Способ поверки датчика силы и устройство для его осуществления

Изобретения относятся к области измерительной техники и могут быть использованы для поверки датчиков силы, используемых для испытаний авиационных конструкций. Способ позволяет проводить поверку датчика силы непосредственно на месте его использования. Устройство для осуществления способа содержит поверяемый датчик силы и образцовый силоизмеритель. При этом датчик силы, гидроцилиндр и образцовый силоизмеритель установлены в силовой цепочке, связывающей объект испытаний с жесткой опорой, шток гидроцилиндра с закрепленным на нем датчиком силы шарнирно соединен с объектом испытаний, а корпус гидроцилиндра с закрепленным на нем образцовым силоизмерителем шарнирно соединен с жесткой опорой. Технический результат заключается в упрощении процесса поверки непосредственно на стенде и сокращении времени испытаний. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к области измерительной техники и может быть использовано для поверки датчиков силы стендов прочностных испытаний авиационных конструкций.

Известен способ поверки датчика силы путем нагружения его грузами на образцовой рычажной машине. Недостатком известного способа и устройства является большая трудоемкость при работе с тяжелыми грузами, сложность подготовки их массы (см. Серьезнов А. Н. Измерения при испытаниях авиационных конструкций на прочность. - М.: Машиностроение, 1976 г., с.172…173).

Наиболее близким к изобретению является способ поверки датчиков силы на гидравлических образцовых силоизмерительных машинах (см. Серьезнов А. Н. Измерения при испытаниях авиационных конструкций на прочность. - М.: Машиностроение, 1976 г., с.172…173). Машина содержит образцовый силоизмеритель, жестко закрепленный на неподвижной траверсе, и нагрузочное устройство с подвижным штоком. Датчик силы устанавливают между ними. С помощью соответствующих приспособлений прилагаемые усилия направляются по его оси.

Поверка датчика силы производится посредством сравнения показаний поверяемого датчика с показаниями образцового силоизмерителя машины при одновременном воздействии на них различных по величине и направлению (растяжение - сжатие) усилий, развиваемых гидравлическим нагрузочным устройством машины.

Недостатком известного способа и устройства для поверки датчиков силы является их нетехнологичность. Каждый раз приходится демонтировать гидроцилиндр со стенда и датчик силы с гидроцилиндра, а затем в обратном порядке проводить монтаж.

В то же время на испытательных стендах датчик силы жестко закреплен на штоке гидроцилиндра и для поверки его на образцовой силоизмерительной машине датчик демонтируют. При новой установке датчика на испытательный стенд на шток гидроцилиндра появляются так называемые частные погрешности, связанные с другим положением, занимаемым датчиком из-за отклонения при изготовлении сопрягаемых деталей гидроцилиндра и датчика.

Каждый раз приходится демонтировать гидроцилиндр со стенда и датчик силы с гидроцилиндра, а затем в обратном порядке проводить монтажи.

При большом количестве датчиков силы, как на стендах испытаний планера самолета (стенды с симметричным нагружение), процесс поверки представляет собой сложную задачу, при этом в процессе демонтажей и монтажей могут быть повреждены дорогостоящие устройства.

В то же время на стендах симметричного нагружения возможна жесткая стабилизация планера самолета в малонагруженном положении с помощью каналов нагружения, кроме канала с поверяемым датчиком силы, позволяющая поверять датчик на месте его использования.

Задачей и техническим результатом изобретения является разработка способа поверки датчиков силы непосредственно на стендах с использованием многоканальных систем нагружения, направленных на повышение точности каналов нагружения, а также на сокращение сроков испытания объекта.

Решение задачи и технический результат достигаются тем, что в способе поверки датчика силы, заключающемся в том, что поверку производят посредством сравнения показаний поверяемого датчика с показаниями образцового силоизмерителя при одновременном воздействии на них различных по величине и направлению усилий (растяжение-сжатие), датчик поверяют на месте его использования в канале нагружения многоканальной системы путем воздействия на него усилий, развиваемых гидроцилиндром, на штоке которого датчик силы установлен, при этом полости гидроцилиндров других каналов многоканальной системы нагружения герметизируют с помощью средств управления этими каналами.

