Электролизер для производства алюминия

Изобретение относится к конструкции электролизеров для получения алюминия. Под каждым анодом на поверхности подины размещены перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры из материала, менее электропроводного, чем алюминий, перпендикулярно и/или под углом 45-90° к плоскости подины, перпендикулярно и/или под углом 45-90° к продольной оси катодных стержней, полностью или частично препятствующие протеканию вдоль подины горизонтальных составляющих катодного тока в слое алюминия. Обеспечивается уменьшение горизонтальных составляющих токов в слое расплава, равномерное распределение тока, уменьшение межполюсного расстояния (МПР) и уменьшение расхода электроэнергии на получение алюминия и/или увеличение выхода по току. 14 з.п. ф-лы, 8 ил.

 

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия, а именно к конструкции электролизеров для получения алюминия.

Известен электролизер [1], содержащий катодное устройство и анодное устройство. Катодное устройство содержит ванну с угольной подиной, выложенную из угольных блоков с вмонтированными токоподводами, заключенными в металлический кожух. Между металлическим кожухом и угольными блоками размещены огнеупорные и теплоизоляционные материалы. Анодное устройство содержит угольные аноды, соединенные с анодной шиной. Аноды размещены в верхней части ванны и погружены в расплавленный электролит.

Недостатком известной конструкции электролизера является то, что разработанные для нее технологии характеризуются весьма высоким удельным расходом энергии W, определяемым уравнением

W = v k η , где V - напряжение на ванне, В; η - выход по току, k - электрохимический эквивалент [кг/кА*ч].

Обычно в технологиях получения алюминия W=13-15 кВтч/кг металла. Однако этот расход энергии приблизительно в 2 раза больше, чем предсказываемый теоретически. Для этого есть две причины:

1. В напряжении V большую часть занимает омическое падение напряжения в электролите, определяемое величиной межэлектродного (межполюсного) зазора (МПЗ). Обычно это расстояние составляет около 5 см;

2. Выход по току η снижается при резком увеличении взаимодействия (так называемое «обратное взаимодействие») анодных продуктов (углекислого газа) и катодных продуктов (растворенного алюминия) при увеличении магнитогидродинамического (МГД) перемешивания (циркуляции) металла и электролита (МГД циркуляция расплава увеличивается при уменьшении МПЗ, как результат увеличения сил взаимодействия горизонтальных составляющих тока в расплаве и магнитного поля).

Таким образом, одним из важнейших недостатков вышеуказанной конструкции является относительно высокое омическое сопротивление МПЗ и высокий расход энергии.

Известен электролизер для производства алюминия ([2], фиг.1), состоящий из анодного токоподвода, угольного анода, угольного катода с расположенными под анодом дополнительными элементами «грибами», сделанными из диборида титана, изоляции, электролита, жидкого алюминия, блюмсов. Конструкция служит для уменьшения МПЗ и, тем самым, для снижения напряжения V и удельного расхода энергии.

Недостатком этой конструкции электролизера является малая термомеханическая и химическая стойкость «грибов», сделанных из диборида титана, особенно на границах металл-электролит; сложность прикрепления «грибов» к подине и невозможность осуществления такого прикрепления в ныне действующих электролизерах, малая площадь контакта «гриба» с угольной подиной, а также относительно высокая стоимость и невозможность оперативного удаления «грибов» из межэлектродного зазора при необходимости, например опускания анода на катод.

Известен электролизер для производства алюминия, принятый за прототип ([3]), включающий катодное устройство, содержащее ванну с угольной подиной, выложенную из угольных блоков с вмонтированными катодными токоподводами, заключенных в металлический кожух, с размещенными между металлическим кожухом и угольными блоками огнеупорными и теплоизоляционными материалами, анодное устройство содержащее угольные аноды, соединенные с анодной шиной, размещенные в верхней части ванны и погруженные в расплавленный электролит, отличающийся тем, что на угольной подине под каждым из анодов расположены тумбы с более высокой удельной электропроводностью, чем электролит, стойкие к разрушению в криолитоглиноземных расплавах и жидком алюминии, причем верхняя поверхность тумбы выступает выше уровня катодного алюминия, а тумбы выполнены с возможностью перемещения и/или замены при необходимости.

