Схема для проверки индукционных электросчетчиков



Схема для проверки индукционных электросчетчиков
Схема для проверки индукционных электросчетчиков

 


Владельцы патента RU 2517757:

МЕНЬШИХ Олег Фёдорович (RU)

Изобретение относится к области электротехники и может быть использовано для поверки чувствительности индукционных электросчетчиков с вращающимися дисками к реверсированию последних под действием включенной в сеть после электросчетчика несимметричной для положительного и отрицательного полупериодов сетевого напряжения комплексной нагрузки. Схема для поверки индукционных электросчетчиков, выполненная на основе трансформатора с повышающей и понижающей вторичными обмотками, к первичной обмотке которого, включаемой в сеть переменного тока, подключена цепь из последовательно соединенных накопительного конденсатора и тиристора, конденсатор через высоковольтный диод связан с повышающей вторичной обмоткой трансформатора и заряжается от нее при отрицательных полупериодах сетевого напряжения, а управляющий переход тиристора соединен с понижающей обмоткой трансформатора через встречно последовательно включенные стабилитрон и диод, а также резистор, причем тиристор открывается в течение положительных полупериодов сетевого напряжения с некоторой временной задержкой от начала этих полупериодов. Технический результат заключается в возможности обеспечения создания несимметричной для положительных и отрицательных полупериодов сетевого напряжения комплексной нагрузки, что позволяет поверять электросчетчики индукционного типа с вращающимися дисками на предмет их защищенности от реверсивного движения этих дисков. 2 ил.

 

Изобретение относится к области электротехники и может быть использовано для проверки чувствительности индукционных электросчетчиков с вращающимися дисками к реверсированию последних под действием включенной в сеть после электросчетчика несимметричной для положительного и отрицательного полупериодов сетевого напряжения комплексной нагрузки.

Известно, что индукционные электросчетчики содержат в своем составе перемножитель мгновенного значения протекающего через его низкоомную токовую обмотку тока нагрузки на действующее в высокоомной обмотке мгновенное значение напряжения сети, что реализуется действием соответствующих магнитных полей на вращающийся магнитомягкий диск, при этом вращательный момент, прикладываемый к диску, пропорционален мгновенному значению произведений этих магнитных полей, то есть произведению мгновенных значений тока на напряжение в указанных обмотках, а подсчет электроэнергии определяется числом вращений диска, что эквивалентно операции интегрирования указанных мгновенных значений произведений во времени.

При активной нагрузке форма токов и напряжений является синусоидальной, при этом максимум тока в активной нагрузке соответствует максимуму напряжения, то есть пиковые значения произведений тока на напряжение соответствуют фазам сетевого напряжения φ1(t)=ωt+π/2 и φ2=ωt+3π/2, причем оба этих произведения для положительных и отрицательных полупериодов сетевого напряжения всегда положительны, что создает вращательный момент одного знака, и диск вращается в одном и том же направлении, то есть без признаков реверса.

С другой стороны, известно, что при подключении к сети чисто емкостной нагрузки (конденсатора без потерь), диск электросчетчика остается в неподвижном состоянии, хотя в цепи протекает электрический ток, величина которого iC(t) определяется номиналом емкости С включенного конденсатора по формуле iC(t)=UO sin ωt/jωС, где UO - амплитудное значение напряжения сети, ω - круговая частота сетевого напряжения, j - мнимая единица, указывающая на то, что фазы мгновенных значений тока в конденсаторе и напряжения на его обкладках отличаются на постоянную во времени разность Δφ=π/2. При этом в проводниках сети и, следовательно, через электросчетчик циркулирует электрическая энергия с двойной частотой 2F=ω/π, а вращательный момент, приложенный к диску счетчика, испытывает переменнозначные осцилляции с этой двойной частотой с результирующим вращательным моментом, равным нулю, и диск электросчетчика не вращается.

