водородом.

Несконденсированные газы можно остужать и декомпрессировать, используя следующие этапы:

(1) подача пара и несконденсированных газов, выпущенных из группы кристаллизатора, в качестве тепловыделяющей среды в группу нагревателя для теплообмена с теплопоглощающей средой указанной группы нагревателя;

(2) передача жидкой части тепловыделяющей среды, выпущенной из группы нагревателя в резервуар для конденсата, и последующее снижение давления и ограничение потока газов, отделенных в указанном резервуаре для конденсата, и газовой части тепловыделяющей среды, выпущенной из группы нагревателя, через первый ограничитель потока;

(3) передача газа, полученного в первом ограничителе потока путем снижения давления и ограничения потока, в качестве тепловыделяющей среды во второй теплообменник для теплообмена с теплопоглощающей средой второго теплообменника;

(4) тепловыделяющая газовая среда из второго теплообменника подвергается снижению давления и ограничению потока во втором ограничителе потока;

(5) передача газа, выпущенного из второго ограничителя потока, после снижения давления и ограничения потока в качестве тепловыделяющей среды в третий теплообменник для теплообмена с теплопоглощающей средой, и последующая переработка тепловыделяющей газовой среды, выпущенной из третьего теплообменника в водород с необходимой чистотой.

Группа нагревателя может быть группой нагревателя суспензии НТК указанного узла очистки, и его теплопоглощающая среда является суспензией НТК; давление газовой части тепловыделяющей среды в указанной группе нагревателя составляет 39,0-39,9 бар, а температура составляет 242-244°C; второй теплообменник является нагревателем с обессоленной водой указанного узла очистки, и теплопоглощающая среда является обессоленной водой; давление газовой части тепловыделяющей среды в указанном втором теплообменнике составляет 17,0-17,9 бар, а температура составляет 169-171°C; третий теплообменник является теплообменником с охлаждающей водой указанного узла очистки, и его теплопоглощающая среда является охлаждающей водой; давление газовой части тепловыделяющей среды в указанном третьем теплообменнике составляет 10,0-10,9 бар, а температура составляет 39-41°C.

Установка для переработки водорода в узле очистки устройства для очистки терефталевой кислоты содержит: водородный компрессор и оборудование для понижения температуры и давления; впускной канал указанного оборудования для снижения температуры и давления соединен с выпускным каналом для несконденсированных газов группы кристаллизатора в узле очистки и его выпускной канал соединен с впускным каналом водородного компрессора.

В настоящем изобретении, гидроочищенная суспензия течет через группу кристаллизатора, несконденсированные газы, выделенные из нее, охлаждаются и их давление снижают, а затем давление повышают и газы перерабатываются для дальнейшего использования, таким образом, по сравнению с традиционной технологией, несконденсированный водород не будет выпускаться из башни для выщелачивания и исчезает необходимость добавления азота в целях безопасности, таким образом, решается проблема расхода водорода и азота; помимо этого, первоначальный производственный процесс не претерпел значительных изменений, затраты на него практически не изменились и он является простым и легким в применении, что более важно, снижается расход энергии (метанола, азота и паров), общий расход энергии на каждую тонну готовых продуктов ОТК будет снижен на 6,6 кг обычной нефти; таким образом, можно сэкономить десять миллионов юаней в год, что является значительной экономической выгодой.

Описание графических материалов

Фиг.1 является схемой производственного процесса согласно настоящему изобретению.

Конкретный вариант осуществления изобретения

Как изображено на Фиг.1, настоящее изобретение предоставляет установку для переработки водорода в узле очистки устройства для очистки терефталевой кислоты, указанная установка содержит: водородный компрессор и оборудование для снижения температуры и давления; впускной канал указанного оборудования для снижения температуры и давления соединен с выпускным каналом для несконденсированных газов группы кристаллизатора в узле очистки и его выпускной канал соединен с впускным каналом водородного компрессора.

Оборудование для снижения температуры и давления также может содержать группу нагревателя, первый ограничитель потока, второй теплообменник, второй ограничитель потока и третий теплообменник, при этом выпускной канал для тепловыделяющей среды указанной группы нагревателя соединен с впускным каналом первого ограничителя потока, и выпускной канал первого ограничителя потока соединен с впускным каналом тепловыделяющей среды второго теплообменника; выпускной канал для тепловыделяющей среды второго теплообменника соединен с впускным каналом второго ограничителя потока, и выпускной канал второго ограничителя потока соединен с впускным каналом тепловыделяющей среды третьего теплообменника; впускной канал тепловыделяющей среды указанной группы нагревателя служит впускным каналом (впускными каналами) указанного оборудования для снижения температуры и давления; и выпускной канал для тепловыделяющей среды третьего теплообменника служит выпускным каналом (выпускными каналами) указанного оборудования для снижения температуры и давления. После неоднократного понижения температуры и давления, несконденсированные газы достигают впускного канала водородного компрессора, при этом их температура составляет 40°C, давление составляет 10 бар, и чистота водорода превышает 99% по объему.