Недостатками известной конструкции электролизера являются:

относительно большой объем пространства в МПЗ, занимаемый тумбами, вес и стоимость ТУМБ, сложности перемещения и/или замены тумб при необходимости. В случае необходимости использования утяжелителей, расположенных внутри тумбы, например чугунной «гири» или заливки, это может снижать надежность конструкции вследствие разности коэффициентов термического расширения материалов, а также проникновения электролита через поры тумбы к материалу утяжелителя, приводя к его преждевременной коррозии и загрязнению катодного металла. Затруднительна возможность автоматического регулирования вертикального перемещения тумбы при изменении толщины слоя катодного металла. Тумбы недостаточно уменьшают горизонтальные составляющие катодного тока и МГД перемешивание расплава.

Задача изобретения - снижение удельного расхода энергии за счет уменьшения омического сопротивления и падения напряжения в МПЗ, повышения выхода по току вследствие уменьшения горизонтальных составляющих катодного электрического тока в расплаве, увеличения гидродинамического сопротивления для движения расплава у границы алюминий-электролит, уменьшения магнитогидродинамического (МГД) перемешивания расплава и «обратных» реакций металла с анодными газами, а также удобства расположения дополнительных элементов в МПЗ на подине и возможности их оперативного и автоматизированного перемещения и/или удаления из межэлектродного зазора (МПЗ) при необходимости, например опускания анода на катод, и уменьшение стоимости конструкции.

Технический результат заключается в создании конструкции алюминиевого электролизера, включающего катодное устройство, содержащее ванну с угольной подиной, выложенную из угольных блоков с вмонтированными токоподводами, заключенных в металлический кожух, с размещенными между металлическим кожухом и угольными блоками огнеупорными и теплоизоляционными материалами, анодное устройство, содержащее угольные аноды, соединенные с анодной шиной, размещенные в верхней части ванны и погруженные в расплавленный электролит, в котором, согласно предлагаемому решению, на поверхности подины и/или в пространстве между анодом и катодом, под каждым из анодов, размещены перегородки и/или решетки из огнеупорного материала, и/или смачиваемые алюминием открытопористые ячеистые структуры из углеродного или огнеупорного материала, заполненные или пропитанные полностью или частично алюминием, с равномерной или с анизотропной проводимостью, большей по оси анод-катод и меньшей в перпендикулярном направлении, из материала менее электропроводного, чем алюминий, перпендикулярно и/или под углом от ±45° до ±90° к плоскости подины, перпендикулярно и/или под углом от ±45° до ±90° к продольной оси катодных стержней, уменьшающие горизонтальные составляющие катодного тока вдоль подины в слое расплава. Вследствие демпфирования горизонтальных токов в расплаве, уменьшается МГД циркуляция и возможно уменьшить МПЗ между анодом и катодом, т.е. уменьшить удельный расход энергии и/или увеличить выход по току.

Изобретение дополняют частные отличительные признаки, направленные также на решение поставленной задачи.

Перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры имеют высоту, одинаковую и/или неодинаковую в зависимости от их места расположения на подине, а также ниже и/или выше уровня металла, или на границе металл-электролит, определяемую с помощью соответствующего критерия оптимальности распределения электрических потенциалов и токов, т.е. в зависимости от конкретной цели: например, уменьшение межполюсного расстояния (МНР), уменьшение энергозатрат; и/или увеличение выхода по току и т.п.

Перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры выполнены с возможностью перемещения и/или замены, при необходимости.

Перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры опираются на поверхность катода, либо приклеены к катоду, либо плавают у поверхности раздела сред алюминий-электролит.

Смачиваемые алюминием открытопористые ячеистые структуры имеют анизотропную проводимость больше по оси анод-катод и меньше в перпендикулярном направлении.

Перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры изготовлены из углеродных блоков, в частности из отходов в виде боя стандартных подовых блоков, обожженных анодов и/или электродов, карбида кремния и/или материала типа ANAPLAST.

Перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры покрыты или пропитаны веществом, содержащим, например, диборид титана, обеспечивающим смачивание алюминием.

Внешние поверхности перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры предварительно обработаны/пропитаны ингибиторными веществами, защищающими от окисления.

Перегородки и/или решетки, перед тем как разместить в пространство МПЗ, обтягивают в вакуумную упаковку из алюминиевой фольги и подогревают до температуры как можно ближе к температуре электролиза, но меньшей, чем температура плавления катодного металла. Затем перегородки и/или решетки помещают в пространство МПЗ.

Под каждым анодом устанавливают от 1 и более перегородок и/или решеток, расстояние между перегородками и/или решетками обратно пропорционально их количеству, а размер пор смачиваемых алюминием открытопористых ячеистых структур обратно пропорционален количеству пор на единицу площади катода.

Перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры могут быть различной формы, например, параллелепипеда, призм, куба, гексагональной, ортогональной, полусферической, цилиндрической, причем в боковых стенках перегородок и/или решеток, выполнены сквозные отверстия прямоугольной или округлой формы, расположенные преимущественно ближе к донной поверхности подины (катода), для облегчения горизонтального протекания алюминия в придонном слое у поверхности подины (катода).

На поверхности углеродной части подины (катода) могут быть выполнены продольные и/или поперечные дренажные каналы для аккумулирования и эвакуации алюминия.

Перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры могут быть различной формы, например, параллелепипеда, призм, куба, гексагональной, ортогональной, полусферической, цилиндрической и т.д., но симметрия и унификация перегородок и/или решеток может учитываться для оптимальности конструкции и процесса электролиза по критериям уменьшения удельных затрат энергии, и/или увеличения выхода по току.

Перегородка и/или решетка, и/или смачиваемая алюминием открытопористая ячеистая структура, может захватываться по краям кронштейнами, изготовленными из неэлектропроводного материала, стойкого в электролите, и расположенными вдоль боковых поверхностей анода и/или вдоль нижней плоскости анода, с возможностью перемещения вертикально, и/или в горизонтальной плоскости, при необходимости.

Сущность изобретения поясняется эскизами (Фиг.2-8).

Электролизер содержит угольный анод с анодным токоподводом 1, угольную подину (катод) 2. Нижняя поверхность угольного анода погружена в электролит 3. Внутри электролизера выложена футеровка 4. Электролизер снабжен традиционным устройством для подачи сырья (глинозем, фторсоли) и отвода анодных газов 5, устройством для подвода тока 6 к катоду 2. В межполюсном зазоре (МПЗ), кроме катодного металла 9, расположены перегородки и/или решетки 7 и/или смачиваемые алюминием открытопористые структуры 8. Верхняя часть перегородки и/или решетки 7, и/или смачиваемой алюминием открытопористой ячеистой структуры 8 находится в электролите 3, а нижняя часть находится в катодном металле (жидком алюминии) 9.

На поверхности подины, по продольной оси электролизера и/или вдоль проекции периметра анода на поверхность катода, выполнено одно или несколько углублений 12 (Фиг.8) для дренажа и эвакуации металла из ванны.

Монтаж алюминиевого электролизера осуществляется следующим образом.

Перегородки и/или решетки 7, и/или смачиваемые алюминием открытопористые ячеистые структуры 8 могут быть покрыты или пропитаны веществом/веществами, содержащим/ми и/или образующим/ми, например, диборид титана, обеспечивающим/ми смачивание алюминием. Смачиваемые алюминием открытопористые ячеистые структуры 8 либо приклеивают к подине, либо вставляют в перегородки и/или решетки таким образом, чтобы открытопористые ячеистые структуры 8 находились внутри перегородок и/или решеток 7, а нижняя поверхность открытопористой ячеистой структуры находилась в катодном металле (жидком алюминии) 9. Перегородки и/или решетки 7, и/или смачиваемые алюминием открытопористые ячеистые структуры 8, перед тем, как разместить в пространство МПЗ, могут быть, при необходимости, обтянуты в вакуумную упаковку из алюминиевой фольги с целью закрытия поверхностных пор, защиты от окисления на воздухе, улучшения теплопередачи и подогреты до температуры, как можно близкой к температуре электролиза, но меньшей, чем температура плавления катодного металла. Затем перегородки и/или решетки 7 помещают в пространство МПЗ.