Для оценки влияния несимметричной для положительных и отрицательных полупериодов сетевого напряжения комплексной нагрузки на способность реверсирования вращающегося диска в индукционном электросчетчике следует создать такую нагрузку, что и является объектом заявляемого технического решения.

Целью изобретения является создание несимметричной для положительных и отрицательных полупериодов сетевого напряжения комплексной нагрузки.

Указанная цель достигается в схеме для проверки индукционных электросчетчиков, выполненной на основе трансформатора с повышающей и понижающей вторичными обмотками, к первичной обмотке которого, включаемой в сеть переменного тока, подключена цепь из последовательно соединенных накопительного конденсатора и тиристора, конденсатор через высоковольтный диод связан с повышающей вторичной обмоткой трансформатора и заряжается от нее при отрицательных полупериодах сетевого напряжения, а управляющий переход тиристора соединен с понижающей обмоткой трансформатора через встречно последовательно включенные стабилитрон и диод, а также резистор, причем тиристор открывается в течение положительных полупериодов сетевого напряжения с некоторой временной задержкой от начала этих полупериодов.

Достижение поставленной цели объясняется существенным нарушением симметрии во временном распределении мгновенных значений произведения тока рассматриваемой нагрузки на напряжение, действующее в ней, для положительной и отрицательной полуволн сетевого напряжения и разнозначностью этих произведений в указанных временных интервалах, при которой суммарный вращательный момент, воздействующий на диск индукционного электросчетчика, не равен нулю, и диск движется в реверсивном направлении.

В задачу разработчиков таких индукционных электросчетчиков входит обеспечение минимизации или полного исключения реверсивного движения их дисков при использовании абонентами такого рода комплексных нагрузок.

Заявляемое техническое решение поясняется схемой на рис.1 и временными диаграммами на рис.2.

На рис.1 представлены соединения следующих элементов:

1 - трансформатора с повышающей и понижающей вторичными обмотками,

2 - высоковольтного диода, заряжающего накопительный конденсатор 3 при отрицательных полупериодах сетевого напряжения,

3 - накопительного конденсатора,

4 - тиристора, разряжающего накопительный конденсатор 3 в течение положительных полупериодов сетевого напряжения,

5 - стабилитрона, используемого в качестве ограничителя напряжения,

6 - диода, открывающего тиристор 4 при положительных полупериодах сетевого напряжения,

7 - резистор, ограничивающий ток управляющего перехода тиристора 4.

Рассмотрим действие заявляемой схемы.

В течение первой четверти отрицательного полупериода сетевого напряжения, показанного в верхней части диаграмм на рис.2, происходит заряд накопительного конденсатора 3 от повышающей вторичной обмотки трансформатора 1 через высоковольтный диод 2, как это видно в средней части диаграмм на рис.2. При постоянной времени цепи заряда τЗАР=[rЛ (w2/w1)2+RВН] С<<Т/4, где rЛ - активное сопротивление линии электропередачи (внутреннее сопротивление источника электрической сети), w2/w1>1 - соотношение витков повышающей вторичной и первичной обмоток трансформатора 1, RВН - внутреннее сопротивление повышающей вторичной обмотки трансформатора 1. Например, при rЛ=1 Ом, w2/w1=2, Rbh=6 Ом и С=100 мкФ имеем τЗАР=1 мс<<Т/4=5 мс. Таким образом, накопительный конденсатор 3 зарядится до напряжения UC=(W2/W1) UO=1,41*220*2=620 В (при этом накопительный конденсатор типа К75-1 следует взять на рабочее напряжение 1 кВ). Оно не изменяется до момента открытия тиристора 4.