Обычно, ограничительное отверстие (OO) может использоваться в качестве указанного ограничителя потока, способного в определенной мере контролировать количество выпускаемых газов, таким образом, снижая давление.

Группа нагревателя может быть группой нагревателя суспензии НТК указанного узла очистки, тепловыделяющая среда группы нагревателя является парами и несконденсированными газами, выпущенными из указанной группы кристаллизатора, и его теплопоглощающая среда является суспензией; второй теплообменник может быть нагревателем с обессоленной водой указанного узла очистки, тепловыделяющая среда нагревателя с обессоленной водой является парами и несконденсированными газами, выпущенными из указанного первого ограничителя потока, и его теплопоглощающая среда является обессоленной водой, таким образом, температура указанной обессоленной воды будет повышаться, что удобно для последующей промывки отфильтрованного осадка; третий теплообменник может быть теплообменником с охлаждающей водой указанного узла очистки, тепловыделяющая среда теплообменника с охлаждающей водой является парами и несконденсированными газами, выпущенными из указанного второго ограничителя потока, и его теплопоглощающая среда является охлаждающей водой.

Оборудование для производства водорода также расположено между теплообменником с охлаждающей водой указанного узла очистки и водородным компрессором, и впускной канал и выпускной канал оборудования для производства водорода соответственно соединены с выпускным каналом для тепловыделяющей среды указанного теплообменника с охлаждающей водой узла очистки и впускным каналом указанного водородного компрессора. Если содержание вредных газов, обнаруженных в несконденсированных газах перед повышением давления, превышает стандартное значение, они могут быть направлены, серийно или частично, сначала в оборудование для производства водорода, а затем в водородный компрессор, для повышения давления и переработки; но если содержание вредных газов, обнаруженных в несконденсированных газах перед повышением давления, не превышает стандартное значение, они могут быть направлены непосредственно в водородный компрессор для повышения давления и переработки.

Группа нагревателя также может содержать выпускной канал для конденсата тепловыделяющей среды, который соединен с впускным каналом резервуара для конденсата; газовыпускной канал указанного резервуара для конденсата соединен с газовпускным каналом указанного первого ограничителя потока с помощью трубы.

Выпускной канал для суспензии указанной группы кристаллизатора обычно соединен с впускным каналом для суспензии фильтрующего промывателя; выпускной канал для отфильтрованного осадка указанного фильтрующего промывателя соединен с впускным каналом для материала осушителя; промывающий впускной канал указанного фильтра соединен с выпускным каналом для обессоленной воды нагревателя с обессоленной водой указанного узла очистки; впускной канал для теплопоглощающей среды нагревателя с обессоленной водой указанного узла очистки соединен с выпускным каналом для теплопоглощающей среды пародистиллятного теплообменника с помощью труб(ы); указанный пародистиллятный теплообменник также может повышать температуру указанной обессоленной воды, облегчая ее дальнейший нагрев до 125°C в нагревателе с обессоленной водой, для того, чтобы гарантировать эффект промывки отфильтрованного осадка обессоленной водой. Промывающий выпускной канал указанного фильтра соединен с впускным каналом коллектора исходной жидкости, и выпускной канал коллектора исходной жидкости соединен с узлом окисления; фильтр используется для отделения твердых частиц суспензии, выпущенной из группы кристаллизатора, от жидких частиц, где твердые частицы являются отфильтрованным осадком, который промывается обессоленной водой и затем поступает в осушитель для образования продукта ОТК. Чистый раствор, восстановленный из исходной жидкости, направляется на выщелачивание, и концентрированный раствор перемещается в узел окисления для повторного использования; газы, полученные при сушке, направляются на выщелачивание и затем выпускаются в атмосферу, и продукт выщелачивания перерабатывается для повторного использования.

Установка для переработки водорода также может содержать башню для выщелачивания, при этом впускные каналы соответственно соединены с выпускным каналом для жидкости указанного резервуара для конденсата и выпускным каналом для жидкости нагревателя с обессоленной водой указанного узла очистки. Жидкости, выпущенные из указанного резервуара для конденсата и нагревателя с обессоленной водой, попадают в башню для выщелачивания для переработки. Жидкости, выпущенные из указанной башни для выщелачивания, также могут попадать в узел смешивания суспензии для переработки.

