Оптическая система формирования лазерного излучения для газового лазера

Изобретение относится к лазерной технике и может быть использовано в конструкциях газовых лазеров. Оптическая система формирования лазерного излучения для газового лазера на основе неустойчивого оптического резонатора телескопического типа содержит заключенные в герметичный газовый объем глухое зеркало резонатора и выходное зеркало резонатора и обеспечивает вывод лазерного излучения через выходное окно. При этом выходное зеркало резонатора выполнено на рабочей поверхности расположенного на оптической оси системы линзового мениска по центру. Линзовый мениск с выходным зеркалом, ограничивающий активный газовый объем, выполняет функцию выходного окна оптической системы. Технический результат заключается в обеспечении возможности упрощения конструкции оптической системы, что приводит к снижению потерь энергии лазерного излучения за счет уменьшения количества оптических элементов в системе, а также в обеспечении возможности эффективного управления пространственными характеристиками лазерного излучения. 1 ил.

 

Изобретение относится к лазерной технике и может быть использовано в конструкциях газовых лазеров.

Известна оптическая система на основе неустойчивого конфокального резонатора и выходного окна, применяемая в конструкциях газовых лазеров для получения когерентного лазерного излучения с расходимостью, близкой к дифракционной (Ананьев Ю.А. Оптические резонаторы и проблема расходимости лазерного излучения. - М., 1979 г. [1]). Оптическая система содержит глухое зеркало и выходное зеркало оптического резонатора (ОР), а также расположенное на оптической оси системы выходное окно. Недостатком такой оптической системы является невозможность управления пространственными характеристиками лазерного излучения без применения дополнительных оптических элементов между выходным зеркалом и выходным окном или без осуществления угловых разъюстировок зеркал ОР. Наличие дополнительных оптических элементов, в свою очередь, усложняет конструкцию и приводит к потерям выходной энергии лазерного излучения (ЛИ).

Известна выбранная в качестве прототипа оптическая система на основе неустойчивого телескопического резонатора, обеспечивающего вывод лазерного излучения через выходное окно, которая применяется в газовых лазерах (Патент США №3873942, 1975 г. [2]). Резонатор содержит заключенные в герметичный газовый объем глухое вогнутое зеркало и выходное выпуклое зеркало. Расстояние между зеркалами определяется из соотношения:

L = ( R 1 R 2 ) / 2, ( 1 )

где L - расстояние между зеркалами ОР (геометрическая длина ОР); R1 - радиус кривизны глухого зеркала; R2 - радиус кривизны выходного зеркала.

Такой ОР называется софокусным (конфокальным), так как положение фокусов (фокальных плоскостей) обоих зеркал совпадает между собой:

L = f 1 f 2 , ( 2 )

где f1 - фокусное расстояние глухого зеркала; f2 - фокусное расстояние выходного зеркала.

Такой ОР дает плоский волновой фронт и близкую к дифракционной расходимость ЛИ. Сечение выходного светового пучка, формируемого таким резонатором, представляет собой прямоугольную рамку или кольцо (в зависимости от формы сечения выходного зеркала ОР), отношение наружных размеров которых к внутренним равно М, где М - коэффициент увеличения неустойчивого ОР. Диаметр выходного зеркала ОР определяется из отношения:

D 2 = D 1 / M , ( 3 )

где D1 - световой диаметр глухого зеркала OP; D2 - диаметр выходного зеркала ОР; М - коэффициент увеличения неустойчивого ОР.

Недостатки такой оптической системы состоят в том, что:

- для формирования и вывода ЛИ из активного газового объема в систему между выходным зеркалом и выходным окном необходимо вносить дополнительные оптические элементы. Это приводит к усложнению конструкции системы и, следовательно, к дополнительным потерям выходной энергии лазерного излучения;

- оптическая система на основе такого ОР формирует на выходе плоский волновой фронт, поэтому для управления расходимостью ЛИ необходимо вносить дополнительные оптические элементы или осуществлять угловые разъюстировки зеркал ОР, что, в свою очередь, приводит к технологическому усложнению конструкции системы и, как следствие, к дополнительным потерям выходной энергии ЛИ.

