Способ получения ферромагнитной жидкости на полиэтилсилоксановой основе

Изобретение относится к способам получения ферромагнитных жидкостей, применяемых в магнитожидкостных герметизирующих устройствах. Предложен способ получения ферромагнитной жидкости на полиэтилсилоксановой основе, включающий осаждение высокодисперсных частиц магнетита из водных растворов солей двух- и трехвалентного железа раствором аммиака, их стабилизацию себациновой кислотой и пептизацию в смешанном растворителе, содержащем полиэтилсилоксановую жидкость, легкокипящий углеводородный растворитель и фракцию алкильных производных бензола или олигомеров пропилена, выкипающих в пределах 250÷400°С, в количестве 5÷95% от содержания полиэтилсилоксановой жидкости в смешанном растворителе. Стабилизатор предварительно растворяют в легкокипящем растворителе, в качестве легкокипящего растворителя используют этанол, а в качестве полиэтилсилоксановой жидкости используют полиэтилсилоксановую жидкость линейного строения общей формулы M2Dn, где n=1-8, М - (С2Н5)3SiO0,5, D - (C2H5)2SiO, со среднечисловой молекулярной массой 1600÷1750 г, плотностью при 20°С 0,99÷1,00 г/см3, вязкостью при 20°С 200÷500 сСт, температурой термоокислительной деструкции 360°С. Стабилизацию высокодисперсных частиц магнетита и их пептизацию в смешанном растворителе осуществляют одновременно при перемешивании и температуре 80°С в течение 24-х часов под вакуумом. Технический результат: получение ферромагнитной жидкости на полиэтилсилоксановой основе с высокой агрегативной устойчивостью, устойчивостью в магнитном поле 1,0 Тл длительный промежуток времени, с диапазоном рабочих температур от минус 90°С до плюс 250°С и намагниченностью насыщения 20÷40 кА/м. 2 з.п. ф-лы, 1 табл., 1 пр.

 

Изобретение относится к области коллоидной химии и может быть использовано для получения ферромагнитных жидкостей, применяемых в магнитожидкостных герметизирующих устройствах. Ферромагнитная жидкость, применяемая в магнитожидкостных герметизирующих устройствах, должна быть агрегативно устойчивой, устойчивой в магнитном поле до 1,0 Тл длительный промежуток времени, нетоксичной, пожаробезопасной, высоковакуумной, иметь диапазон рабочих температур от 183 до 523 К, иметь намагниченность насыщения до 40 кА/м и вязкость 0,5÷2,0 Па·с. Таким требованиям соответствуют ферромагнитные жидкости на полиэтилсилоксановой основе.

Известен способ получения магнитной жидкости на органосилоксановой основе, преимущественно на полиэтилсилоксановой основе (SU №1621766 А1, 27.01.2002), включающий осаждение магнетита из водно-органических растворов солей двух- и трехвалентного железа водно-органическим раствором гидроокиси аммония. Содержание растворителя (ацетона) в растворах составляет 25-35 об.%. Осадок магнетита промывают ацетоном, стабилизируют олеиновой кислотой в полиэтилсилоксановой жидкости-носителе. Получают магнитную жидкость с вязкостью 0,11÷0,22 Па·с, намагниченностью насыщения 30÷47 кА/м, коэффициентом перераспределения магнитной фазы 7÷10%, устойчивую при центрифугировании при 8000 g.

По данному способу возможно получение магнитных жидкостей только на основе низкомолекулярных полиэтилсилоксановых носителях, не обладающих высокотемпературными и вакуумными свойствами, что затрудняет их применение в магнитожидкостных герметизирующих устройствах.

Наиболее близким к заявляемому является способ получения ферромагнитной жидкости (RU №2024085 С1, 30.11.1994 г.),принятый за прототип, включающий осаждение высокодисперсного магнетита из водных растворов солей двух- и трехвалентного железа при избытке солей двухвалентного железа раствором аммиака, промывку осадка дистиллированной водой, пептизацию при нагревании под вакуумом в растворе олеиновой кислоты в алкарене, процесс пептизации проводят при 388-393К. Получают ферромагнитную жидкость с намагниченностью насыщения до 22,5 кА/м, плотностью 1,21 г/см3, вязкостью 0,23 Па·с, устойчивостью в гравитационном поле 6000 g, устойчивостью в магнитном поле до 1 Тл. Ферромагнитная жидкость может применяться при температуре от 223 до 453 К. При нагревании феррожидкости до 453 К в течение часа свойства образца сохраняются.