Способ переработки водорода в узле очистки устройства для очистки терефталевой кислоты включает: охлаждение и декомпрессию несконденсированных газов, выделяемых в ходе кристаллизации для удаления из них водяного пара; в результате этого образуется водород с чистотой, необходимой для переработки.

Группа кристаллизатора указанного узла очистки отделяет газы и суспензию, полученные при реакции очистки и соответственно выпускает их; выпущенные газы содержат пары и несконденсированные газы, данные газы поступают в качестве тепловыделяющей среды в группу нагревателя для теплообмена с теплопоглощающей средой группы нагревателя; жидкая часть тепловыделяющей среды, выпущенная из группы нагревателя, частично попадает в резервуар для конденсата; первый ограничитель потока осуществляет снижение давления и ограничение потока газов, отделенных от резервуара для конденсата и газовой части тепловыделяющей среды, выпущенной из группы нагревателя; газы из первого ограничителя потока используются в качестве тепловыделяющей среды и направляются во второй теплообменник для теплообмена с теплопоглощающей средой второго теплообменника; второй ограничитель потока осуществляет снижение давления и ограничение потока газов тепловыделяющей среды, выпущенных из второго теплообменника; газы из второго ограничителя потока используются в качестве тепловыделяющей среды и направляются в третий теплообменник для теплообмена с теплопоглощающей средой третьего теплообменника; газы тепловыделяющей среды, выпущенные из третьего теплообменника, выводятся в виде водорода с чистотой, необходимой для переработки.

Несконденсированные газы, выпущенные из первого ограничительного отверстия, имеют высокую температуру и содержат много паров; когда нагреватель с обессоленной водой осуществляет теплообмен, указанные пары, смешанные с несконденсированными газами, конденсируются и затем выпускаются в башню для выщелачивания через выпускной канал для конденсата указанного нагревателя с обессоленной водой, а затем - в атмосферу или на переработку.

Суспензия, выпущенная из группы кристаллизатора, фильтруется с помощью фильтра, затем отфильтрованный осадок промывается обессоленной водой и высушивается осушителем, в результате получается продукт ОТК; для обеспечения промывки отфильтрованного осадка обессоленной водой, температура достигает примерно 125°C; после того, как отфильтрованная остаточная жидкость утилизируется устройством для утилизации исходной жидкости, концентрированная жидкость течет в узел окисления.

1. Способ переработки водорода в узле очистки устройства для очистки терефталевой кислоты, который содержит: охлаждение и декомпрессию несконденсированных газов, выделяемых в ходе кристаллизации и мгновенного испарения, для удаления из них водяного пара с последующим образованием водорода; переработку водорода; при этом несконденсированные газы охлаждают и декомпрессируют, используя этапы, на которых:
(1) подают пар и несконденсированные газы, выпущенные из группы кристаллизатора, в качестве тепловыделяющей среды в группу нагревателя для теплообмена с теплопоглощающей средой указанной группы нагревателя;
(2) передают жидкую часть тепловыделяющей среды, выпущенную из группы нагревателя, в резервуар для конденсата, и после снижают давление и ограничивают поток газов, отделенных в указанном резервуаре для конденсата, и газовой части тепловыделяющей среды, выпущенной из группы нагревателя, через первый ограничитель потока;
(3) передают газ, полученный в первом ограничителе потока путем снижения давления и ограничения потока, в качестве тепловыделяющей среды во второй теплообменник для теплообмена с теплопоглощающей средой второго теплообменника;
(4) тепловыделяющую газовую среду из второго теплообменника подвергают снижению давления и ограничению потока во втором ограничителе потока;
(5) передают газ, выпущенный из второго ограничителя потока, после снижения давления и ограничения потока в качестве тепловыделяющей среды в третий теплообменник для теплообмена с теплопоглощающей средой;
причем группа нагревателя является группой нагревателя суспензии НТК указанного узла очистки, и его теплопоглощающая среда является суспензией НТК; давление газовой части тепловыделяющей среды в указанной группе нагревателя составляет 39,0-39,9 бар, а температура составляет 242-244°C; второй теплообменник является нагревателем с обессоленной водой указанного узла очистки, и теплопоглощающая среда является обессоленной водой; давление газовой части тепловыделяющей среды в указанном втором теплообменнике составляет 17,0-17,9 бар, а температура составляет 169-171°C; третий теплообменник является теплообменником с охлаждающей водой указанного узла очистки, и его теплопоглощающая среда является охлаждающей водой; давление газовой части тепловыделяющей среды в указанном третьем теплообменнике составляет 10,0-10,9 бар, а температура составляет 39-41°C.