Для электролизеров с обожженными анодами установка и/или замена перегородки и/или решетки 7, при необходимости, осуществляется непосредственно во время замены соответствующего анодного блока, отключение ванны от питания при этом не требуется. Для электролизеров с самообжигающимися анодами Содерберга установка перегородки и/или решетки 7 осуществляется также непосредственно под анод при предварительном поднятии анода 1, при этом ванна может быть отключена от источника питания током. В обоих случаях в местах установки перегородки и/или решетки 7 осуществляется очистка угольной подины 2 от скопившегося осадка.

Для перемещения перегородка и/или решетка 7 захватывается по краям с помощью крючьев, либо кронштейнами 10, изготовленными из неэлектропроводного материала, стойкого в электролите и катодном металле и расположенными вдоль боковых поверхностей анода и/или вдоль нижней плоскости анода, с возможностью перемещения перегородки и/или решетки 7 вертикально, и/или частично в горизонтальной плоскости, при необходимости. Кронштейн 10 прикреплен к перемещаемой тяге 11, которая может быть выполнена из обычных конструкционных материалов.

При этом происходит улучшение следующих ТЭП электролиза: уменьшение удельного расхода энергии, увеличение выхода по току.

ЛИТЕРАТУРА

1. Х. Чанг, В. де Нора и Дж.А. Секхар «Материалы, используемые в производстве алюминия методом Эру-Холла». - Изд. Красноярск. гос. ун-т, Красноярск, 1998.

2. J.R. Rayne: US Patent, 4.405.433, April 1981.

3. Патент №111540. - Электролизер для производства алюминия./ Попов Ю.Н., Поляков П.В., Островский И.В. Приоритет от 30.06.2011.

1. Электролизер для производства алюминия, включающий катодное устройство, содержащее ванну с угольной подиной, выложенную из угольных блоков с вмонтированными катодными токоподводами, заключенных в металлический кожух, с размещенными между металлическим кожухом и угольными блоками огнеупорными и теплоизоляционными материалами, анодное устройство, содержащее угольные аноды, соединенные с анодной шиной, размещенные в верхней части ванны и погруженные в расплавленный электролит, отличающийся тем, что он снабжен перегородками и/или решетками и/или смачиваемыми алюминием открытопористыми ячеистыми структурами из материала, менее электропроводного, чем алюминий, размещенными под каждым из анодов на поверхности подины катода и/или в пространстве между ними, перпендикулярно и/или под углом 45°-90° к плоскости подины, перпендикулярно и/или под углом 45°-90° к продольной оси катодных стержней.

2. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры выполнены высотой одинаковой и/или неодинаковой, в зависимости от их координатного расположения на подине, которая ниже и/или выше уровня металла, и/или соответствует границе металл-электролит.

3. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры выполнены с возможностью перемещения и/или замены, при необходимости.

4. Электролизер по любому из пп.1-3, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры приклеены к катоду.

5. Электролизер по любому из пп.1-4, отличающийся тем, смачиваемые алюминием открытопористые ячеистые структуры имеют анизотропную проводимость больше по оси анод-катод и меньше в перпендикулярном направлении.

6. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры изготовлены из углеродных блоков, в частности, из отходов в виде боя стандартных подовых блоков, обожженных анодов и/или электродов, карбида кремния и/или материала типа ANAPLAST.

7. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры для смачивания алюминием покрыты или пропитаны веществом, содержащим, например, диборид титана.

