Способ теплового нагружения обтекателей ракет из неметаллических материалов



Способ теплового нагружения обтекателей ракет из неметаллических материалов
Способ теплового нагружения обтекателей ракет из неметаллических материалов
Способ теплового нагружения обтекателей ракет из неметаллических материалов

 


Владельцы патента RU 2517790:

Открытое акционерное общество "Обнинское научно-производственное предприятие "Технология" (RU)

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на обтекатель ракеты в наземных условиях и может быть использовано при наземных испытаниях элементов летательных аппаратов. Заявленный способ включает нагрев наружной поверхности обтекателя за счет пропускания электрического тока через эквидистантный этой поверхности нагреватель в виде токопроводящей тонкостенной оболочки переменной толщины по высоте, контактирующей с ограничителем из теплоизоляционного материала, также эквидистантным наружной поверхности обтекателя, и измерение температуры. Токопроводящая тонкостенная оболочка расположена к наружной поверхности обтекателя с зазором, в который нагнетают инертный газ под давлением, а ограничитель из теплоизоляционного материала выполнен пористым. Технический результат - расширение температурного диапазона воспроизведения теплового поля на наружной поверхности обтекателей из неметаллических материалов при наземной отработке конструкции. 1 ил.

 

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях.

В настоящее время воспроизведение аэродинамического нагрева осуществляется в различных установках: аэродинамических трубах, баллистических установках, плазменных установках, стендах на основе сжигания топлива (прямоточных реактивных двигателях) (Статические испытания на прочность сверхзвуковых самолетов / А.Н.Баранов [и др.]. М.: Машиностроение. 1974. 344 с; Материалы и покрытия в экстремальных условиях. Взгляд в будущее: В 3 т. Т.3. Экспериментальные исследования / Ю.В.Полежаев, С.В.Резник, А.Н.Баранов и др., Под ред. Ю.В.Полежаева и С.В.Резника. М.: Изд-во МГТУ им. Н.Э.Баумана, 2002. 264 с.: ил.). Испытание натурных конструкций в таких установках требует огромных материальных затрат, поэтому широкого распространения в практике наземных испытаний эти установки не получили.

Наиболее широкое распространение в практике наземных испытаний получили стенды радиационного нагрева, так как они просты в эксплуатации, позволяют достаточно легко изменять конфигурацию нагревателя в зависимости от геометрии конструкции обтекателя.

Однако стандартные стенды радиационного нагрева (на базе ламп инфракрасного излучения) имеют ряд ограничений. Для элементов летательных аппаратов сложной формы, когда геометрические размеры конструкции сравнимы с размерами нагревателей, присутствует большая погрешность задания температурного поля. Кроме того, при задании высоких температур (выше температуры смягчения кварца) инфракрасные нагреватели выходят из строя.

Наиболее близким по технической сущности является способ теплового нагружения обтекателей ракет из неметаллических материалов по патенту (Пат. №2456568 Российская Федерация, МПК7 G01M 9/04, G01N 25/72, опубл. 20.07.2012). В этом способе тепловое нагружение осуществляют за счет контакта нагревателя с испытуемым образцом, что ограничивает нагрев испытуемого объекта температурой плавления материала. Кроме того, при высоких температурах наблюдается химическое взаимодействие материала нагревателя с материалом обтекателя.

Техническим результатом заявляемого изобретения является расширение температурного диапазона воспроизведения теплового поля на наружной поверхности обтекателей из неметаллических материалов при наземной отработке конструкции.

Указанный технический результат достигается тем, что в способе теплового нагружения обтекателей ракет из неметаллических материалов, включающем нагрев наружной поверхности обтекателя за счет пропускания электрического тока через эквидистантный этой поверхности нагреватель в виде токопроводящей тонкостенной оболочки переменной толщины по высоте, контактирующей с ограничителем из теплоизоляционного материала, также эквидистантным наружной поверхности обтекателя, и измерение температуры, токопроводящая тонкостенная оболочка расположена к наружной поверхности обтекателя с зазором, в который нагнетают инертный газ под давлением, а ограничитель из теплоизоляционного материала выполнен пористым, причем толщину токопроводящей оболочки по высоте определяют по формуле

δ i = ρ I 2 2 π 2 R i ( 2 R i + Δ h i t g α ) ( q i + ε c 0 ( T i 100 ) 4 ) ,                                  ( 1 )

где δi - толщина нагревателя в i-м секторе; I - сила тока в электрической цепи; ρ - удельное сопротивление токопроводящего материала; Ri - расстояние от оси изделия до нагревателя в i-м секторе; Δhi - высота i-го сектора; α - угол наклона поверхности i-го сектора относительно оси обтекателя; qi - требуемая плотность теплового потока на изделии в i-м секторе; ε - степень черноты поверхности изделия в i-м секторе; c0 - коэффициент излучения абсолютно черного тела; Ti - требуемая температура на поверхности изделия в i-м секторе.