2. Способ переработки водорода в узле очистки устройства для очистки терефталевой кислоты по п.1, отличающийся тем, что чистота водорода для переработки не ниже 99% по объему.

3. Способ переработки водорода в узле очистки устройства для очистки терефталевой кислоты по пп.1 или 2, отличающийся тем, что очистка должна выполняться в том случае, когда содержание вредного газа превышает стандартное значение; очистку проводят в режиме серийной обработки или таким способом, что часть водорода очищают и затем смешивают с неочищенным водородом.

4. Установка для переработки водорода в узле очистки устройства для очистки терефталевой кислоты, которая содержит: водородный компрессор и оборудование для снижения температуры и давления; впускной канал указанного оборудования для снижения температуры и давления соединен с выпускным каналом для несконденсированных газов группы кристаллизатора в узле очистки и его выпускной канал соединен с впускным каналом водородного компрессора; оборудование для снижения температуры и давления содержит группу нагревателя, первый ограничитель потока, второй теплообменник, второй ограничитель потока и третий теплообменник, отличающаяся тем, что выпускной канал для тепловыделяющей среды указанной группы нагревателя соединен с впускным каналом первого ограничителя потока, и выпускной канал первого ограничителя потока соединен с впускным каналом тепловыделяющей среды второго теплообменника; выпускной канал для тепловыделяющей среды второго теплообменника соединен с впускным каналом второго ограничителя потока, и выпускной канал второго ограничителя потока соединен с впускным каналом тепловыделяющей среды третьего теплообменника; впускной канал тепловыделяющей среды указанной группы нагревателя служит впускным каналом указанного оборудования для снижения температуры и давления; и выпускной канал для тепловыделяющей среды третьего теплообменника служит выпускным каналом указанного оборудования для снижения температуры и давления, где указанная установка предназначена для осуществления способа по п.1.

5. Установка для переработки водорода в узле очистки устройства для очистки терефталевой кислоты по п.4, отличающаяся тем, что группа нагревателя является группой нагревателя суспензии НТК указанного узла очистки, второй теплообменник является нагревателем с обессоленной водой указанного узла очистки, третий теплообменник является теплообменником с охлаждающей водой указанного узла очистки; оборудование для производства водорода также расположено между теплообменником с охлаждающей водой указанного узла очистки и водородным компрессором, и впускной канал и выпускной канал оборудования для производства водорода соответственно соединены с выпускным каналом для тепловыделяющей среды указанного теплообменника с охлаждающей водой узла очистки и впускным каналом указанного водородного компрессора.

6. Установка для переработки водорода в узле очистки устройства для очистки терефталевой кислоты по п.5, отличающаяся тем, что группа нагревателя также содержит выпускной канал для конденсата тепловыделяющей среды, данный выпускной канал для конденсата тепловыделяющей среды соединен с впускным каналом резервуара для конденсата; газовыпускной канал указанного резервуара для конденсата соединен с газовпускным каналом указанного первого ограничителя потока с помощью трубы.

7. Установка для переработки водорода в узле очистки устройства для очистки терефталевой кислоты по пп.4, 5 или 6, отличающаяся тем, что выпускной канал для суспензии указанной группы кристаллизатора соединен с впускным каналом для суспензии фильтрующего промывателя; выпускной канал для отфильтрованного осадка указанного фильтрующего промывателя соединен с впускным каналом для материала осушителя; промывающий впускной канал указанного фильтра соединен с выпускным каналом для обессоленной воды нагревателя с обессоленной водой указанного узла очистки; впускной канал для теплопоглощающей среды нагревателя с обессоленной водой указанного узла очистки соединен с выпускным каналом для теплопоглощающей среды пародистиллятного теплообменника с помощью труб(ы); промывающий выпускной канал указанного фильтра соединен с впускным каналом коллектора исходной жидкости, и выпускной канал коллектора исходной жидкости соединен с узлом окисления.



 

Похожие патенты:

Настоящее изобретение относится к контейнеру для пищевых продуктов или напитков, содержащему полиэтилентерефталатный полимер. Описан контейнер для пищевых продуктов или напитков, содержащий полиэтилентерефталатный полимер, где указанный полимер содержит терефталатный компонент и диольный компонент, где терефталатный компонент выбран из терефталевой кислоты, диметилтерефталата, изофталевой кислоты и их комбинаций, и диольный компонент выбран из этиленгликоля, циклогександиметанола и их комбинаций, причем оба компонента - терефталатный и диольный, частично или полностью получены из, по меньшей мере, одного материала на основе биосырья.