Задачей настоящего изобретения является усовершенствование оптической системы формирования ЛИ для газового лазера на основе неустойчивого ОР в целях повышения эффективности ее использования в ряде задач прикладного характера, например для лазеров, предназначенных для экологического мониторинга и газового анализа атмосферы, а также для физических исследовательских установок.

Технический результат состоит, во-первых, в упрощении конструкции оптической системы формирования ЛИ на основе неустойчивого ОР, что приводит к снижению потерь энергии ЛИ за счет уменьшения количества оптических элементов в системе, во-вторых, в обеспечении возможности эффективного управления пространственными характеристиками ЛИ. Кроме того, оптическая система является более технологичной с точки зрения упрощения изготовления, крепления и юстировки оптических элементов.

Данный технический результат достижим за счет того, что в отличие от известной оптической системы формирования ЛИ для газового лазера на основе неустойчивого ОР телескопического типа, содержащей заключенные в герметичный газовый объем глухое зеркало резонатора и выходное зеркало резонатора и обеспечивающей вывод лазерного излучения через выходное окно, в предложенной оптической системе выходное зеркало резонатора выполнено на рабочей поверхности расположенного на оптической оси системы линзового мениска по центру, при этом линзовый мениск с зеркалом выполняет функцию выходного окна, ограничивающего активный газовый объем.

Линзовый мениск - это линза, рабочие поверхности которой имеют одинаковые по знаку радиусы кривизны (Заказнов Н.П. Теория оптических систем. - М., 1992 г., стр.62-64 [3]).

Оптическая система может отличаться тем, что рабочей поверхностью является обращенная к газовой среде поверхность линзового мениска или расположенная вне газовой среды поверхность линзового мениска.

При этом оптическая система может отличаться тем, что радиус кривизны поверхностей линзового мениска выбран таким, что фокальные плоскости глухого зеркала и выходного зеркала не совпадают.

Выходное зеркало оптической системы может быть выполнено в виде многослойного высокоотражающего покрытия. При этом покрытие может содержать, по крайней мере, один слой диэлектрика, или, по крайней мере, один слой диэлектрика может быть нанесен на металлическое покрытие.

Оптическая система может отличаться тем, что выходное зеркало резонатора, выполненное на обращенной к газовой среде поверхности линзового мениска, содержит, по крайней мере, один защитный слой от агрессивной газовой среды.

Оптическая система может отличаться тем, что в качестве линзового мениска может быть использован афокальный мениск. Афокальный мениск - это разновидность. линзового мениска, у которого радиусы кривизны поверхностей примерно равны друг другу, то есть оптическая сила афокального мениска примерно равна нулю (Максутов Д.Д. Новые катадиоптрические менисковые системы. - М., 1944 г., стр.19 и 23 [4]).

Выбор оптической системы формирования лазерного излучения на основе неустойчивого ОР телескопического типа в качестве базовой модели обусловлен ее малой чувствительностью к угловым разъюстировкам зеркал ОР (Гросс Р., Ботт Д. Химические лазеры. - М., 1980 г. [5]).

Выходное зеркало ОР в такой системе выполнено на рабочей поверхности расположенного на оптической оси системы линзового мениска по центру. При этом за счет совмещения в этом оптическом элементе (линзовом мениске) функций выходного зеркала и одновременно ограничивающего активный газовый объем выходного окна для выходного пучка ЛИ становится возможным значительное упрощение конструкции оптической системы из-за уменьшения количества дополнительных оптических элементов между выходным зеркалом и выходным окном, имеющего место в прототипе.

Выбор в заявляемой системе радиуса кривизны рабочих поверхностей линзового мениска таким, что фокальные плоскости глухого зеркала и выходного зеркала ОР не совпадают, дает возможность управлять радиусом кривизны волнового фронта выходного пучка ЛИ, то есть имеется возможность управлять пространственными характеристиками лазерного излучения без использования дополнительных оптических элементов (А.А.Исаев, М.А.Казарян, Г.Г.Петраш и др. Эволюция гауссовых пучков и импульсная генерация в лазерах с неустойчивыми резонаторами // Квантовая электроника, т. 2, №6, 1975 г. [6]).

