Способ формирования нанорельефа на теплообменной поверхности изделий

Изобретение относится к области теплообмена, в частности к теплообменным поверхностям, интенсифицирующим теплоотдачу при пленочном и переходном режимах кипения жидкостей. Оно может быть использовано при захолаживании и эксплуатации теплообменных устройств, используемых в криогенной технике, криомедицине, ракетной технике при транспортировке ожиженных газов, элементах высокотемпературных сверхпроводящих устройств. Сущность предлагаемого изобретения заключается в том, что с помощью покрытия поверхности лунок наночастицами создаются холодные пятна на поверхности, что приводит к более раннему прекращению пленочного кипения и возникновению переходного режима кипения и интенсификации теплообмена. Техническим результатом является интенсификация теплоотдачи при пленочном и переходном режимах кипения жидкостей и уменьшение времени охлаждения изделий. 1 ил.

 

Изобретение относится к области теплообмена, в частности к теплообменным поверхностям, интенсифицирующим теплоотдачу при пленочном и переходном режимах кипения жидкостей. Оно может быть использовано при захолаживании и эксплуатации теплообменных устройств, используемых в криогенной технике, криомедицине, ракетной технике при транспортировке ожиженных газов, элементах высокотемпературных сверхпроводящих устройств.

Известен способ интенсификации теплообмена при кипении жидкости, например фреона-113, путем нанесения на теплоотдающую поверхность малотеплопроводного покрытия (А.С. №1335123, 18.05.1972 г. Способ интенсификации теплообмена). С целью повышения теплового потока, отводимого с поверхности нагрева, предложен способ, согласно которому малотеплопроводную пленку наносят на оребренную поверхность, например, путем напыления тонким слоем, непроницаемым для жидкости, и осуществляют неизотермический нагрев оребренной поверхности с температурой в основании ребра, превышающей первую критическую для увеличения доли поверхности, занятой переходным кипением. Этот способ недостаточно эффективный, так как поверхность изделия гладкая, а покрытие сплошное.

Известен способ формирования нанорельефа на теплообменной поверхности изделия (патент РФ№ 2433949, опубл.20.11.2011 г.) путем осуществления кипения наножидкости. Согласно этому способу выбирают материал наночастиц с температурой плавления, равной 0,8-0,9 от температуры плавления изделия, получают при кипении наножидкости сплошной слой наночастиц на поверхности изделий с минимальным термическим сопротивлением, выдерживают изделие вместе со слоем наночастиц на нем в инертной атмосфере при температуре 0,7-0,8 от температуры плавления наночастиц в течение 30 мин. Этот способ недостаточно эффективный, так как поверхность изделия гладкая и коэффициент теплопроводности наночастиц такой же или больший, чем у основного материала.

Технической задачей изобретения является повышение теплоотдачи при пленочном и переходном кипении. Технический эффект при решении технической задачи заключается в создании холодных пятен и однородного рельефа поверхности. Поставленная задача решается тем, что в известном способе способе формирования нанорельефа на теплообменной поверхности изделий путем осуществления на ней кипения наножидкости, в которой материал наночастиц выбирают с температурой плавления, равной 0,8-0,9 от температуры плавления изделия, получают при кипении наножидкости сплошной слой наночастиц на поверхности, выдерживают изделие вместе со слоем наночастиц на нем в инертной атмосфере при температуре 0,7-0,8 от температуры плавления наночастиц в течение 30 мин согласно изобретению материал наночастиц выбирают с коэффициентом теплопроводности не менее, чем на два порядка меньшим, чем у основного материала, поверхность выполняют с макрорельефом, например, в виде облунения с соотношением глубины лунки h к ее диаметру d, равным 0,1-0,5, слой наночастиц между лунками удаляют, например, механическим путем. Достигаемая цель проиллюстрирована графиком, на котором показаны результаты экспериментального исследования теплообмена при пленочном и переходном кипении азота при охлаждении нагретой сферы.

Сущность предлагаемого изобретения заключается в том, что с помощью покрытия поверхности лунок наночастицами создаются холодные пятна на поверхности, что приводит к более раннему прекращению пленочного кипения и возникновению переходного режима кипения и интенсификации теплообмена.

На рисунке показаны полученные кривые охлаждения медных сфер в жидком азоте при атмосферном давлении.

1 - гладкая сфера, большой объем;

2 - гладкая сфера, естественная циркуляция;

3 - сфера с лунками, большой объем;

4 - сфера с лунками, естественная циркуляция;

5 - сфера с лунками и малотеплопроводным покрытием, большой объем;

6 - сфера с лунками и малотеплопроводным покрытием, естественная циркуляция.