Когда мгновенное значение напряжения на понижающей обмотке трансформатора 1 несколько превосходит уровень Us пробоя стабилитрона 5, ток управления через диод 6 открывает тиристор 4, имеющий при этом ничтожно малое внутреннее сопротивление (для силовых тиристоров это сопротивление составляет десятые или сотые доли Ома), и накопительный конденсатор 3 экспоненциально разряжается обратно в сеть, как это видно в нижней части диаграмм на рис.2, с постоянной времени разряда τРАЗР=rЛ С=0,1 мс при ранее заданных параметрах схемы. Напряжение стабилизации Us (ограничения) определяет фазу φ2 задержки открытия тиристора 4 с учетом коэффициента трансформации для понижающей обмотки трансформатора w3/w1<1 по формуле φ2 ≈ arcsin [Us/(w3/w1)*UO]. Например, при подборе значения этой фазы φ2 так, что сетевое напряжение при этом достигает величины uСЕТИ2)=UO sin φ2=20 В. Поэтому начальный ток обратно в сеть через тиристор 4 от накопительного конденсатора 3, заряженного, как было ранее указано, до напряжения UC=620 В, будет иметь величину IМАХ РАЗР= [UC-uСЕТИ2)] / rЛ≤600 А. При этом мгновенное напряжение, действующее в сети в начале разряда накопительного конденсатора, равно 620 В, то есть весьма большим является мгновенное значение произведения тока разряда накопительного конденсатора на напряжение его заряда РНАЧ=IМАХ РАЗР**UС≤600*620=372 кВт.

При установке последовательно с накопительным конденсатором некоторой величины индуктивности L можно расширить длительность разрядного импульса и уменьшить его амплитуду, чтобы обеспечить сохранность тиристора 4 от превышения его рабочего тока. Значение этой индуктивности выбирают по условию L≤Т2/16 π2 С, наибольшее возможное значение которой для ранее заданных параметров равно LМАХ = 25,3 мГн. Такая катушка индуктивности должна быть выполнена толстым медным проводником для обеспечения малого активного ее сопротивления и не иметь железного сердечника. При этом высоковольтный диод 2 включается в промежуток между накопительным конденсатором 3 и такой катушкой индуктивности (на рис.1 она не представлена), чтобы обеспечить более быстрый заряд накопительного конденсатора 3.

Тиристор 4 является открытым в течение почти всей длительности положительного полупериода сетевого напряжения, и фаза открытого состояния тиристора 4 составляет величину [π - (φ12)]. Поэтому для ограничения его управляющего тока в схеме используется низкоомный резистор 7 с необходимой мощностью рассеяния. Этот тиристор закрывается автоматически, когда напряжение на накопительном конденсаторе 3 практически сравняется с текущим значением напряжения сети при фазе π - φ1, после чего остается неизменным до следующего цикла заряда накопительного конденсатора 3, как это видно в средней части диаграмм на рис.2.

Несимметрия зарядно-разрядного тока накопительного конденсатора и напряжения на нем выражается неравенством:

π + ϕ 1 π / 2 i C ( ϕ ) * u C ( ϕ ) d ϕ < | ϕ 2 π ϕ 1 i C ( ϕ ) * u C ( ϕ ) d ϕ | ,

в силу чего возможен режим реверсирования вращающегося диска индукционного электросчетчика, учитывая, что интеграл в правой части этого неравенства отрицателен. В частном случае значения фаз φ1 и φ2 могут быть подобраны равными, как это показано в средней части диаграмм на рис.2.

В рассматриваемом примере энергия заряда накопительного конденсатора составляет W=С [(w2/w1) UС]2/2=10-4*4*3102/2=19,22 Дж, расходуемая на заряд мощность, потребляемая из сети, равна Р=W*F=19,22*50=0,96 кВт. Среднее значение зарядного тока равно 4,36 А, хотя пиковое значение зарядного тока может в несколько раз превышать это значение, например, быть равным 15 А. Поэтому высоковольтный диод 2 должен быть рассчитан на этот импульсный ток. Обратное допустимое напряжение этого диода должно быть рассчитано на величину не менее 2 кВ, поскольку при разряде накопительного конденсатора 3 через открытый тиристор 4 приложенное к первичной обмотке трансформатора 1 напряжение достигает величины 620 В и, следовательно, вызывает на его повышающей вторичной обмотке потенциал, равный -1240 В с полярностью, обратной полярности напряжения на накопительном конденсаторе 620 В, так что обратное напряжение на высоковольтном диоде становится равным по модулю 1860 В.