Выполнение выходного зеркала ОР в виде многослойного высокоотражающего покрытия позволяет осуществить высокоэффективную лазерную генерацию в широком спектральном диапазоне. При этом выбор слоев диэлектрика позволяет получить необходимый коэффициент отражения выходного зеркала на рабочих длинах волн.

Выходное зеркало ОР обладает защитным слоем от агрессивной газовой среды в том случае, когда оно выполнено на обращенной к газовой среде поверхности линзового мениска. Наличие защитного слоя в оптическом покрытии способствует долговременной работоспособности выходного зеркала в среде агрессивных газов.

Использование в заявляемой системе афокального мениска возможно в связи с тем, что афокальный мениск, имея очень малую оптическую силу (фокусное расстояние стремится к бесконечности), практически не вносит искажений при прохождении через него пучка ЛИ.

Технологичность системы обеспечена следующим образом. При больших М и малых апертурах зеркал ОР конструкция крепления мениска значительно проще, чем конструкция крепления выходного зеркала в виде отдельного элемента, что характерно для прототипа. При этом изготовление оптической детали, на которую нанесено выходное зеркало, также значительно проще, чем изготовление выходного зеркала в виде отдельного элемента, как в прототипе.

Кроме того, на технологичности сказывается и то, что при больших М и малых апертурах зеркал ОР юстировка выходного зеркала, нанесенного на линзовый мениск, значительно проще, чем юстировка выходного зеркала в виде отдельного элемента, что имеет место в прототипе.

На фигуре схематично изображена заявляемая оптическая система формирования лазерного излучения на основе неустойчивого ОР телескопического типа, где L - расстояние между зеркалами ОР (геометрическая длина OP), R1 - радиус кривизны глухого зеркала, R2 - радиус кривизны выходного зеркала, f1 - фокусное расстояние глухого зеркала, f 2 - фокусное расстояние выходного зеркала, Δ=f1-f2 - разность между положением фокальных плоскостей глухого и выходного зеркал ОР. Диаметр выходного зеркала ОР определяется из отношения (3).

Была практически реализована оптическая система формирования лазерного излучения для химического электроразрядного лазера на основе неустойчивого ОР телескопического типа (см. чертеж), подобная оптической системе, представленной в приведенном источнике (фиг.11в на стр.144 из [5] или рис.3.3г на стр.158 из [1]). Оптическая система формирования лазерного излучения на основе неустойчивого ОР телескопического типа (см. чертеж) представляла собой заключенные в герметичный газовый объем рабочей камеры 3 глухое зеркало 1 резонатора и выходное зеркало 2 резонатора. Выходное зеркало 2 выполнено на рабочей поверхности расположенного на оптической оси системы афокального мениска 4 по центру. Длина ОР составляла L=314,4 мм. Глухое зеркало 1 было выполнено на подложке из фтористого кальция инфракрасного (ФКИ) с радиусом кривизны R1=1081,4 мм (фокусное расстояние f1=540,7 мм) и имело коэффициент отражения R1≈99% на рабочих длинах волн. Выходное зеркало 2 выполнено из слоев диэлектрика на основе YF3, ZnSe и ZnS и имело коэффициент отражения R2≈99% на рабочих длинах волн. Диаметр выходного зеркала равен 4,6 мм. Афокальный мениск 4 сделан из ФКИ и имел радиус кривизны поверхностей R2=549,5 мм (фокусное расстояние f2=274,75 мм). Разность между положением фокальных плоскостей глухого и выходного зеркал ОР была равна Δ=48,45 мм.

При подаче напряжения на электроды основного разряда в рабочей камере 3 лазера формируется устойчивый объемный электрический разряд, и возникает генерация лазерного излучения. Оптическая система обеспечивает формирование ЛИ, обеспечивает положительную обратную связь, необходимую для генерации ЛИ, а также обеспечивает вывод ЛИ через выходное окно 4.

Оптическая система формирования лазерного излучения на основе неустойчивого ОР конструктивно стала проще, по сравнению с прототипом, за счет уменьшения количества оптических элементов в системе (отсутствует необходимость установки дополнительных оптических элементов между выходным зеркалом и выходным окном). При этом потери энергии лазерного излучения за счет уменьшения количества оптических элементов в системе стали меньше. Имеется возможность управления пространственными характеристиками лазерного излучения в достаточно широких пределах без использования дополнительных оптических элементов. При этом достигнута технологичность в креплении и юстировке линзового мениска с нанесенным на него выходным зеркалом.