Изобретение относится к улучшенному способу сепарации и фильтрации необработанной терефталевой кислоты для получения очищенной терефталевой кислоты. Способ включает подачу суспензии неочищенной терефталевой кислоты в ротационный напорный фильтр для твердожидкостной сепарации с получением влажного отфильтрованного осадка, отфильтрованной остаточной жидкости, промывочной текучей среды и обезвоженного газа, подачу промывочной текучей среды и инертного газа, удаление примесей из части отфильтрованной остаточной жидкости и переработку оставшейся отфильтрованной остаточной жидкости.

Изобретение относится к усовершенствованному реактору окисления параксилола для получения терефталевой кислоты, который содержит корпус реактора, при этом устройство ввода воздуха распределительного типа и устройство ввода воздуха циклонного типа расположены в нижней части корпуса реактора, устройство ввода воздуха распределительного типа содержит ряд трубок распределения воздуха и устройство циклонного ввода воздуха состоит из нескольких трубок циклонного ввода воздуха, расположенных ниже трубок распределения воздуха, при этом сегмент вывода воздуха указанных трубок циклонного ввода воздуха наклонен на 45-60° относительно радиуса корпуса резервуара.

Изобретение относится к усовершенствованному способу конверсии потока сырья, содержащего по меньшей мере одно C8-ароматическое соединение, орто-ксилол, мета-ксилол, пара-ксилол и этилбензол, по меньшей мере в один поток продуктов, содержащий изофталевую кислоту и терефталевую кислоту (IPA/TA), который включает стадии: a) удаление этилбензола из указанного потока сырья с образованием потока сырья, обедненного этилбензолом; b) удаление opmo-ксилола из указанного обедненного этилбензолом потока сырья с образованием потока сырья, обедненного opmo-ксилолом, содержащего мета-ксилол и пара-ксилол; c) окисление указанного обедненного opmo-ксилолом потока сырья с образованием потока продуктов, содержащего IPA/TA в соотношении от 0,5% до 99,5% IPA и от 0,5 до 99,5% TA; d) сушка указанного потока продукта в сушилке для удаления остаточных растворителя и воды; e) удаление по существу очищенного потока продуктов IPA/TA; f) растворение указанного потока продуктов; и g) отделение указанного IPA и указанного TA от указанного растворенного потока продуктов.

Изобретение относится к усовершенствованному способу эффективного повторного использования рафинационного маточного раствора из аппаратурного комплекса производства очищенной терефталевой кислоты РТА, включающему в себя следующие стадии: (1) охлаждение рафинационного маточного раствора с применением способа теплообмена; (2) обработка охлажденного рафинационного маточного раствора посредством ультрафильтрации и повторное использование ультрафильтрационно сконцентрированного раствора для окислительной установки; (3) проведение ионообменной обработки фильтрата, полученного при ультрафильтрации: селективная адсорбция ионов Со и ионов Mn в фильтрате, повторное использование десорбционного раствора Со и Mn в качестве катализатора и последующая адсорбция ионов металлов, таких как ионы Fe, ионы Ni, ионы Na; и (4) применение раствора после ионного обмена в качестве эндотермической среды на стадии (1) для обмена теплом с рафинационным маточным раствором, при котором большую часть раствора направляют в пульверизационную сушилку башенного типа, а избыточную часть после теплообмена отбрасывают; раствор, пульверизированный в пульверизационной сушилке башенного типа, повторно используют в рафинационной системе.

Изобретение относится к способу получения ароматической карбоновой кислоты. .

Изобретение относится к усовершенствованному способу получения композиции поликарбоновой кислоты, включающему: (а) проведение окисления многофазной реакционной среды, содержащей окисляемое исходное ароматическое соединение, растворитель и воду, в зоне первичного окисления с получением в результате исходной суспензии, содержащей сырую терефталевую кислоту; (b) проведение окислительного сжигания, по меньшей мере, части указанной исходной суспензии в зоне сжигания с получением в результате суспензии продукта сжигания, имеющей одну или более из следующих характеристик: (i) содержит менее чем 9000 частей на млн.