Как показывают полученные данные, время захолаживания изделий уменьшается в 2,5 раза.

Способ формирования нанорельефа на теплообменной поверхности изделий путем осуществления на ней кипения наножидкости, в которой материал наночастиц выбирают с температурой плавления, равной (0,8-0,9) от температуры плавления изделия, получают при кипении наножидкости сплошной слой наночастиц на поверхности, выдерживают изделие вместе со слоем наночастиц на нем в инертной атмосфере при температуре 0,7-0,8 от температуры плавления наночастиц в течение 30 мин, отличающийся тем, что материал наночастиц выбирают с коэффициентом теплопроводности, меньшим не менее чем на два порядка, чем у изделия, теплообменную поверхность выполняют с макрорельефом, образованным, например, лунками с соотношением глубины лунки h к диаметру d, равным h/d=0,1-0,5, и удаляют слой наночастиц между лунками, например, механическим путем.



 

Похожие патенты:

Изобретение относится к области технологии изготовления наночастиц и может быть использовано при получении новых материалов для микро- и оптоэлектроники, светодиодных ламп, силовой электроники и других областей полупроводниковой техники.
Изобретение относится к способу синтеза покрытий производных фуллеренов. Способ включает физическое распыление в вакууме мишени ионным пучком, перенос пара к ростовой поверхности подложек и наращивание покрытий заданного состава и определенной структуры.

Изобретение относится к контрольно-измерительной технике. Технический результат - расширение функциональных возможностей одновременного определения электропроводности и толщины полупроводниковых пластин и электропроводности и толщины тонких полупроводниковых эпитаксиальных слоев в структурах «полупроводниковый слой - полупроводниковая подложка».
Изобретение относится к области катализа. Описан способ получения наноструктурного катализатора демеркаптанизации нефти и газоконденсата на основе производных фталоцианина кобальта и его хлорзамещенных продуктов, в котором полученные путем размола исходных фталоцианинов в шаровой мельнице при 100-120°C в присутствии спиртов общей формулы R-(OCH2- CH2)n-OH, где при n=1 R=С6H5, C4H9; при n=2 R=Н, C2H5, наночастицы фталоцианина кобальта и его хлорзамещенных производных обрабатывают концентрированными водными растворами алканоламмониевых солей дисульфокислот фталоцианина кобальта и его хлорзамещенных производных с последующей стабилизацией катализатора линейными полиэфирами (полиэтиленгликолями).
Изобретение относится к магнитоуправляемому сорбенту для удаления эндо- и экзотоксинов из организма человека, приготовленному из наночастиц магнетита Fe3O4. Поверхность магнетита модифицирована соединением, образующим прочную связь с частицей-носителем за счет поверхностно-активных групп, придающих свойства селективности и выполненных в виде оболочки из нормальных углеводородных цепей C12H25, присоединенных к ядру посредством сульфидной связи Fe-S, причем в качестве упомянутого соединения, обеспечивающего связывание железа с углеродной цепочкой, выбран додецилмеркаптан.

Группа изобретений относится к области медицины и может быть использована для профилактики гнойно-септических осложнений в акушерстве. Формованный сорбент содержит нанодисперсный мезопористый углеродный материал в виде цилиндров диаметром 8-13 мм, длиной 50-80 мм, толщиной наружной стенки 2,2-3,0 мм, с одним внутренним каналом круглого сечения или шестью каналами треугольного сечения с толщиной перегородок между каналами 1,1-1,2 мм.

Изобретение относится к технологиям повышения износостойких, прочностных и антифрикционных свойств металлорежущего инструмента, внешних поверхностей обшивки авиационных и космических летательных аппаратов, оптических приборов и нанотехнологиям.

Изобретение относится к химической промышленности. Углерод-металлический материал в виде смеси углеродных волокон и капсулированных в неструктурированном углероде частиц никеля диаметром от 10 до 150 нанометров получают каталитическим пиролизом этанола при атмосферном давлении.

Изобретение относится к химической и электротехнической промышленности и может быть использовано для модификации резин и каучуков, при производстве высокоемких конденсаторов и композитных материалов.

Изобретение может быть использовано при получении композиционных материалов. Исходные углеродные наноматериалы, например нанотрубки, нанонити или нановолокна, обрабатывают в смеси азотной и соляной кислоты при температуре 50-100°С не менее 20 мин, промывают водой и сушат.