Оптическая система формирования лазерного излучения для газового лазера на основе неустойчивого оптического резонатора телескопического типа, содержащая заключенные в герметичный газовый объем глухое зеркало резонатора и выходное зеркало резонатора и обеспечивающая вывод лазерного излучения через выходное окно, отличающаяся тем, что выходное зеркало резонатора выполнено на рабочей поверхности расположенного на оптической оси системы линзового мениска по центру, при этом линзовый мениск с выходным зеркалом, ограничивающий активный газовый объем, выполняет функцию выходного окна оптической системы.



 

Похожие патенты:

Изобретение относится к области лазерной локации. Лазерное устройство контроля околоземного космического пространства содержит установленные на первой оптической оси вспомогательный источник лазерного излучения, селектор угловых мод с первым зеркалом резонатора, задающий генератор рабочего лазерного излучения, полупрозрачное зеркало вывода излучения и второе зеркало резонатора.

Способ позиционирования трех передвижных зеркал в лазерном гирометре, содержащем три кольцевых лазерных резонатора, осуществляется при запуске гирометра. Каждый из резонаторов содержит среду, возбуждаемую для генерирования световых волн.

Изобретение относится к области лазерной техники, в том числе к линейным атомным и ионным лазерам, используемым в прецизионной интерферометрии, голографии, и особенно к кольцевым гелий-неоновым лазерам.

Изобретение относится к лазерной технике. .

Изобретение относится к лазерной технике. .

Изобретение относится к области контрольно-измерительной техники. .

Изобретение относится к оптическим устройствам, основанным на использовании явлений полного внутреннего отражения и интерференции световых потоков. .

Изобретение относится к лазерной технике и является лазером, генерирующим излучение в импульсном режиме. .

Изобретение относится к лазерным гироскопам и предназначено для увеличения срока службы трехосного гироскопа. .

Изобретение относится к области квантовой электроники и может быть использовано в лазерах для уменьшения ширины огибающей спектра лазерного излучения. .

Изобретение относится к лазерной технике. Твердотельный лазер дисковидной формы включает в себя матрицу (1) полупроводниковых лазеров накачки, резонатор с кристаллом (6) дисковидной формы и выходной линзой (8), ударно-струйную систему (10) охлаждения лазерного кристалла (6) и коллиматор (2) пучка накачки. Коллимированный свет накачки входит в фокусирующий резонатор, который содержит два параболических зеркала (4,5) и корректирующее зеркало (7), и многократно фокусируется на лазерный кристалл (6). В первом параболическом отражателе имеется одно или два входных отверстия (9) прямоугольной формы для света накачки. В случае наличия одного отверстия, его геометрический центр смещен вдоль быстрой оси матрицы полупроводниковых лазеров. В случае наличия двух отверстий, они распределены равномерно и симметрично вдоль медленной оси матрицы полупроводниковых лазеров. Технический результат заключается в упрощении конструкции и повышении мощности лазера. 3 н. и 5 з.п. ф-лы, 8 ил.