Данный способ не позволяет получить ферромагнитные жидкости с широким диапазоном вязкости и высокой намагниченностью насыщения. Это затрудняет их применение в магнитожидкостных герметизирующих устройствах, где во многих случаях требуется широкое варьирование указанных свойств.

Технический результат предлагаемого способа заключается в получении ферромагнитной жидкости на полиэтилсилоксановой основе с высокой агрегативной устойчивостью, устойчивостью в магнитном поле до 1,0 Тл длительный промежуток времени, с диапазоном рабочих температур от 183 до 523 К и намагниченностью насыщения 20÷40 кА/м и вязкость 0,5÷2,0 Па·с.

Технический результат достигается тем, что в способе получения ферромагнитной жидкости, включающем осаждение высокодисперсного магнетита из водных растворов солей двух- и трехвалентного железа раствором аммиака, промывку осадка дистиллированной водой, пептизацию при нагревании под вакуумом в растворе олеиновой кислоты в алкарене, стабилизацию магнетита осуществляют себациновой кислотой, при этом стабилизатор предварительно растворяют в легкокипящем растворителе, в качестве легкокипящего растворителя используют этанол; пептизацию стабилизированного магнетита проводят в смешанном растворителе, содержащем полиэтилсилоксановую жидкость и фракцию алкильных производных бензола или олигомеров пропилена, выкипающих в пределах 523÷673 К в количестве 5÷95 об.% от содержания полиэтилсилоксановой жидкости в смешанном растворителе; в качестве полиэтилсилоксановой жидкости используют полиэтилсилоксановую жидкость линейного строения общей формулы M2Dn, где n=1-8, М - (C2H5)3SiO0,5, D - (C2H5)2SiO, со среднечисловой молекулярной массой 1600÷1750 г, плотностью 0,99÷1,00 г/см3, вязкостью 200÷500 сСт, температурой термоокислительной деструкции 633 К. Стабилизацию высокодисперсных частиц магнетита и их пептизацию в смешанном растворителе осуществляют одновременно при перемешивании и температуре 353 К в течение 24-х часов под вакуумом.

Способ осуществляют следующим образом.

Готовят водные растворы солей двух- и трехвалентного железа и водный раствор аммиака. Водные растворы солей двух- и трехвалентного железа смешивают. Высокодисперсный магнетит, полученный осаждением из раствора солей двух- и трехвалентного железа водным раствором аммиака, отделяют от маточного раствора декантацией и многократно промывают дистиллированной водой до рН 7. Осадок высокодисперсного магнетита отфуговывают. Стабилизатор растворяют в легкокипящем растворителе. Готовят смешанный растворитель, содержащий полиэтилсилоксановую жидкость и фракцию алкильных производных бензола или олигомеров пропилена в количестве 5÷95 об.% от содержания полиэтилсилоксановой жидкости в смешанном растворителе. К осадку высокодисперсного магнетита при непрерывном перемешивании добавляют одновременно раствор стабилизатора в легкокипящем растворителе и смешанный растворитель. Смесь тщательно перемешивают и пептизируют при температуре 353 К в течение 24-х часов под вакуумом, при этом происходит удаление из массы смеси воды и этанола, стабилизация высокодисперсного магнетита и его пептизация в смешанном растворителе. Предлагаемый способ позволяет получить ферромагнитные жидкости с широким диапазоном вязкости и высокой намагниченностью насыщения, устойчивые в магнитном поле до 1,0 Тл длительный промежуток времени, с диапазоном рабочих температур от 183 до 523 К. Целенаправленное варьирование вязкостными характеристиками осуществляется за счет изменения соотношения полиэтилсилоксановой жидкости и фракций алкильных производных бензола или олигомеров пропилена.

Пример

256 г FeCl3·6H2O растворяют в 2 литрах дистиллированной воды, 133 г FeSO4·7H2O растворяют в 2 литрах дистиллированной воды. Растворы солей смешивают. Готовят 6%-ный водный раствор аммиака в количестве 4 литра. К смеси солей железа приливают 6%-ный водный раствор аммиака до рН 11. При этом выпадает осадок высокодисперсного магнетита. Осадок отделяют от маточного раствора декантацией и многократно промывают дистиллированной водой до рН 7.