Изобретение относится к листовому стеклу, используемому в строительной индустрии, для считывающих устройств, для солнечных батарей. Техническим результатом изобретения является создание для листового стекла покрытия, обладающего повышенными показателями микротвердости и стойкости к царапанию без существенной потери прозрачности в видимой области спектра. Способ получения покрытия включает золь-гель процесс тетраалкоксида кремния, нанесение золя на стекло, нагревание образца с покрытием в атмосфере воздуха. В золь дополнительно вводят суспензию порошка наноалмаза в водном растворе ПАВ с концентрацией 0,04-0,06 моль/л, при этом количество наноалмаза по отношению ко всей смеси составляет 0,3-0,5%, смесь подвергают механическому перемешиванию в течение 5-10 мин, далее УЗ-воздействию при частоте 18-20 кГц в течение 20-30 мин, после чего в подготовленную смесь погружают флоат-стекло, которое затем извлекают со скоростью 5-7 см/мин и далее подвергают сушке и термообработке при 450-470°C в течение 20-30 мин с дальнейшим охлаждением. В качестве ПАВ используют катионактивные вещества, в частности четвертичные аммонийные соли типа цетилтриметиламмонийбромид, или октадециламмонийхлорид, или триметилгексадециламмонийхлорид. Способ обеспечивает стойкость стекла к царапанию, повышение микротвердости более чем на 200% и светопропускание на уровне 80-85%. 1 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к промышленности строительных материалов и может быть использовано для получения бетонных строительных изделий. Технический результат - снижение плотности заполнителя и изделия, снижение теплопроводности при сохранении прочности. Гранулированный наноструктурирующий заполнитель на основе высококремнеземистых компонентов для бетонной смеси, состоящий из кремнеземсодержащего сырья в виде гранул размером 0,5-10 мм, имеющих ядро, скрепленное водным раствором щелочесодержащего связующего, и защитную оболочку, где ядро состоит из высококремнеземистой породы, измельченной до прохождения на сите с ячейкой 0,315 мм или вспученного перлитового песка с размером частиц до 0,16 мм, в качестве связующего используется водный раствор гидроксида щелочного металла и силиката натрия, взятые в соотношении 0,6-0,99:0,01-0,4 по массе, в количестве 5-30% от смеси, а защитная оболочка на поверхности ядра сформирована его окатыванием сухим портландцементом с последующим твердением до прочности не менее 0,12 МПа. Бетонная смесь для изготовления строительного изделия по одному варианту содержит, мас.%: портландцемент 15-25, песок 50-65, вода 10-13, указанный выше заполнитель 2-20, по другому варианту содержит, мас.%: портландцемент 20-35, вода 10-15, указанный выше заполнитель 50-70. Бетонное строительное изделие, изготовленное из указанной выше смеси по одному или другому варианту.4 н. п. ф-лы, 2 табл., 1пр.

Группа изобретений относится к области сцинтилляционной техники, к эффективным быстродействующим сцинтилляционным детекторам, предназначенным для регистрации гамма-излучения, в приборах для быстрой диагностики в медицине, промышленности, космической технике, научных исследованиях и высоких технологиях. Кристаллический сцинтилляционный материал на основе фторида бария имеет структуру керамики в виде системы зерен со слоистой структурой, содержащей дислокации, с толщиной слоев менее 100 нм, в котором слои зерен по всему объему насыщены дефектами, образованными дислокациями линейного характера. Способ получения этого материала включает горячее прессование высокочистого исходного порошкообразного BaF с содержанием катионных примесей 1 ппм. Горячее прессование производят в условиях безградиентного поля температур с помощью нагревателя большей высоты по сравнению с высотой образца и с обеспечением равномерного поля механических напряжений по плоскости прессования, после чего проводят отжиг полученных керамических пластин в активной фторирующей газовой среде при температуре, не превышающей Тпл BaF2. Технический результат - получение керамического материала с высоким коэффициентом пропускания, не менее 0,8 в диапазоне спектра 0,22-9 мкм, увеличенной интенсивностью быстрого компонента и с временем высвечивания τ1=0,8 нс с максимумом на длине волны 220 нм. 2 н.п. ф-лы, 3 прим., 1 ил.