Изобретение относится к лазерной технике. Многопроходное импульсное лазерное устройство включает импульсный задающий генератор, фокусирующую линзу, пространственный фильтр, состоящий из двух линз и размещенного между ними диафрагменного узла с несколькими отверстиями, одно из которых является первым и предназначено для заведения луча от задающего генератора, а другие отверстия предназначены для заведения отраженных лучей, заводящее зеркало, размещенное перед первым отверстием диафрагменного узла, отражатель лазерных лучей в виде первого глухого торцевого зеркала, которое установлено в фокальной плоскости линзы пространственного фильтра со стороны заводящего зеркала. При этом оптическая ось торцевого глухого зеркала и линзы сдвинута от центра симметрии диафрагменного узла в направлении, перпендикулярном направлению сдвига оптической оси системы отвода и возврата лучей на расстояние, равное половине расстояния между соседними отверстиями диафрагменного узла. Также устройство содержит систему отвода и возврата лучей, состоящую из отводящего и возвращающего зеркала, размещенного перед частью отверстий, предназначенных для заведения отраженных лучей, линзы и второго торцевого глухого зеркала, оптическая ось которых сдвинута на расстояние, равное половине расстояния между соседними отверстиями диафрагменного узла. На выходе устройства установлен дополнительный отражатель лазерных лучей в виде частично прозрачного зеркала, размещенного в фокальной плоскости другой линзы пространственного фильтра, оптическая ось которых проходит через центр симметрии диафрагменного узла. Технический результат заключается в обеспечении возможности получения на выходе устройства серии импульсов с изменяющимся направлением распространения. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области лазерной физики и технике формирования мощных импульсов СО2 лазера. Оно обеспечивает генерацию коротких импульсов большой энергии, имеющих минимальную угловую расходимость, что позволяет получать высокоинтенсивные пучки СО2 лазера, предназначенные, в частности, для создания лазерно-плазменного источника ионов. Устройство состоит из одномодового задающего генератора, работающего на линии Р(20) 10-мкм полосы СО2, оптической системы согласования и трехпроходового СО2-усилителя, образованного широкоапертурной активной средой СО2 лазера и резонансно-поглощающей ячейкой SF6+N2 (воздух) атмосферного давления, которые последовательно размещены внутри и на оси конфокального телескопа, включающего большое вогнутое и малое выпуклое зеркала. Изобретение базируется на многократном прохождении импульса задающего генератора последовательно через резонансно-усиливающую и резонансно-поглощающую среду, что увеличивает крутизну нарастания начального импульса и приводит к компрессии импульса по длительности при нелинейном усилении, эффективно повышая его мощность. Трехкратное прохождение резонансных сред поглотителя и усилителя в аксиально-симметричной геометрии, во-первых, позволяет многократно применить описанный способ, а во-вторых, позволяет использовать пространственные эффекты повышения светового поля в соответствующих точках среды за счет интерференции, что повышает эффективность компрессии импульса в усилителе. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к импульсным твердотельным лазерам с преобразованием длины волны излучения на ВКР, который содержит лампу накачки, резонатор, внутри которого установлены кристаллический активный элемент, выполненный из материала, преобразующего генерируемую на рабочем переходе длину волны излучения в стоксовые компоненты, и модулятор добротности на основе насыщающего фильтра. При этом резонатор содержит выходное зеркало, полностью отражающее излучение на длине волны рабочего перехода активного элемента и максимально пропускающее излучение с длинами волн, соответствующими нерабочим переходам активного элемента. В качестве «глухого» зеркала резонатор содержит призму БР-180, ребро при вершине двухгранного угла которой соосно активному элементу. Между активным элементом и призмой установлена под углом 45° к оптической оси резонатора плоскопараллельная пластина, на рабочей поверхности которой нанесено оптическое покрытие, минимально отражающее излучение на длине волны рабочего перехода. Техническим результатом изобретения является упрощение изготовления лазера и обеспечение стабильности энергии излучения в безопасном для глаз диапазоне длин волн в широком диапазоне температурных и механических воздействий. 2 з.п. ф-лы, 1 ил.

Изобретение относится к лазерной технике. Твердотельный лазер содержит активный элемент и лампу накачки, установленные в осветителе, включающем отражатель, а также резонатор, образованный глухим и полупрозрачным зеркалами. Осветитель выполнен монолитным из высокоотражающего материала и имеет две внутренние полости, причем в одной внутренней полости установлены активный элемент и лампа накачки, в другой внутренней полости напротив одного из торцов активного элемента установлено глухое зеркало, обе внутренние полости закрыты герметичными крышками, в отверстии одной из которых напротив второго торца активного элемента закреплено полупрозрачное зеркало резонатора, а выводы лампы выведены через крышки наружу сквозь герметичные уплотнения. Технический результат заключается в обеспечении возможности уменьшения габаритов и массы твердотельного лазера без снижения его энергетических характеристик и при повышении эксплуатационной стойкости. 2 з.п. ф-лы, 1 ил.