При выводе формулы (1) сделано допущение, что вся энергия, выделяемая нагревателем, распределяется по наружной поверхности обтекателя. Это допущение справедливо, если теплопроводность материала ограничителя много меньше теплопроводности материала обтекателя.

Предлагаемый способ изменяет вид передачи энергии от нагревателя; передача энергии за счет непосредственного контакта преобразовывается в радиационный нагрев, так как между нагреваемой поверхностью и нагревателем образуется прозрачный зазор, в котором нагнетается инертный газ. Наличие инертного газа в зазоре под давлением при пористом ограничителе из теплоизолирующего материала приводит к тому, что материал нагревателя омывается газом. Это расширяет температурный диапазон работы нагревателя. Например, для нагревателя из углеродных тканей максимальная рабочая температура может достигать 2400°C, а для нагревателя из вольфрамовой фольги - до 3000°C.

Способ иллюстрирует схема, представленная на фигуре. Нагреватель 2 располагают между обтекателем 1 и ограничителем из теплоизоляционного материала 3, причем в зазоре между нагревателем 2 и обтекателем 1 нагнетают инертный газ, а для подачи напряжения на нагреватель 2 используют шины 4.

Заявленный способ дает возможность воспроизвести аэродинамический нагрев обтекателей ракет из неметаллических материалов при высоких температурах, например для изделий из керамики до 2000°C на наружной поверхности.

Нагреватель может быть выполнен из углеродных тканей или фольги из тугоплавких материалов, например из вольфрама или молибдена. При выполнении нагревателя из металлической фольги его поверхность должна быть перфорирована.

Способ теплового нагружения обтекателей ракет из неметаллических материалов, включающий нагрев наружной поверхности обтекателя за счет пропускания электрического тока через эквидистантный этой поверхности нагреватель в виде токопроводящей тонкостенной оболочки переменной толщины по высоте, контактирующей с ограничителем из теплоизоляционного материала, также эквидистантным наружной поверхности обтекателя, и измерение температуры, отличающийся тем, что токопроводящая тонкостенная оболочка расположена к наружной поверхности обтекателя с зазором, в который нагнетают инертный газ под давлением, а ограничитель из теплоизоляционного материала выполнен пористым, причем толщину токопроводящей оболочки по высоте определяют по формуле
δ i = ρ I 2 2 π 2 R i ( 2 R i + Δ h i t g α ) ( q i + ε c 0 ( T i 100 ) 4 )
где δi -толщина нагревателя в i-м секторе; I - сила тока в электрической цепи; ρ - удельное сопротивление токопроводящего материала; Ri - расстояние от оси изделия до нагревателя в i-м секторе; Δhi - высота i-го сектора; α - угол наклона поверхности i-го сектора относительно оси обтекателя; qi - требуемая плотность теплового потока на изделии в i-м секторе; ε - степень черноты поверхности изделия в i-м секторе; c0 - коэффициент излучения абсолютно черного тела; Ti - требуемая температура на поверхности изделия в i-м секторе.



 

Похожие патенты:

Изобретение относится к области неразрушающего контроля и может быть использовано при диагностике неразъемных соединений, в частности для контроля качества паяных соединений камер сгорания и сопел жидкостных ракетных двигателей.

Изобретение относится к области измерительной техники и может быть использовано для технической диагностики неоднородных конструкций. Устройство для определения сопротивления теплопередачи многослойной конструкции включает датчики температуры и теплового потока и тепловизионное устройство.

Изобретение относится к области неразрушающего контроля материалов и может быть использовано для контроля скрытых дефектов. Согласно заявленному способу активного одностороннего теплового контроля скрытых дефектов в твердых телах нагревают одну из поверхностей объекта контроля в течение фиксированного времени оптическим излучением источника нагрева и регистрируют нестационарное температурное поле этой поверхности в виде последовательности термограмм.

Изобретение относится к области измерительной техники и может быть использовано для оценки надежностей конструкций из полимерных композиционных материалов. Способ включает силовое воздействие на поверхность конструкции и регистрацию обусловленных им изменений.