8. Электролизер по п.1, отличающийся тем, что внешние поверхности перегородок и/или решеток, и/или смачиваемых алюминием открытопористых ячеистых структур предварительно обработаны/пропитаны защитными ингибиторными веществами.

9. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры, перед размещением в пространстве межполюсного зазора МПЗ обтягивают в вакуумную упаковку из алюминиевой фольги и подогревают до температуры, наиболее близкой к температуре электролиза, но меньшей, чем температура плавления катодного металла, и затем перегородки и/или решетки помещают в пространство МПЗ.

10. Электролизер по п.1, отличающийся тем, что под каждым анодом устанавливают от одной и более перегородок и/или решеток, и/или смачиваемых алюминием открытопористых ячеистых структур, расстояние между перегородками и/или решетками обратно пропорционально их количеству, а размер пор смачиваемых алюминием открытопористых ячеистых структур обратно пропорционален количеству пор на единицу площади катода.

11. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры выполнены любой формы, например, в форме параллелепипеда, призмы, куба, или с гексагональной, ортогональной, полусферической, цилиндрической формой.

12. Электролизер по п.1, отличающийся тем, что перегородка и/или решетка, и/или смачиваемая алюминием открытопористая ячеистая структура захватываются по краям кронштейнами, изготовленными из неэлектропроводного материала стойкого в электролите и расположенными вдоль боковых поверхностей анода и/или вдоль нижней плоскости анода, с возможностью перемещения вертикально и/или в горизонтальной плоскости, при необходимости.

13. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры, анизотропная проводимость которых больше по оси анод-катод и меньше в перпендикулярном направлении, изготовлены, в основном, из оксида алюминия/глинозема, например из высокоглиноземистого неформованного бетона и/или плит, и/или керамобетона.

14. Электролизер по п.1, отличающийся тем, что перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры расположены на дополнительном слое открытопористой ячеистой структуры.

15. Электролизер по п.1, отличающийся тем, что на поверхности подины по продольной оси электролизера и/или вдоль проекции периметра анода на поверхности катода выполнено одно или несколько углублений для дренажа и эвакуации металла из ванны.



 

Похожие патенты:

Изобретение относится к определению степени износа в среде алюминиевых электролизеров образцов карбидокремниевых блоков, используемых для боковой футеровки кожуха алюминиевых электролизеров.

Настоящее изобретение относится к способу производства комбинированных подовых блоков для алюминиевых электролизеров. Способ включает введение материала углеродистой подложки в форму и нанесение на нее слоя композиционного жаростойкого материала, содержащего борид металла, уплотнение содержимого формы в виде катодного блока и обжиг катодного блока, в качестве материала углеродистой подложки и слоя композиционного жаростойкого материала используют материалы, имеющие близкие коэффициенты термического линейного расширения и значения натриевого расширения и следующий гранулометрический состав: содержание фракций в углеродистой подложке (-10+0,071) мм - 76±10 мас.% и (-0,071+0) мм - 24±10 мас.%, содержание фракций в слое композиционного жаростойкого материала (-10+0,071) мм - 50±30 мас.% и (-0,071+0) мм - 30±50 мас.%, при этом материал углеродистой подложки вводят в предварительно нагретую до температуры материала форму.

Изобретение относится к конструкции катодной секции алюминиевого электролизера. Катодная секция содержит катодный углеродный блок, катодный токоведущий стержень с электропроводной частью из материала с высокой удельной электропроводностью, установленный во внутренней полости катодного углеродного блока и закрепленный в нем с помощью чугунной заливки.

Изобретение относится к электролизерам для получения алюминия. На поверхности подины размещены перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры из материала, менее электропроводного, чем алюминий, перпендикулярно и/или под углом 45°-90° к плоскости подины, перпендикулярно и/или под углом 45°-90° к продольной оси катодных стержней, полностью или частично препятствующие протеканию вдоль подины горизонтальных составляющих катодного тока в слое алюминия.