Решение задачи и технический результат достигаются тем, что в устройстве, содержащем поверяемый датчик силы и образцовый силоизмеритель, датчик силы, гидроцилиндр и образцовый силоизмеритель установлены в силовой цепочке, связывающей объект испытаний с жесткой опорой, при этом шток гидроцилиндра с закрепленным на нем датчиком силы шарнирно соединен с объектом испытаний, а корпус гидроцилиндра с закрепленным на нем образцовым силоизмерителем шарнирно соединен с жесткой опорой.

На фиг.1 представлена схема устройства поверки датчика силы, реализующего способ.

На объект 1 в процессе испытаний воздействует множество сил со стороны каналов нагружения №1…№n. В состав каждого канала нагружения входят гидроцилиндр 2, датчик силы 3, шарнирные опоры 4, 5. В канал нагружения, датчик силы которого поверяют, вводят образцовый силоизмеритель 6, жестко закрепленный на гидроцилиндре 2 и через шарнирную опору 5 соединенный с жесткой опорой 7 канала нагружения. Датчик силы 3, гидроцилиндр 2 и образцовый силоизмеритель 6 устанавлены в силовой цепочке, связывающей объект 1 испытаний с жесткой опорой 7, при этом шток гидроцилиндра с закрепленным на нем датчиком силы шарнирно соединен с объектом испытаний, а корпус гидроцилиндра с закрепленным на нем образцовым силоизмерителем шарнирно соединяют с жесткой опорой.

Работа устройства заключается в следующем. Включают многоканальную систему и нагружают объект испытаний для исключения люфтов в силовых соединениях. Этот процесс принято называть обтяжкой объекта испытаний. На следующем этапе путем отключения электропитания всех каналов нагружения герметизируют полости гидроцилиндров, за исключением поверяемого, гидроцилиндром которого одновременно воздействуют, различными по величине и направлению (растяжение -сжатие) усилиями на поверяемый и образцовый силоизмерительные датчики далее производят поверку посредством сравнения показаний поверяемого датчика с показаниями образцового силоизмерителя.

Поверку очередного датчика силы многоканальной системы нагружения осуществляют аналогичным образом после установки в канал образцового силоизмерителя.

В результате использования изобретения повысилась точность каналов нагружения многоканальной системы и сокращены сроки проведения испытаний объекта.

1. Способ поверки датчика силы, заключающийся в том, что поверку производят посредством сравнения показаний поверяемого датчика с показаниями образцового силоизмерителя при одновременном воздействии на них различных по величине и направлению усилий (растяжение - сжатие), отличающийся тем, что датчик поверяют на месте его использования в канале нагружения многоканальной системы путем воздействия на него усилий, развиваемых гидроцилиндром, на штоке которого датчик силы установлен, при этом полости гидроцилиндров других каналов многоканальной системы нагружения герметизируют с помощью средств управления этими каналами.

2. Устройство для осуществления способа по п.1, содержащее поверяемый датчик силы и образцовый силоизмеритель, отличающееся тем, что датчик силы, гидроцилиндр и образцовый силоизмеритель установлены в силовой цепочке, связывающей объект испытаний с жесткой опорой, при этом шток гидроцилиндра с закрепленным на нем датчиком силы шарнирно соединен с объектом испытаний, а корпус гидроцилиндра с закрепленным на нем образцовым силоизмерителем шарнирно соединен с жесткой опорой.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано для поверки датчиков силы. Техническим результатом является повышение точности поверки канала нагружения датчик силы - гидроцилиндр.

Изобретение относится к области весоизмерительной техники и направлено на упрощение конструкции и повышение точности и эффективности измерения силы, что обеспечивается за счет того, что при осуществлении контроля состояния устройства измерения силы с подвижным элементом передачи силы, через который сила, воздействующая на устройство измерения силы, передается на измерительный преобразователь, формирующий сигнал измерения, соответствующий приложенной силе, после чего сигнал преобразуют в форму, пригодную для индикации на дисплее, или передается для дальнейшей обработки.