Использование: для неразрушающего контроля качества поверхностного слоя металла. Сущность: заключается в том, что используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую па эталонный образец, измеряют разностную термоЭДС, возникающую при контакте первой группы нагреваемых электродов с контролируемым изделием и второй группы нагреваемых электродов с эталоном, о качестве поверхностного слоя судят по ее величине, при этом сначала измеряют температуру контролируемого изделия, используя которую изменяют температуру групп нагреваемых электродов таким образом, чтобы используемая при измерении термоЭДС разностная температура между первой группой нагреваемых электродов и контролируемым изделием, а также между второй группой нагреваемых электродов и эталоном оставалась одинаковой при любых колебаниях температуры контролируемого изделия и эталона, после чего измеряют разностную термоЭДС.

Изобретение относится к области управления промышленной безопасностью и технической диагностики, в частности к контролю напряженно-деформированного состояния таких объектов, как сосуды, аппараты, печи, строительные конструкции, трубопроводы, находящихся под действием механических и/или термомеханических нагрузок, с использованием анализа распределения температурных полей на поверхности объекта и связанного с ними распределения механических напряжений.
Изобретение относится к области исследования качества деталей с гальваническими покрытиями, в частности к оценке степени газосодержания поверхностей деталей с защитными гальваническими покрытиями.

Изобретение относится к области измерительной техники, в частности к тепловому неразрушающему контролю объектов, и может быть использовано для технической диагностики неоднородных конструкций, например зданий и сооружений, по сопротивлению теплопередаче.

Изобретение относится к неразрушающему тепловому контролю и может быть использовано для контроля состояния протяженных железобетонных изделий, имеющих основную металлическую продольную несущую арматуру (например: опоры линий электропередач, балки, сваи, трубы и т.п.), применяемых в различных отраслях хозяйства в процессе производства, строительства и эксплуатации.

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам с регулируемыми соплами. Устройство состоит из силового механизма, изменяющего его контур по заданной программе, и командного устройства, управляющего этой программой.

Изобретение касается систем управления в экспериментальной аэродинамике, в частности к аэродинамическим трубам с регулируемыми соплами. Устройство содержит контроллер управления приводами ведомых рядов гибких стенок сопла, приводы управления гибкими стенками сопла, цифровые датчики обратной связи, а также командное устройство, цифровой блок вычисления заданного положения ведомых рядов в функции измеренного положения ведущего ряда, а также цифровой датчик положения ведущего ряда и переключатель режима работы.

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам с регулируемыми соплами. Способ заключается в том, что управление гибкими стенками сопла осуществляют автоматическими приводными механизмами по заданной программе.

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях и может быть использовано при наземных испытаниях элементов летательных аппаратов.

Изобретение относится к области машиностроения и может быть использовано в авиационной промышленности при проведении наземных испытаний объектов авиационной техники, подвергающихся обледенению в естественных условиях эксплуатации.

Изобретение относится к области аэродинамических испытаний и предназначено для использования в аэродинамических трубах. .

Изобретение относится к испытательной технике. .

Изобретение относится к экспериментальной аэродинамике и может быть использовано в отраслях промышленности, занимающихся проектированием и созданием транспортных средств различного назначения.

Изобретение относится к аэродинамике и может быть использовано в конструкциях аэродинамических установок. .

Изобретение относится к области авиации, в частности к технике экспериментов в аэродинамических трубах кратковременного (импульсного) действия с продолжительностью пуска порядка 40 миллисекунд, работающих при высоких давлениях и температурах газа. Пусковой затвор струйного аппарата высокого давления содержит корпус, заслонку с отверстием, связанную с пневматическим приводом заслонки. Заслонка имеет длину, в шесть раз и более превышающую диаметр открываемого канала трубы. Отверстие в заслонке выполнено прямоугольным, при этом его ширина перпендикулярна оси пускового затвора и равна диаметру канала трубы, а длина параллельна оси пускового затвора и в 1.5 раза и более превышает диаметр канала трубы. Пневматический привод заслонки содержит шток, присоединенный к заслонке, поршень, цилиндр с расположенными в его передней части окнами, перекрываемыми поршнем, и цилиндрическим обводным каналом, расположенным в середине цилиндра и соединяющим полости, находящиеся по обе стороны поршня, а также аккумулятор сжатого воздуха, окружающий цилиндр, и гидравлический тормоз, содержащий цилиндрическую камеру, расположенную непосредственно за цилиндром и переходящую в сужающийся конус. 1 ил.
Наверх