Изобретение относится к усовершенствованному способу получения неочищенной терефталевой кислоты для применения на стадии гидрогенизационной очистки посредством проведения жидкофазного окисления кислородсодержащим газом в реакторе окисления, снабженном мешалкой, с использованием в качестве исходного материала пара-ксилола в растворителе - уксусной кислоте, в присутствии металлсодержащего катализатора, включающего кобальт (Co), марганец (Mn) и бром (Br) в качестве промотора окисления, где температуру реакции окисления регулируют так, что она находится в интервале от 185 до 197°С, среднее время пребывания в реакторе исходной смеси для жидкофазного окисления составляет от 0,7 до 1,5 часов, содержание воды в реакционном растворителе регулируют так, чтобы оно составляло от 8 до 15 мас.%, а состав катализатора в растворе регулируют в интервале содержания, определенного в зависимости от температуры реакции так, что он включает: (1) каталитически активный металл (Co+Mn) в количестве от 2650 част./млн.

Изобретение относится к усовершенствованному способу получения композиции ароматической дикарбоновой кислоты, включающему (а) проведение окисления многофазной реакционной среды в реакторе первичного окисления с получением в результате первой суспензии; (b) проведение дополнительного окисления, по меньшей мере, части указанной первой суспензии в реакторе вторичного окисления, где указанный реактор вторичного окисления представляет собой реактор по типу барботажной колонны, причем способ дополнительно включает введение ароматического соединения в указанный реактор первичного окисления, где, по меньшей мере, приблизительно 80% мас.

Изобретение относится к способу получения водной акриловой кислоты из потока газообразного материала, включающему следующие стадии: а) подача газообразного потока в конденсатор, где поток газообразного материала включает по меньшей мере акриловую кислоту, воду, формальдегид; и б) работа конденсатора и получение газообразного выходящего потока, включающего несконденсированные компоненты, которые выходят из верхней части конденсатора, и конденсированного потока водной акриловой кислоты, включающего акриловую кислоту, который сливают из грязеотстойника конденсатора, где поток водной акриловой кислоты включает не больше 0,1 мас.% формальдегида в пересчете на общую массу потока водной акриловой кислоты.

Изобретение относится к способу обратного расщепления аддуктов Михаэля, содержащихся в жидкости F с массовой долей ≥ 10 мас.%, в пересчете на массу жидкости F, которые образовались при получении акриловой кислоты или ее сложных эфиров, в установке для обратного расщепления, которая включает по меньшей мере один насос Р, разделительную колонну К, которая снизу вверх состоит из кубовой части, примыкающей к кубовой части, содержащей внутренние устройства с разделяющим эффектом разделяющей части и следующей за ней головной части, и в которой давление в газовой фазе уменьшается снизу вверх, а также непрямой теплообменник с циркуляцией теплоносителя UW, который имеет по меньшей мере один вторичный объем и по меньшей мере один первичный объем, отделенный от этого по меньшей мере одного вторичного объема с помощью реальной разделительной стенки D, при котором жидкость F с температурой подачи TZ непрерывно вводят в разделительную колонну К в точке подачи I, которая находится в этой разделительной колонне К выше самого нижнего внутреннего устройства с разделяющим эффектом, а в расположенной на самом низком уровне точке кубовой части разделительной колонны К с помощью насоса Р непрерывно отбирают расходный поток M ˙ стекающей в кубовую часть через внутренние устройства с разделяющим эффектом, содержащей аддукты Михаэля жидкости с температурой TSU, так что в кубовой части в качестве кубовой жидкости устанавливается уровень S стекающей в него жидкости, который составляет менее половины расстояния А, измеренного от точки разделительной колонны К, расположенной на самом низком уровне, до нижней поверхности самого нижнего внутреннего устройства с разделяющим эффектом в разделительной колонне К, в то время как в остальном объеме кубовой части, расположенном над этим уровнем жидкости, существует давление газа GD, а также по меньшей мере один частичный поток I из расходного потока M ˙ пропускают по меньшей мере через один вторичный объем непрямого теплообменника с циркуляцией теплоносителя UW и при этом путем непрямого теплообмена с жидким теплоносителем, пропущенным одновременно по меньшей мере через один первичный объем этого непрямого теплообменника с циркуляцией теплоносителя UW, нагревают до температуры обратного расщепления TRS, лежащей выше температуры TSU, а из выводимого по меньшей мере из одного вторичного объема непрямого теплообменника с циркуляцией теплоносителя UW с температурой TRS потока вещества M ˙ * в точке подачи II, которая находится ниже самого нижнего внутреннего элемента с разделяющим эффектом разделительной колонны К и выше уровня S кубовой жидкости, по меньшей мере один частичный поток II подается обратно в кубовую часть разделительной колонны К таким образом, что этот по меньшей мере один частичный поток II в кубовой части разделительной колонны К не направлен на кубовую жидкость, и по меньшей мере из одного из двух потоков M ˙ , M ˙ * отводится частичный поток в качестве остаточного потока, при условии, что температура обратного расщепления TRS установлена так, что, с одной стороны, при прохождении по меньшей мере одного вторичного объема непрямого теплообменника с циркуляцией теплоносителя UW по меньшей мере часть количества аддуктов Михаэля, содержащихся в по меньшей мере одном частичном потоке I, расщепляется с образованием соответствующих им продуктов обратного расщепления, а также, с другой стороны, по меньшей мере один частичный поток II, подаваемый обратно в разделительную колонну К, при существующем в кубовой части в точке подачи II давлении газа GD кипит, а образующаяся при кипении газовая фаза, содержащая по меньшей мере частичное количество продукта обратного расщепления, поступает в головную часть колонны К в качестве газового потока G, содержащего продукт обратного расщепления, следуя за убывающим в направлении головной части колонны К давлением газа, а этот газовый поток G путем прямого и/или непрямого охлаждения частично конденсируется еще в головной части разделительной колонны К и/или будучи выведенным из головной части разделительной колонны К, образующийся при этом конденсат по меньшей мере частично возвращается в разделительную колонну К в качестве флегмовой жидкости, а газовый поток, остающийся при частичной конденсации, отводится, причем насос Р представляет собой радиальный центробежный насос с полуоткрытым радиальным рабочим колесом.