Схема для проверки индукционных электросчетчиков, выполненная на основе трансформатора с повышающей и понижающей вторичными обмотками, к первичной обмотке которого, включаемой в сеть переменного тока, подключена цепь из последовательно соединенных накопительного конденсатора и тиристора, конденсатор через высоковольтный диод связан с повышающей вторичной обмоткой трансформатора и заряжается от нее при отрицательных полупериодах сетевого напряжения, а управляющий переход тиристора соединен с понижающей обмоткой трансформатора через встречно последовательно включенные стабилитрон и диод, а также резистор, причем тиристор открывается в течение положительных полупериодов сетевого напряжения с некоторой временной задержкой от начала этих полупериодов.



 

Похожие патенты:

Настоящее изобретение относится к области электроизмерительной техники для учета и контроля расхода объема электропотребления трехфазной электрической сети, а именно к многофункциональным многотарифным приборам учета электрической энергии, устанавливаемым без снятия напряжения и монтажа, предназначенным для технического и коммерческого учета потребленной электрической энергии, мощности, а также для контроля параметров электрической энергии в течение времени.

Изобретение относится к области электротехники и может быть использовано при проверке индукционных приборов учета электроэнергии. Устройство для проверки индукционных электросчетчиков состоит из параллельно подключенных между собой первой и второй групп из тиристора, диода и транзистора, проводники со стороны катода тиристора, анода диода и коллектора транзистора n-р-n-типа в каждой группе подключены к выводам вилки, подключаемой к розетке потребителя электроэнергии, а накопительный конденсатор соединен между эмиттерными цепями транзисторов первой и второй групп, при этом управляющие переходы последних трансформаторно связаны с высокочастотным импульсным генератором с регулируемой частотой, а тиристоры открываются поочередно в начале второй и четвертой четвертей периода сетевого напряжения соответственно для тиристоров второй и первой групп с помощью блока управления, синхронизируемого сетевым напряжением.

Изобретение относится к области электротехники и может быть использовано при испытаниях однофазных индукционных электросчетчиков, в частности, при проверке погрешности отсчета расходуемой электроэнергии при прерывании рабочего тока на повышенной частоте, во много раз превышающей частоту энергоснабжающей сети.

Изобретение относится к средствам измерительной техники и может быть использовано при разработке и исследовании однофазных индукционных электросчетчиков, в частности, на чувствительность к высокочастотным составляющим тока в нагрузках.

Изобретение относится к электротехнике и может быть использовано при разработке электросчетчиков активной энергии. .

Изобретение относится к области приборостроения и может найти применение в системах формирования защитных отключений электроэнергии. .

Изобретение относится к области измерительной техники и может найти применение для поверки электронных электросчетчиков электроэнергии. .

Изобретение относится к измерительной технике и может быть использовано для предотвращения преднамеренного нарушения работы однофазного счетчика электроэнергии.

Изобретение относится к измерительной технике и может быть использовано для предотвращения преднамеренного нарушения работы счетчика электроэнергии в однофазных сетях: остановки счетчика электроэнергии или уменьшения его показаний.