Изобретение относится к электролизеру для получения алюминия. Электролизер включает катодное устройство, содержащее ванну с угольной подиной, выложенную из угольных блоков, заключенных в металлический кожух, с размещенными между металлическим кожухом и угольными блоками огнеупорными и теплоизоляционными материалами, анодное устройство, содержащее угольные аноды, соединенные с анодной тиной, размещенные в верхней части ванны и погруженные в расплавленный электролит, на угольной подине под каждым из анодов расположены поплавки с более высокой удельной электропроводностью, чем электролит, стойкие к разрушению в криолитоглиноземных расплавах и жидком алюминии, причем верхняя поверхность поплавка выступает выше уровня катодного алюминия и поплавки можно перемещать и/или заменять для уменьшения межполюсного зазора между анодом и катодом.

Изобретение относится к композиционным материалам на основе тугоплавких металлов и может быть использовано в электролизерах при получении алюминия. .

Изобретение относится к катодному устройству алюминиевого электролизера и способу его ремонта. .

Изобретение относится к конструкции катодного устройства электролизера в электролизерах Содерберга или электролизерах с обожженными анодами. .

Изобретение относится к производству металлов и сплавов электролизом расплавленных солей. .

Изобретение относится к катодному устройству алюминиевого электролизера. .

Изобретение относится к катоду для ячейки электролизера для получения алюминия из его оксида в электролитической ванне. Катод имеет обращенную к электролитической ванне верхнюю часть и нижнюю часть, снабженную контактами для подвода тока. Верхняя и нижняя части, по меньшей мере, на некоторых участках соединены друг с другом разъемно с помощью защитного промежуточного слоя. Обеспечивается снижение стоимости катода и оптимизация функционирования катода. 2 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к катодному блоку для алюминиевого электролизера. Катодный блок содержит слой композита, содержащий графит и твердый материал, такой как TiB2, присутствующий с одномодовым гранулометрическим составом, при этом d50 составляет между 10 и 20 мкм, в частности между 12 и 18 мкм, преимущественно между 14 и 16 мкм. Раскрыт также способ изготовления катодного блока с указанными характеристиками. Обеспечивается повышение износостойкости катодного блока и простота изготовления. 2 н. и 14 з.п. ф-лы, 1 ил.

Изобретение относится к конструкции катодного кожуха электролизера для получения алюминия электролитическим способом. Катодный кожух содержит продольные и торцевые стенки с вертикальными ребрами жесткости, днище, шпангоуты, которые охватывают стенки и днище, и фланцевый лист. Фланцевый лист жестко соединен с промежуточными ребрами, вертикально установленными между шпангоутами, на продольных стенках кожуха, с помощью разъемных соединений, через горизонтальные площадки. Промежуточные ребра выполнены из металлического листа толщиной от 0,3 до 1 толщины стенки кожуха. Обеспечивается повышение срока службы электролизера 2 з.п. ф-лы, 2 ил.

Изобретение относится к футеровке алюминиевого электролизера. Футеровка включает подину и токоотводящие элементы из алюминия, выполненные жидкими в верхней части в контакте с расплавом алюминия и твердыми - в нижней части и установленные проходящими вертикально через подину. Подина выполнена из подовых блоков большей высоты с выступами и подовых блоков меньшей высоты, при этом подовые блоки меньшей высоты установлены у торцов подины. Подовые блоки меньшей высоты чередуются с подовыми блоками большей высоты с выступами. В выступах блоков на всю толщину блока выполнены вертикальные каналы для установки токоотводящих элементов. Токоотводящие элементы в нижней части прикреплены к токоведущему коллектору, выполненному в виде пластины, выведенной горизонтально из торцов подовых блоков и через продольные стороны катодного кожуха. Токоотводящие элементы выполнены Г- или Т-образной формы. Подовые блоки выполнены из высокоглиноземистого бетона, обожженного до 1200°С, или из нескольких слоев: рабочего слоя, выполненного из высокоглиноземистого бетона толщиной, равной 0,4-0,6 от толщины блока, и второстепенного слоя, выполненного из алюмосиликатного бетона - остальное. Межблочное соединение подовых блоков выполнено из высокоглиноземистого бетона с пониженной вязкостью или при помощи клеящей или цементирующей композиции с толщиной шва 5-20 мм. Обеспечивается снижение трудоемкости при монтаже, снижение расхода электроэнергии и повышение надежности работы электролизера. 3 з.п. ф-лы, 9 ил.
Изобретение относится к углеродному изделию, которое производят обжигом смеси, содержащей, по меньшей мере, кокс. Кокс представляет собой кокс с низкой графитируемостью. Раскрыт также способ изготовления углеродного изделия, включающий смешивание антрацита, графита и/или кокса с низкой графитируемостью или их смесей, по меньшей мере, с одним связующим материалом из группы связующих материалов на нефтяной или угольной основе, а также связующих материалов на основе синтетических полимеров и любых смесей указанных связующих материалов и необязательных добавок, придание смеси заданной формы, обжиг формованной смеси и необязательную графитизацию обожженного формованного изделия. Раскрыто применение углеродного изделия в качестве катодного блока алюминиевого электролизера и кирпича доменной печи Обеспечивается повышение срока службы изделия, в частности катодного блока. 4 н. и 14 з.п. ф-лы.