Изобретение относится к улучшенному способу сепарации и фильтрации необработанной терефталевой кислоты для получения очищенной терефталевой кислоты. Способ включает подачу суспензии неочищенной терефталевой кислоты в ротационный напорный фильтр для твердожидкостной сепарации с получением влажного отфильтрованного осадка, отфильтрованной остаточной жидкости, промывочной текучей среды и обезвоженного газа, подачу промывочной текучей среды и инертного газа, удаление примесей из части отфильтрованной остаточной жидкости и переработку оставшейся отфильтрованной остаточной жидкости.

Изобретение относится к усовершенствованному способу получения уксусной кислоты с улучшенным выходом, включающему следующие стадии: а) введение метанола и/или его реакционноспособного производного и монооксида углерода в первую реакционную зону, содержащую жидкую реакционную композицию, включающую катализатор карбонилирования, необязательно промотор катализатора карбонилирования, метилиодид, метилацетат, уксусную кислоту и воду; б) извлечение, по меньшей мере, части жидкой реакционной композиции совместно с растворенным и/или захваченным монооксидом углерода и другими газами из первой реакционной зоны; в) направление, по меньшей мере, части извлеченной жидкой реакционной композиции во вторую реакционную зону, в которой потребляется, по меньшей мере, часть растворенного и/или захваченного монооксида углерода; г) направление, по меньшей мере, части жидкой реакционной композиции из второй реакционной зоны в зону испарительного разделения с образованием: паровой фракции, включающей уксусную кислоту, метилиодид, метилацетат и отходящий газ низкого давления, включающий монооксид углерода; и жидкой фракции, включающей катализатор карбонилирования и необязательно промотор катализатора карбонилирования; д) направление паровой фракции из зоны испарительного разделения в одну или более зон дистилляции с целью извлечения конечной уксусной кислоты; причем температура жидкой реакционной композиции, извлекаемой из первой реакционной зоны, составляет от 170 до 195°С; а температура жидкой реакционной композиции, направляемой из второй реакционной зоны в зону испарительного разделения, по меньшей мере, на 8°С превышает температуру жидкой реакционной композиции, извлекаемой из первой реакционной зоны.
Изобретение относится к улучшенному способу селективного удаления примеси пропионовой кислоты из потока акриловой кислоты. .
Изобретение относится к улучшенному способу получения аммонийных солей фумаровой или янтарной кислоты, которые используются для изготовления биологически активных добавок или лекарственных средств, а также в ветеринарии и пищевой промышленности.