Изобретение относится к области электротехники и приборостроения. Устройство содержит вращающийся алюминиевый диск с осью вращения, с одной стороны которого установлен Ш-образный электромагнит с катушкой напряжения, подключенной параллельно вводу сети, а с другой оппозитно расположенный U-образный электромагнит с токовой катушкой, включенной в фазной цепи сети последовательно с нагрузкой, а также содержащий связанный с осью вращения счетный механизм учета расходуемой электроэнергии. При этом на U-образном электромагните размещена дополнительная токовая обмотка, обе токовых обмотки соединены с входным фазным проводником ввода сети через два высоковольтных силовых диода, связанных с фазным проводником ввода сети разными полярностями, а другие концы токовых обмоток соединены между собой и образуют выходной фазный проводник, связанный с нагрузкой, причем к обеим токовым обмоткам подключены раздельно две цепи из параллельно включенных электролитических конденсаторов и низковольтных диодов, гасящих экстратоки, трансформаторно возбуждаемые в токовых обмотках. Полярности этих низковольтных диодов, электролитических конденсаторов и высоковольтных силовых диодов совпадают между собой для каждой из двух фазных цепей; а токовые обмотки включены так, что образуют в U-образном магнитопроводе переменное магнитное поле с частотой сети. Технический результат заключается в обеспечении защиты индукционных электросчетчиков от неправильного учета электроэнергии при действии высокочастотных прерываний рабочего тока в активных нагрузках, допускающих такие прерывания. 1 ил.

Изобретение относится к электротехнике и может быть использовано при разработке приборов учета электроэнергии, не чувствительных к высокочастотному прерыванию тока в активной нагрузке типа нагревательных приборов. Устройство содержит последовательно включенные поверяемый электросчетчик, калиброванную активную нагрузку и амперметр переменного тока. При этом указанная измерительная цепь с поверяемым электросчетчиком индукционного типа включена к сети переменного тока через двунаправленный транзисторный коммутатор тока, управляемый от импульсного генератора с регулируемой частотой следования импульсов через высокочастотный трансформатор, раздельные вторичные обмотки которого связаны через ограничивающие резисторы с управляющими переходами «база-эмиттер» пары силовых транзисторов, включенных встречно-параллельно их переходами «коллектор-эмиттер» в составе двунаправленного транзисторного коммутатора тока. Импульсный генератор с регулируемой частотой подключен к частотомеру. Технический результат заключается в упрощении устройства для поверки индукционных приборов учета электроэнергии. 1 ил.

Изобретение относится к области электротехники и может быть использовано при испытаниях однофазных индукционных электросчетчиков. В устройстве в качестве нагрузки использован накопительный конденсатор, прерывающийся заряд которого при отрицательных полупериодах сетевого напряжения осуществлен от повышающего напряжение высокочастотного автотрансформатора с высоковольтным силовым диодом. При этом автотрансформатор подключен к электрической сети после исследуемого индукционного электросчетчика через последовательно включенные силовой транзистор и силовой диод, пропускающий ток только при действии отрицательных полупериодов сетевого напряжения. Коммутация тока заряда накопительного конденсатора силовым транзистором осуществляется подачей на его переход «база-эмиттер» периодической последовательности импульсных сигналов от генератора с настраиваемой частотой колебаний, например, в диапазоне 1…5 кГц, с усилителем мощности, а плавный во времени разряд накопительного конденсатора обратно в электрическую сеть в положительные полупериоды сетевого напряжения производится через включаемый в начале положительных полупериодов сетевого напряжения тиристор и последовательно с ним включенную катушку индуктивности, величина которой L согласуется с величиной емкости С накопительного конденсатора по формуле (L·С)1/2≈10-2 с. Технический результат заключается в возможности установления значения частоты прерываний тока нагрузки, при которой электросчетчик индукционного типа обладает наихудшей погрешностью правильного учета расходуемой электроэнергии. 1 ил.

Изобретение относится к области электротехники и может быть использовано при испытаниях однофазных индукционных электросчетчиков. Устройство для поверки электросчетчиков активной энергии индукционного типа, содержащее коммутирующие ток заряда конденсаторов транзисторы, управляемые от модулируемого генератора высокочастотных импульсов. При этом устройство выполнено по мостовой схеме, первая и вторая ветви которой, параллельно подключены к электросети, включающие последовательно установленные конденсатор и двунаправленный транзисторный коммутатор из двух однотипных параллельно-встречно соединенных транзисторов. Причем первая ветвь мостовой схемы подключена к фазному проводнику сети двунаправленным транзисторным коммутатором, а вторая ветвь - конденсатором, а в диагональ мостовой схемы включен управляемый симистор (двунаправленный тиристор), управление работой четырех транзисторов и симистором осуществлено от блока управления, синхронизируемого сетевым напряжением. Технический результат заключается в повышении точности производимой поверки. 20 ил.