Оптический кольцевой резонатор может быть использован в качестве чувствительного элемента оптических гироскопов, в частности микрооптического гироскопа. Оптический кольцевой резонатор содержит не менее трех отражающих поверхностей, взаимное расположение которых обеспечивает циркуляцию света по замкнутому контуру. Хотя бы одна из отражающих поверхностей имеет различные радиусы кривизны в плоскости падения и в плоскости, перпендикулярной плоскости падения, проходящей через нормаль, восстановленную в точке падения. Значения этих радиусов обеспечивают равенство нулю суммы элементов главной диагонали лучевой матрицы обхода резонатора. Технический результат - возможность использования в качестве чувствительного элемента микрооптического гироскопа за счет совпадения собственных мод по частоте. 2 ил.

Изобретение относится к лазерной технике. Импульсный твердотельный лазер содержит активный элемент, осветитель, включающий лампу накачки и отражатель, а также резонатор, включающий призму-крышу и плоское зеркало, установленные с противоположных торцов активного элемента таким образом, что ребро призмы-крыши и грань плоского зеркала перпендикулярны оптической оси активного элемента, размещенного рядом с лампой накачки в отражателе. В лазер введены фланец, закрепленный на отражателе с противоположной стороны от призмы-крыши, и модулятор добротности, размещенный внутри отражателя. Плоское зеркало выполнено полупрозрачным и неподвижно закреплено на фланце перед выходным торцом активного элемента, а призма-крыша установлена за противоположным торцом активного элемента с возможностью вращения вокруг оси, перпендикулярной ее ребру и оптической оси активного элемента и параллельной гипотенузной грани призмы-крыши. Технический результат заключается в обеспечении возможности упрощения конструкции и снижения трудоемкости изготовления лазера. 1 з.п. ф-лы, 1 ил.

Узкополосный кольцевой волоконный лазер состоит из диода накачки, элемента Пельтье и кольцевого однонаправленного резонатора. Указанный резонатор включает активное волокно, делитель излучения, поляризационный циркулятор, волоконно-оптический изолятор и спектральный уплотнитель с линейной частью в виде насыщающего поглотителя из ненакачиваемого активного волокна и волоконной брэгговской решетки. Активное волокно выполнено с высокой концентрацией легирующей примеси, а волоконно-оптический изолятор расположен между спектральным уплотнителем и поляризационным циркулятором, установленным вместе с делителем излучения с обеспечением встречного направления излучения узкополосного кольцевого волоконного лазера и излучения накачки. Устройство позволило добиться стабильной генерации лазерного излучения. 3 ил.

Изобретение относится к лазерной технике. В оптический резонатор излучателя на парах металлов и их соединений установлено две или более соосных друг другу газоразрядных трубок таким образом, что зеркала резонатора оптически связаны друг с другом через объемы газоразрядных трубок, в каждой из упомянутых трубок содержится своя активная среда на парах металлов или их соединений, при этом активные среды и материалы выходного зеркала и окон газоразрядных трубок взаимно прозрачны для генерируемых длин волн, а электроды каждой трубки электрически связаны с выходом своего импульсного высоковольтного источника питания. Технический результат заключается в обеспечении возможности увеличения числа и диапазона длин волн генерации за счет внесения в оптический резонатор нескольких активных сред. 4 з.п. ф-лы, 1 ил.

Изобретение касается отбраковки кольцевых резонаторов лазерных гироскопов по величине порога зоны нечувствительности (порога захвата) и значениям нелинейных искажений масштабного коэффициента. Способ заключается в том, что возбуждают в кольцевом резонаторе волны собственных колебаний с помощью излучения внешнего лазера и определяют величину порога полосы захвата кольцевого резонатора, по превышению допустимого значения которого принимают решение об отбраковке кольцевого резонатора. Дополнительно возбуждают в кольцевом резонаторе собственное колебание во встречном направлении путем установки у выходного зеркала кольцевого резонатора возвратного зеркала, и проводят измерение временных зависимостей интенсивностей встречных волн, выходящих из кольцевого резонатора, при продольном перемещении возвратного зеркала на расстояние, превышающее половину длины волны лазерного излучения, а величину порога полосы захвата кольцевого резонатора определяют по результатам измерений временных зависимостей интенсивностей встречных волн. Технический результат заключается в повышении точности отбраковки. 3 ил.
Наверх