Изобретение относится к усовершенствованному способу эффективного повторного использования рафинационного маточного раствора из аппаратурного комплекса производства очищенной терефталевой кислоты РТА, включающему в себя следующие стадии: (1) охлаждение рафинационного маточного раствора с применением способа теплообмена; (2) обработка охлажденного рафинационного маточного раствора посредством ультрафильтрации и повторное использование ультрафильтрационно сконцентрированного раствора для окислительной установки; (3) проведение ионообменной обработки фильтрата, полученного при ультрафильтрации: селективная адсорбция ионов Со и ионов Mn в фильтрате, повторное использование десорбционного раствора Со и Mn в качестве катализатора и последующая адсорбция ионов металлов, таких как ионы Fe, ионы Ni, ионы Na; и (4) применение раствора после ионного обмена в качестве эндотермической среды на стадии (1) для обмена теплом с рафинационным маточным раствором, при котором большую часть раствора направляют в пульверизационную сушилку башенного типа, а избыточную часть после теплообмена отбрасывают; раствор, пульверизированный в пульверизационной сушилке башенного типа, повторно используют в рафинационной системе.
Изобретение относится к способу хранения жидкой в условиях хранения мономерной фазы, в которой содержание мономеров составляет 95 мас.%, в резервуаре для хранения, причем мономером является мономер из группы, состоящей из акролеина, метакролеина, акриловой кислоты, сложных эфиров из акриловой кислоты и спирта, имеющего от 1 до 12 атомов углерода, а также сложных эфиров из метакриловой кислоты и спирта, имеющего от 1 до 12 атомов углерода, и жидкую мономерную фазу получают путем конденсации из газообразной фазы или путем расплавления кристаллической фазы.

Изобретение относится к усовершенствованному способу для переноса тепла на жидкую смесь, содержащую, по меньшей мере, один (мет)акрилмономер, выбранный из группы, включающей акриловую кислоту, метакриловую кислоту, гидроксиэтилакрилат, гидроксиэтилметакрилат, гидроксипропилакрилат, гидроксипропилметакрилат, глицидилакрилат, глицидилметакрилат, метилакрилат, метилметакрилат, н-бутилакрилат, изо-бутилакрилат, изо-бутилметакрилат, н-бутилметакрилат, трет-бутилакрилат, трет-бутилметакрилат, этилакрилат, этилметакрилат, 2-этилгексилакрилат и 2-этилгексилметакрилат, с помощью косвенного теплообменника, по которому на его первичной стороне течет флюидный теплоноситель и на его вторичной стороне одновременно течет указанная жидкая смесь, содержащая, по меньшей мере, один (мет)акрилмономер, причем жидкая смесь, содержащая, по меньшей мере, один (мет)акрилмономер, для уменьшения загрязнения дополнительно содержит добавленное, по меньшей мере, одно отличающееся от (мет)акрилмономеров активное соединение из группы, состоящей из третичных аминов, солей, образованных из третичного амина и кислоты Бренстеда, а также четвертичных соединений аммония, при условии что третичные и четвертичные атомы азота в, по меньшей мере, одном активном соединении не имеют никакой фенильной группы, но, по меньшей мере, частичное количество указанных третичных и четвертичных атомов азота имеет, по меньшей мере, одну алкильную группу.

Изобретение относится к способу получения п-иодфенилжирных кислот на основе иодониевых солей, соответствующему принципам «зеленой» химии, которые могут применяться в различных областях техники, в том числе в органической и фармацевтической химии, биохимии и в медицине, в частности в качестве радиофармпрепаратов. Способ получения п-иодфенилжирных кислот включает получение промежуточного продукта с последующим введением атома иода, где на первом этапе получают иодониевую соль на основе фенилжирной кислоты и диацетоксииодбензола в среде уксусной кислоты и в присутствии серной кислоты, при температуре загрузки исходных соединений 0-5°C и дальнейшей температуре проведения реакции 20-28°C, при этом получение иодониевой соли проводят при мольном соотношении фенилжирной кислоты и диацетоксииодбензола (ДИБ) 1:1.1, при перемешивании в течение 5 часов, иодониевую соль выделяют в виде малорастворимого в воде иодоний иодида, для этого в реакционную смесь добавляют водный раствор калий иодида, выделившийся при этом осадок иодоний иодида отделяют фильтрацией, далее иодониевую соль разлагают кипячением в толуоле, о завершении разложения судят по растворению кристаллов иодониевой соли, нерастворимых в толуоле, после этого, для выделения п-иодфенилжирной кислоты, в реакционную массу добавляют водный раствор NaHCO3, отделяют водную фазу, подкисляют серной кислотой, экстрагируют п-иодфенилжирную кислоту этилацетатом, обезвоживают этилацетатную фракцию безводным Na2SO4, растворитель отгоняют под вакуумом и получают п-иодфенилжирную кислоту. Способ позволяет со 100%-ной пара-селективностью ввести атом иода в пара-положение ароматического кольца фенилжирной кислоты, исключая образования орто-изомера и получать пара-иодфенилжирные кислоты. Способ прост, не использует высокотоксичных и дорогостоящих соединений, позволяет получать с высокими выходами п-иодфенилжирные кислоты и является перспективным для производства в промышленном масштабе. 3 з.п. ф-лы, 3 ил., 7 пр.
Наверх