Изобретение относится к измерительной технике. Устройство содержит накопительные конденсаторы, заряд которых осуществляется в первую и третью четверти периодов сетевого напряжения прерывистым током, а разряд происходит плавно во времени во второй и четвертой четвертях периодов сетевого напряжения. При этом конденсаторы попарно подключены к фазному и нулевому проводникам электросети через последовательно с ними включенные диод и транзистор с учетом полярности указанного подключения электролитических конденсаторов, образующих две мостовые схемы, попеременно работающие в положительную и отрицательную полуволны сетевого напряжения. В диагоналях мостовых схем включены последовательно установленные тиристор и дроссель, соединяющие последовательно каждую работающую пару заряженных накопительных конденсаторов мостовых схем для их плавного разряда обратно в сеть. Причем обмотки двух дросселей мостовых схем выполнены на едином магнитопроводе с периодическим его перемагничиванием, а включение-выключение соответствующих транзисторов и тиристоров осуществлено от блока управления, синхронизируемого от сетевого напряжения. Технический результат заключается в обеспечении возможности построения компактного и высокоэффективного устройства для определения погрешности учета электроэнергии при прерывании тока нагрузки на различных частотах прерываний в заданном диапазоне мощности нагрузок. 4 ил.

Изобретение относится к измерительной технике приборостроения, в частности, к средствам определения несанкционированного потребления электроэнергии. Осуществляют дистанционный сбор информации о потреблении электроэнергии в замкнутом объекте на стороне потребителя посредством получения картины теплового поля тепловизором непосредственно у соответствующих наружных поверхностей замкнутого объекта на стороне потребителя и выводе информации на экран тепловизора. Сравнивают полученные картины теплового поля у соответствующих наружных поверхностей замкнутого объекта. Подключают прибор для измерения мощности в цепях переменного тока без разрыва электрической цепи к подводящим проводам линии электроснабжения потребителя вне стороны потребителя. Принимают информацию о потреблении электроэнергии на стороне потребителя от прибора для измерения мощности в цепях переменного тока без разрыва электрической цепи и судят о факте несанкционированного и неконтролируемого потребления электроэнергии на основании информации о наличии потребления электроэнергии на стороне потребителя от прибора для измерения мощности в цепях переменного тока без разрыва электрической цепи и соответствующих картин теплового поля. Технический результат заключается в упрощении технологии дистанционного выявления несанкционированного и неконтролируемого потребления электроэнергии при снижении тепловых потерь, необходимых для выявления несанкционированного и неконтролируемого потребления электроэнергии. 5 з.п. ф-лы. 3 ил.

Изобретение относится к области электротехники и может быть использовано для проверки чувствительности индукционных электросчетчиков с вращающимися дисками. Устройство содержит накопительный конденсатор и силовой транзистор, управляемый от импульсного высокочастотного генератора с регулируемой частотой следования импульсов в диапазоне 1…5 кГц. При этом цепь заряда накопительного конденсатора постоянным током при отрицательных полуволнах сетевого напряжения включает повышающий высокочастотный трансформатор, первичная обмотка которого соединена последовательно к сети через силовой транзистор, а вторичная связана с накопительным конденсатором через высоковольтный диод. Управляющий переход «база-эмиттер» силового транзистора трансформаторно связан через первый ограничивающий резистор с понижающим высокочастотным импульсным генератором с регулируемой частотой прерываний зарядного тока накопительного конденсатора в диапазоне 1...5 кГц, а цепь разряда накопительного конденсатора обратно в сеть включает последовательно соединенные с накопительным конденсатором катушку индуктивности и силовой тиристор, включение которого при положительных полуволнах сетевого напряжения осуществлено с понижающей обмотки низкочастотного трансформатора, включенного в электрическую сеть, через последовательно связанные диод включения силового тиристора и второй ограничивающий резистор. Технический результат заключается в упрощении устройства. 4 ил.