Изобретение относится к метрологической технике, к технике обеспечения единства измерения силы, а именно к машинам - эталонам силы. .

Изобретение относится к технике электрической связи и может быть использовано в системах контроля, управления и защиты грузоподъемных машин. .

Изобретение относится к области механики и к методам измерения. .

Изобретение относится к области метрологического контроля. .

Изобретение относится к измерительной технике, в частности к оценке крутящего момента, и может быть использовано при изготовлении или при определении технического состояния и пределов действия моментных ключей.

Изобретение относится к силоизмерительной технике и может быть использовано при производстве и испытаниях весоизмерительных и силоизмерительных приборов. .

Изобретение относится к силоизмерительной технике, а именно к образцовым средствам задания и измерения силы. .

Изобретение относится к силоизмерительной технике, и может быть использовано при создании прецензионных силонагружающих и весосило-измерительных устройств, например, образцовых силозадающих машин, рабочих средств измерений и крановых весов.

Изобретение относится к ручным инструментам для затяжки резьбовых соединений. Устройство затяжки резьбовых соединений с обеспечением точного крутящего момента при затяжке содержит комбинацию усилителя (100) крутящего момента с согласованным с ним и откалиброванным вместе с ним динамометрическим ключом (200). Динамометрический ключ (200) снабжен запоминающим устройством (250) для записи данных, характеризующих момент затяжки, и в запоминающем устройстве (250) хранится передаточное отношение (МА(МЕ)) усилителя (100) крутящего момента, определенное при калибровке. Способ калибровки устройства для затяжки включает определение передаточного отношения (МА(МЕ)) на основе по меньшей мере одного среднего значения, полученного по всему диапазону крутящего момента. Технический результат заключается в повышении точности при определении выходного крутящего момента. 2 н. и 7 з.п. ф-лы, 5 ил.

Изобретение относится к испытательной технике, в частности к стендам для прочностных испытаний летательных аппаратов, например крыльев самолетов. Устройство представляет собой конструкцию для крепления консоли/консолей крыла, расположенную на траверсе, на которой также расположена эластичная пневмокамера/пневмокамеры. Между траверсой и пневмокамерой/пневмокамерами может быть две или более шарнирно соединенных панели, оси шарниров которых параллельны хордам крыла, при этом ближняя из панелей закреплена на стенде жестко, а остальные соединены с траверсой домкратами, причем точкой крепления домкрата на траверсе является геометрический центр расположенной над ней поверхности крыла. Технический результат заключается в упрощении конструкции и повышении достоверности испытаний. 5 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике, а именно к динамической калибровке винтовых динамометров, используемых для измерения крутящих моментов на гребных валах в опытных гидродинамических лабораториях. Способ динамической калибровки винтовых динамометров включает измерение крутящего момента на валу винтового динамометра и приложение импульсного динамического воздействия к валу путем разрыва гибкой связи между шкивами. При этом одновременно с измерением винтовым динамометром крутящего момента измеряют дополнительным динамометром усилие разрыва упомянутой гибкой связи и по результатам измерения корректируют чувствительность преобразователя момента динамометра в электрический сигнал в зависимости от величины опорного момента инерции винтового динамометра. Техническим результатом изобретения является улучшение корректировки чувствительности винтового динамометра. 2 ил.