Осадок высокодисперсного магнетита отфуговывают. Готовят раствор себациновой кислоты в этаноле, содержащий 30 г себациновой кислоты и 100 мл этанола. Готовят смешанный растворитель, содержащий 80 мл полиэтилсилоксановой жидкости и 80 мл олигомера пропилена. К осадку высокодисперсных частиц магнетита добавляют раствор себациновой кислоты в этаноле и смешанный растворитель. Смесь перемешивают и пептизируют при температуре 353 К в течение 24-х часов под вакуумом.

Другие примеры, приведенные в таблице, осуществляют аналогичным образом, используя различные фракции олигомеров пропилена или фракции алкильных производных бензола. В таблице показано как меняется пластическая вязкость ферромагнитной жидкости в зависимости от изменения соотношения полиэтилсилоксановой жидкости и фракций алкильных производных бензола или олигомеров пропилена в рамках примерно одинаковой намагниченности насыщения.

Свойства ферромагнитных жидкостей по заявленному способу
Добавляемая фракция Количество добавляемой фракции, об.% Вязкость кинематическая добавляемой фракции при 20°С, сСт Свойства ферромагнитной жидкости при 20°С
плотность, г/см3 вязкость пластическая, Па·с намагниченность насыщения, кА/м
Олигомер пропилена 5 2,8 1,33 1,54 34
То же 25 8,3 1,29 1,25 35
То же 50 2,8 1,21 0,95 35,5
То же 95 15,8 1.18 0,56 35
Алкилбен-зол С610 5 2,9 1,33 1,538 34
Алкилбен-зол C12-c14 30 15,8 1,31 1,38 35
Алкилбен-зол C12-C14 50 15,8 1,28 1,14 34,5
Алкилбен-зол C14-C16 95 36,4 1,24 0,62 35.7

1. Способ получения ферромагнитной жидкости, включающий осаждение высокодисперсного магнетита из водных растворов солей двух- и трехвалентного железа раствором аммиака, промывку осадка дистиллированной водой, пептизацию при нагревании под вакуумом в растворе олеиновой кислоты, отличающийся тем, что стабилизацию магнетита осуществляют себациновой кислотой, при этом стабилизатор предварительно растворяют в легкокипящем растворителе; пептизацию стабилизированного магнетита проводят в смешанном растворителе, содержащем полиэтилсилоксановую жидкость и фракцию алкильных производных бензола или олигомеров пропилена, выкипающих в пределах 523÷673 К в количестве 5÷95 об.% от содержания полиэтилсилоксановой жидкости в смешанном растворителе; в качестве полиэтилсилоксановой жидкости используют полиэтилсилоксановую жидкость линейного строения общей формулы M2Dn, где n=1-8, М - (C2H2)SiO0,5, D - (C2H5)2SiO, со среднечисловой молекулярной массой 1600÷1750 г, плотностью 0,99÷1,00 г/см3, вязкостью 200÷500 сСт, температурой термоокислительной деструкции 633 К.

2. Способ по п.1, отличающийся тем, что в качестве легкокипящего растворителя используют этанол.

3. Способ по п.1, отличающийся тем, что пептизацию стабилизированного магнетита осуществляют при перемешивании и температуре 353 К в течение 24-х часов под вакуумом.



 

Похожие патенты:

Изобретение относится к области черной металлургии, в частности к производству электротехнической анизотропной стали, применяемой при изготовлении магнитопроводов силовых трансформаторов.

Способ изготовления для постоянного магнита включает этапы: а) изготовление постоянного магнита (1), (b) разламывание постоянного магнита (1) для получения двух или более отдельных частей (13) и с) восстановление постоянного магнита (1) путем соединения поверхностей разлома смежных отдельных частей (13) вместе.

Изобретение относится к области металлургии. Для обеспечения высоких стабильных магнитных характеристик текстурованного трансформаторного листа стальной сляб толщиной <100 мм с содержанием Si 2,5-3,5 мас.% подвергают термомеханическому воздействию, состоящему из следующих операций: необязательный первый нагрев до температуры T1 не выше 1250°C, первая черновая горячая прокатка до температуры T2 в диапазоне 900-1200°C, при этом степень обжатия (% Rid) при прокатке регулируют таким образом, что она составляет, по меньшей мере, 80% при отсутствии последующего нагрева до температуры Т3 или она составляет, по меньшей мере, 60% и определяют ее из следующего соотношения %Rid = 80 − (T3 − T2) 5 , при наличии последующего нагрева до температуры T3 ниже 1300°C, необязательный второй нагрев до температуры T3>Т2, вторая окончательная чистовая горячая прокатка до температуры T4<T3 до толщины катаной заготовки 1,5-3,0 мм, холодная прокатка за один или несколько этапов с необязательным промежуточным отжигом, при которой на последнем этапе степень обжатия составляет не менее 60%, первичный рекристаллизационный отжиг, необязательно в атмосфере обезуглероживания, вторичный рекристаллизационный отжиг.