Изобретение относится к нанотехнологиям. Способ включает эксфолиацию заготовок из слоистых кристаллических материалов, закрепленных с одной стороны на опоре из глипталя, с использованием клейкой ленты, глипталь по окончании эксфолиации растворяют в ацетоне, где образуется взвесь кристаллических пластин (слоев) халькогенидов металлов, которые выделяют из взвеси путем осаждения их на подложку. Изобретение позволяет получать слои наноразмерной толщины из слоистых кристаллов с возможностью последующего осаждения на различные подложки. 3 ил., 2 пр.
Способ получения органомодифицированного монтмориллонита с повышенной термической стабильностью включает получение немодифицированного очищенного бентонита на основе монтмориллонита путем первичной подготовки исходного сырья, включающей просев полученного с карьера бентонитового порошка, состоящего преимущественно из монтмориллонита, от крупных механических включений, диспергирование бентонитового порошка в водной среде в высокоскоростной коллоидной мельницы, его дополнительную химическую обработку в емкостях с верхнеприводными смесителями, обработку в системе гидроциклонных установок и вибросит, обработку в высокоскоростной центрифуге барабанного типа, обработку в смесителе Z-образного типа, снабженного модулем вакуумирования, сушку и помол готовой продукции - немодифицированного очищенного бентонита на основе монтмориллонита. Процесс органомодифиции заключается в дополнительной химической обработке немодифицированного очищенного бентонита на основе монтмориллонита в емкостях с верхнеприводными смесителями, последующей обработке в высокоскоростной центрифуге барабанного типа, промешивании и введении добавок выбранных из ряда нескольких сочетаний, например, олигомер на основе резорцинола дифосфата; четвертичная аммониевая соль [R1N+(CH3)3]Cl-, где R1 - жирный алифатический радикал с количеством атомов углерода преимущественно 16-18 и олигомер на основе резорцинола дифосфата; четвертичная аммониевая соль [R1N+(CH3)3Cl-, где R1 - жирный алифатический радикал с количеством атомов углерода преимущественно 16-18, четвертичная аммониевая соль [R1R2N+(CH3)2]Cl-, где R1 и R2 - жирные алифатические радикалы с количеством атомов углерода преимущественно 14-16 и олигомер на основе резорцинола дифосфата и др. Технический результат изобретения - повышение термической стабильности органомодифицированного монтмориллонита. 2 н.п. ф-лы, 1 табл.

Изобретение относится к области гальванотехники и может быть использовано для получения биосовместимых защитных покрытий металлических частей протезов, инертных в отношении биологических объектов, а также в радиоэлектронике и физике полупроводников. Способ электроосаждения пленки углерода фуллероидного типа на изделие из токопроводящего материала включает электроосаждение углерода, при этом электроосаждение углерода проводят на аноде из раствора полигидроксилированного фуллерена с концентрацией 0,100-0,120 г/л в ацетоне или этиловом спирте воздействием постоянного тока плотностью 1,0-2,0 мА/дм2 с разностью потенциалов электродов 6,0-8,0 V при температуре 20-30 °С и длительности электроосаждения 30-60 мин с получением на изделии упомянутой пленки, затем изделие промывают, сушат и нагревают в бескислородной атмосфере при температуре 300±30 °С. Полученная пленка представляет собой плотное, однородное по структуре, качественное защитное биосовместимое покрытие, нерастворимое в органических растворителях и устойчивое к действию разбавленных растворов кислот и щелочей. 2 н. и 3 з.п. ф-лы, 4 ил., 3 пр.

Изобретение относится к медицине и ветеринарии, а именно к медицинским и ветеринарным препаратам, предназначенным для профилактики и лечения кишечных инфекций различной этиологии у человека и животных. В комплексном препарате, содержащем носитель, представляющем собой энтеросорбент, энтеросорбент модифицирован путем иммобилизации на его поверхности высокодисперсного серебра - наносеребра - в концентрации 0,01 - 1,0 мас.% Энтеросорбент представляет собой либо активированный уголь, каолин, бентонит, либо энтеродез, либо микрокристаллическую целлюлозу, а в качестве модифицирующего серебросодержащего раствора - источника наносеребра - используют водный раствор кластерного серебра. Технический эффект заявляемого изобретения заключается в повышении специфической антимикробной активности. 1 з.п. ф-лы, 3 табл., 2 пр.

Изобретение относится к области медицины, в частности к фармакологии и фармацевтике, и касается анксиолитика, представляющего собой аминокислоту глицин, иммобилизованную на частицах детонационного наноалмаза размером 2-10 нм, и способа его получения. 2 н. и 2 з.п. ф-лы, 7 ил, 6 табл., 3 пр.

Изобретение относится к области медицины, в частности к фармакологии и фармацевтике, и касается антидепрессанта, представляющего собой аминокислоту глицин, иммобилизованную на частицах детонационного наноалмаза размером 2-10 нм, и способа его получения. Антидепрессант обладает повышенной эффективностью. 2 н. и 2 з.п. ф-лы, 7 ил., 7 табл., 2 пр.

Изобретение относится к области медицины, в частности к фармакологии и фармацевтике, и касается антиоксиданта, представляющего собой аминокислоту глицин, иммобилизованную на частицах детонационного наноалмаза размером 2-10 нм, обладающего повышенной эффективностью, и способа его получения. 2 н.з. и 2 з.п. ф-лы, 5 ил., 7 табл., 3 пр.
Наверх