Изобретение относится к электроизмерительной технике и может быть использовано для измерения электрической энергии в цепях переменного тока. Счетчик электрической энергии и утечки в сети содержит датчик тока 1, выходы которого соединены с первым перемножителем 3 тока на напряжение, который, в свою очередь, соединен с первым преобразователем 4 тока в частоту импульсов, трансформатор 5 тока с двумя первичными обмотками, одна из которых соединена с фазным проводником измерительной сети, другая - с нулевым проводником и одной вторичной обмоткой, на которой сигнал пропорционален разности токов первичных обмоток, при этом выходы трансформатора тока 5 подключены ко второму 6 перемножителю тока на напряжение, который, в свою очередь, соединен со вторым 7 преобразователем тока в частоту импульсов. Технический результат заключается в возможности учета утечек электрической энергии. 1 ил.

Изобретение относится к области электротехники и может быть использовано для проверки правильной работы электросчетчиков индукционного типа с вращающимися дисками. Устройство для проверки правильности учета электроэнергии индукционными электросчетчиками состоит из последовательно соединенных после поверяемого электросчетчика силового импульсного диода и электролитического конденсатора, к которому параллельно подключена активная нагрузка, допускающая работу на постоянном токе, причем величина емкости С электролитического конденсатора находится по формуле С≈Т/2η(1+η)R, где Т - период переменного тока сети, при условии, что отношение η времени заряда к времени разряда электролитического конденсатора во много раз меньше единицы, например, порядка 0,01, где R - активное сопротивление нагрузки, подключенной параллельно к электролитическому конденсатору, а силовой импульсный диод должен быть рассчитан на импульсный ток IИМП≈2IH/η, где IH - номинальный ток в нагрузке с сопротивлением R. Техническим результатом является упрощение устройства проверки правильного учета электроэнергии индукционными электросчетчиками по сравнению с известными устройствами того же назначения при работе на активные нагрузки, допускающие работу на постоянном токе. 1 ил.

Изобретение относится к области электротехники и может быть использовано для проверки правильной работы электросчетчиков индукционного типа, работающих на активную нагрузку. Устройство содержит две цепи, каждая из которых работает попеременно соответственно от положительных и отрицательных полуволн сетевого напряжения. Причем каждая из этих цепей содержит последовательно включенные к фазному и нулевому проводникам сети после прибора учета лавинный диод и накопительный конденсатор. Точка соединения указанных элементов цепи соединена через резистор нагрузки с эмиттер-коллекторным переходом силового транзистора, другой электрод перехода которого соединен с фазным проводником сети. Лавинные диоды двух цепей подсоединены к фазному проводнику сети разными электродами - катодом для цепи, работающей от положительных полупериодов сетевого напряжения, и анодом для цепи, работающей от отрицательных полупериодов сетевого напряжения, а силовые транзисторы этих цепей обеспечивают их проводимость разрядного тока через соответствующие резисторы нагрузки. Каждый из этих силовых транзисторов является открытым для соответствующей полуволны сетевого напряжения и надежно закрытым для другой полуволны сетевого напряжения, для чего использован понижающий трансформатор, первичная обмотка которого подключена к фазному и нулевому проводникам сети после прибора учета, а его две раздельные вторичные обмотки подключены к управляющим электродам перехода «база-эмиттер» силовых транзисторов через ограничивающие резисторы. Технический результат заключается в существенном упрощении конструкции устройства. 3 ил.
Наверх