Изобретение относится к порошковой металлургии, в частности к получению ферромагнитной порошковой композиции. Может использоваться в качестве сердечника в катушках индуктивности, статорах и роторах электрических машин, силовых приводах, датчиках и сердечниках трансформаторов.

Изобретение относится к области металлургии, в частности к сплавам для постоянных магнитов. Сплав для постоянных магнитов содержит, масс.%: кобальт 34,5-35,5, никель 14,0-14,5, медь 3,8-4,2, алюминий 7,0-7,5, титан 5,0-5,5, сера 0,15-0,25, олово 0,1-0,2, гафний 1,0-2,0, железо - остальное.

Изобретение относится к нанокристаллическому сплаву на основе железа и способу его формирования и может быть использовано в трансформаторе, индукторе, входящем в состав двигателя магнитном сердечнике.

Изобретение относится к области металлургии. Для уменьшения магнитных потерь в текстурованном листе из электротехнической стали на поверхности листа формируют канавки, каждая из которых имеет заданную длину и вытянута в направлении, перпендикулярном направлению транспортировки листа электротехнической стали, при этом канавки сформированы при заданных интервалах посредством сканирования поверхности листа лазерным лучом.

Изобретение относится к области металлургии. Для обеспечения высокой плотности магнитного потока в стали осуществляют горячую прокатку материала из кремнистой стали, содержащей, мас.%: от 0,8 до 7 Si, от 0,01 до 0,065 растворимого в кислоте Аl, от 0,004 до 0,012 N, от 0,05 до 1 Мn и от 0,0005 до 0,0080 В, С 0,085 или менее, Ti 0,004 или менее, по меньшей мере один элемент, выбранный из группы, состоящей из S и Se, составляющих в сумме от 0,003 до 0,015 мас.%, Fe и неизбежные примеси остальное, отжиг горячекатаной стальной полосы, однократную или многократную холодную прокатку, обезуглероживающий отжиг для первичной перекристаллизации, нанесение разделителя для отжига, содержащего MgO в качестве своего основного компонента и окончательный отжиг для вторичной перекристаллизации, при этом между началом обезуглероживающего отжига (стадия S4) и появлением кристаллов вторичной нерекристаллизации при окончательном обезуглероживании (стадия S5) проводят азотирующую обработку (стадия S6) для увеличения содержания N в обезуглероженной отожженной стальной полосе, а при горячей прокатке (стадия S1) материал из кремнистой стали выдерживают при температуре от 1000 до 800°С в течение 300 секунд или дольше, а затем осуществляют чистовую прокатку.

Изобретение относится к получению металл-полимерных композиционных материалов, предназначенных для применения в радиотехнической аппаратуре в качестве радиопоглощающих и экранирующих материалов.

Способ включает создание металлического слоя (2) с ферритообразующим элементом, по меньшей мере, на одной поверхности пластины (1), выполненной из Fe или сплава Fe, с превращением α-γ.

Изобретение относится к области металлургии. Для повышения магнитных свойств по всей длине рулона в способе производства текстурованных листов из электротехнической стали из слябов, содержащих в мас.%: от 0,01 до 0,10 С, от 2,5 до 4,5 Si, от 0,02 до 0,12 Mn, от 0,005 до 0,10 Al и от 0,004 до 0,015 N, а от 0,005 до 0,06 S и/или от 0,005 до 0,06 S, температура стального листа контролируется таким образом, чтобы удовлетворять уравнению T(t)<FDT-(FDT-700)×t/6 (где T(t) - температура стального листа (°C), FDT - температура конца прокатки (°C) и t - время (c) после завершения чистовой прокатки) по всей длине рулона в ходе охлаждения после завершения чистовой прокатки при горячей прокатке, и, кроме того, температура концевого участка рулона стального листа, представляющего 10% длины рулона, контролируется таким образом, чтобы по истечении 3 секунд после завершения горячей прокатки она составляла не менее 650°C. 1 з.п. ф-лы, 2 ил.,2 табл., 1 пр.