Изобретение относится к приборостроению, в частности к способам испытания подшипниковых опор ротора, и может быть преимущественно использовано при определении предварительного осевого натяга подшипников качения ротора. Способ включает возбуждение собственных колебаний вала ротора и измерение параметров колебаний. Для каждого типа роторов, имеющих в опорах подшипники качения, выводятся экспериментальным путем зависимости относительной частоты пика от установки предварительного натяга. Для измерения и контроля силы предварительного натяга в конструкцию ротора предварительно вносят изменения: вдоль оси вала ротора между регулировочным винтом установки предварительного натяга и пружиной при минимуме вмешательства в конструкцию узла устанавливается датчик силы, а на корпус ротора в области передней опоры на одной оси с направлением приложенной силы удара крепится датчик виброускорения. Воздействуя силовым импульсом малой длительности (т.е. упругим ударом), получают отклик виброускорения, что позволяет вычислить относительную частоту пика и сопоставить ее с показаниями датчика силы. Проделав эксперимент для всего рабочего диапазона установки предварительного осевого натяга, получают зависимость относительной частоты пика от величины установки предварительного натяга. Технический результат заключается в повышении точности определения осевого натяга. 2 ил., 1 табл.

Настоящее изобретение относится к устройству оценки качества тензометров. Устройство оценки качества тензометров (100) содержит опору (10) для размещения тензометров (12), приводимую во вращение средствами приведения во вращение (120). Опора (10) соединена со средствами приведения во вращение при помощи средств соединения (16, 17). Средства обеспечения температурного состояния (11) выполнены с возможностью нагревать упомянутую опору (10) и размещены вокруг упомянутой опоры (10). Средства соединения (16, 17) содержат средства охлаждения (13), способные ограничить нагревание упомянутых средств приведения во вращение (120). Технический результат - разработка устройства оценки качества тензометров, направленная на оценку качества измерительных приборов, а также приклеивающих материалов, используемых в условиях, аналогичных условиям эксплуатации турбомашины. 8 з.п. ф-лы, 1 ил.

Изобретение относится к испытательной технике, в частности к устройствам для испытания на прочность крыльев самолетов. Стенд представляет собой конструкцию в виде ложемента для крепления центроплана самолета, или в виде имитатора центроплана - его конструктивного эквивалента с аналогичным присоединительным креплением крыльев, и соединенной с ним траверсы на одну консоль крыла, или двух траверс на две консоли крыла, причем на траверсе (траверсах) расположена эластичная пневмокамера или несколько пневмокамер, повторяющая (повторяющие в совокупности) контур консоли крыла. Пневмокамеры секционированы по длине хорды, и в каждой поддерживается свое давление воздуха. Несколько пневмокамер расположены вдоль размаха консоли крыла, и в каждой поддерживается свое давление воздуха. Стенд между траверсой и пневмокамерой (пневмокамерами) может иметь две или более шарнирно соединенных панели, оси шарниров которых параллельны хордам крыла, при этом ближняя из панелей закреплена на стенде жестко, а остальные соединены с траверсой домкратами. Технический результат заключается в упрощении конструкции и повышении достоверности испытаний. 7 з.п. ф-лы, 1 ил.

Изобретение относится к области испытания и градуировки устройств измерения сил и моментов, а именно к области градуировки силомоментных датчиков (ДСМ) с числом компонент от одной до шести. Поставленная цель достигается за счет того, что ДСМ, установочный фланец которого соединяется с тросами (на концах которых прикреплены грузы известной массы) через промежуточные детали (жесткость которых подобрана таким образом, чтобы исключить воздействие растягивающей силы на установочный фланец ДСМ), перемещается за свой чувствительный фланец приводной системой (ПС), обеспечивающей пространственные перемещения. Тем самым изменяются углы наклона тросов и усилие, либо момент, действующие на ДСМ. Углы наклона тросов регистрируются высокоточными датчиками углов. Для натяжения тросов вместо грузов может использоваться приводная система, обеспечивающая создание стабильной силы натяжения тросов. Техническим результатом заявляемого изобретения является автоматизация процесса калибровки ДСМ за счет использования ШПС и обеспечение универсальности устройства, позволяющего задавать нагрузку в виде выделенных компонент главного вектора сил и моментов во всем допустимом нагрузочном диапазоне градуируемого ДСМ, а также создавать сложное нагружение. 2 н. и 1 з.п. ф-лы, 10 ил.
Наверх