Изобретение относится к композиционным магнитным материалам. Предложен композиционный магнитный эластомер, состоящий из матрицы высокоэластичного полимера и наполнителя из магнитных частиц, причем в качестве наполнителя используются частицы электропроводящего магнитного наполнителя в концентрации 10-90 % общей массы, на поверхность которых предварительно нанесена пленка поверхностно-активного вещества. Технический результат - создание магнитного эластомера, характеризующегося высокой величиной магнитодиэлектрического эффекта и возможностью управления величиной диэлектрической проницаемости с помощью внешнего магнитного поля. 5 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к производству листа из текстурированной электротехнической стали. Для снижения потерь в железе материала стальной лист толщиной 0,30 мм или менее содержит пленку форстерита и покрытие, создающее напряжение на поверхности стального листа, линейные канавки, сформированные с интервалом в 2-10 мм на поверхности листа в направлении прокатки для модификации магнитного домена, при этом глубина каждой из линейных канавок составляет 10 мкм или более, толщина пленки форстерита в нижней части линейных канавок составляет 0,3 мкм или более, общее напряжение на стальном листе, создаваемым пленкой форстерита и покрытием, составляет 10,0 МПа или выше в направлении прокатки и доля потерь на вихревые токи в потерях в железе W17/50 стального листа составляет 65% или менее в переменном магнитном поле 1,7 Тл и 50 Гц, создаваемом в стальном листе в направлении прокатки. 2 н. и 1 з.п. ф-лы, 3 табл., 1 пр., 2 ил.

Настоящее изобретение относится к противоизносной присадке с находящимися в ней мицеллами на основе молекул твердой пластичной смазки оксида железа Fe3O4 с окружающими их молекулами олеиновой кислоты, при этом ядро мицеллы Fe3O4 легировано Со (II) при следующем соотношении компонентов, мас.%: Со (II) - 6%, Fe3O4 - 94%. Техническим результатом настоящего изобретения является повышение триботехнических и эксплутационных характеристик присадки при минимизации концентрации присадки в смазочных материалах. 2 табл., 1 ил.

Изобретение относится к области электротехники и может быть использовано при производстве высокоэнергоемких постоянных магнитов на основе редкоземельных сплавов системы Nd-Fe-B. Предложенный способ включает изготовление сплава на основе Nd-Fe-B, его водородное охрупчивание, грубый помол и последующее тонкое измельчение в вибрационной мельнице с использованием толуола в качестве защитной среды, при этом в толуол перед измельчением добавляют смазки, в качестве которых используют сухие порошки стеаратов алюминия, или меди, или цинка, или этиловые эфиры гомологического ряда карбоновых кислот. После измельчения порошка до среднего размера частиц 2.5-3.5 мкм его загружают в сухом или влажном состоянии в контейнер из молибдена и/или графита с загрузочной плотностью от 3.0 до 3.5 г/см3 и проводят текстурирование импульсным магнитным полем с последующим вакуумным спеканием порошков при медленном нагреве до температуры не более 500°C. Снижение сил трения между частицами текстурируемого в магнитном поле порошка с последующим формированием спеченных магнитов с высокой степенью текстуры магнитными характеристиками является техническим результатом заявленного изобретения. 4 з.п. ф-лы, 2 ил., 7 табл., 4 пр.

Изобретение относится к листу из текстурированной электротехнической стали, который может снизить локальное отслоение пленки изоляционного покрытия и, следовательно, имеет превосходную коррозионную стойкость и изоляционные свойства. Этот лист из текстурированной электротехнической стали может быть получен, принимая, что a1 (мкм) обозначает толщину пленки изоляционного покрытия на дне линейных канавок и a2 (мкм) обозначает толщину пленки изоляционного покрытия на поверхности стального листа на участках, отличных от линейных канавок, когда a1 и a2 удовлетворяют следующим формулам: 0,3   м к м ≤ a 2 ≤ 3,5   м к м       и a 1 / a 2 ≤ 2,5   .1 з.п.ф-лы, 1 ил.,1 табл., 1 прим.

Изобретение относится к способу производства нетекстурированной электротехнической стали с высокой магнитной индукцией. Способ включает выплавку стали с химическим составом, вес.%: Si 0,1-1, Al 0,005-1,0, C≤0,004, Mn 0,10-1,50, P≤0,2, S≤0,005, N≤0,002, Nb+V+Ti≤0,006, остальное Fe и неустранимые включения, получение отливки в виде стального прутка, нагрев стального прутка до температуры в диапазоне 1150-1200°C, выдержку при этой температуре в течение определенного времени, горячую прокатку с температурой конца прокатки 830-900°C с получением стальной полосы, охлаждение ее до температуры ≥570°C и смотку горячекатаной полосы в рулон, правку горячекатаной полосы путем холодной прокатки с коэффициентом обжатия 2-5%, непрерывную нормализацию холоднокатаной полосы при температуре не ниже 950°C, выдержку при этой температуре в течение 30-180 с, травление нормализованной полосы и последующую холодную прокатку с суммарным коэффициентом обжатия 70-80% до получения листа из холоднокатаной стали конечной толщины, отжиг холоднокатаного листа конечной толщины путем его нагрева со скоростью нагрева не менее 100°C/с до температуры в диапазоне 800-1000°C, выдержки при этой температуре в течение 5-60 с и последующего медленного охлаждения до температуры 600-750°C со скоростью охлаждения 3-15°C/с, что позволяет увеличить магнитную индукцию нетекстурированной электротехнической стали минимум на 200 Гс без увеличения потерь железа. 1 з.п.ф-лы, 3 табл., 2 пр., 1 ил.

Изобретение относится к области электротехники, а именно, к ленте из ферромагнитного аморфного сплава для применения в сердечниках трансформаторов, ротационных машинах, электрических дросселях, магнитных датчиках и устройствах с генерацией импульсной мощности. Лента из аморфного сплава согласно изобретению выполнена из сплава, имеющего состав, представленный формулой FeaSibBcCd, где 80,5≤a≤83 ат.%, 0,5≤b≤6 ат.%, 12≤c≤16,5 ат.%, 0,01≤d≤ 1 ат.% при a+b+c+d=100, с содержанием также случайных примесей; при этом лента, отлитая из указанного сплава, имеет поверхностные дефекты, образованные на поверхности ленты, вдоль ее продольного направления, которые определяются в показателях длины дефекта, глубины дефекта и частоты проявления дефекта. Снижение магнитных потерь в сердечнике, выполненном из указанной аморфной ленты, после ее отжига, является техническим результатом заявленного изобретения. 3 н. и 19 з.п. ф-лы, 9 ил., 7 табл., 5 пр.

Изобретение относится к области металлургии. Для увеличения плотности магнитного потока в направлении прокатки стального листа стальной сляб, содержащий, мас.%: 0,01-0,1 C, не более 4 Si, 0,05-3 Mn, не более 3 Аl, не более 0,005 S, не более 0,005 N, остальное Fe и неизбежные примеси, подвергают горячей прокатке, холодной прокатке и окончательному отжигу, при этом окончательный отжиг проводят в таких условиях, что средняя скорость возрастания температуры в ходе нагрева листа составляет не менее 100°C/с, а температура выдержки находится в температурном диапазоне 750-1100°C. 2 з.п. ф-лы, 2 ил., 1 табл.
Изобретение относится к области металлургии, конкретно к технологии производства полуобработанной электротехнической изотропной стали, предназначенной для изготовления деталей магнитопровода. Для повышения качества проката за счет получения стабильных механических свойств при полном сохранении требований к магнитным свойствам осуществляют выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, травление, холодную прокатку и обработку на непрерывном комбинированном агрегате, при этом выплавляют сталь, содержащую в мас.%: углерод 0,020-0,045, кремний 0,50-2,10, марганец 0,10-0,80, сера не более 0,015, фосфор не более 0,015, хром не более 0,10, никель не более 0,15, медь не более 0,15,алюминий 0,10-0,60, азот 0,002-0,010, железо и неизбежные примеси - остальное, окончательную деформацию полосы в чистовой группе непрерывного широкополосного стана осуществляют при температуре входа раската - не более 1070°C, температуру конца прокатки поддерживают 780-880°C, ускоренное охлаждение ведут со скоростью 20-45°C/с, температуру смотки устанавливают 480-640°C, рекристаллизационный отжиг холоднокатаного проката в непрерывном комбинированном агрегате ведут с частичным обезуглероживанием, до содержания углерода 0,012-0,030%, с температурой 780-820°C, после чего проводят отпуск стали с температурой 450-600°C в течение 150-250 секунд. При необходимости после термической обработки холоднокатаного проката осуществляют дрессировку металла с обжатием 0,5-5%. 1 з.п. ф-лы, 3 табл.
Наверх