Изобретение относится к конструкциям электролизеров для получения алюминия. Электролизер содержит катодное устройство, имеющее ванну с угольной подиной, выложенную из угольных блоков, заключенных в металлический кожух, с размещенными между металлическим кожухом и угольными блоками огнеупорными и теплоизоляционными материалами, анодное устройство, содержащее угольные аноды, соединенные с анодной шиной, размещенные в верхней части ванны и погруженные в расплавленный электролит, на угольной подине по периметру анода расположены тумбы, или поплавки, стойкие к разрушению в криолитоглиноземных расплавах и жидком алюминии, причем верхняя поверхность тумбы или поплавка выступает выше уровня катодного алюминия и тумбы или поплавки можно перемещать и/или заменять при необходимости. Тумбы или поплавки выполнены из углерода, карбида кремния, их комбинации. Верхняя поверхность тумбы или поплавка выполнена плоской, или выпуклой, или вогнутой, или наклонной к горизонту. Обеспечивается снижение удельного расхода энергии за счет уменьшения межполюсного зазора (МПЗ), омического сопротивления и падения напряжения в МПЗ, повышение выхода по току вследствие увеличения гидродинамического сопротивления для движения расплава у границы алюминий-электролит по периметру анода и, следовательно, уменьшения перемешивания расплава и «обратных» реакций металла с анодными газами. 5 з.п. ф-лы, 6 ил.

Изобретение относится к способу футеровки катодного устройства при монтаже катодных устройств электролизеров для производства первичного алюминия. Способ включает засыпку порошкообразного материала в катодный кожух электролизера, разравнивание его с помощью рейки, укрытие засыпанного материала пылеизолирующей пленкой и уплотнение, осуществляемое в два этапа: предварительного статического и окончательного динамического воздействия путем последовательного перемещения рабочих органов статического и динамического уплотнения вдоль продольной оси катода алюминиевого электролизера через упругую прокладку, выполненную из не менее чем двух слоев: нижнего, предотвращающего выдавливание порошкообразного материала вперед по ходу движения и верхнего, обеспечивающего сцепление прокладки с рабочим органом статического уплотнения, при этом динамическое воздействие осуществляют виброблоком, соединенным с блоком статической обработки посредством упругих элементов с возможностью одновременного перемещения относительно горизонтальной и вертикальной осей. Обеспечивается сокращение расходов на футеровочные материалы и уменьшение трудозатрат при их монтаже. 6 з.п. ф-лы, 9ил.
Изобретение относится к способу получения катодного блока электролизера для получения алюминия. Способ включает заготовку исходных материалов, содержащих кокс и порошок твердого материала, как, например TiB2, а также, при необходимости, углеродсодержащего материала, перемешивание исходных материалов, формование катодного блока, карбонизацию, графитизацию и охлаждение, при этом графитизацию проводят при температурах от 2300 до 3000°C, в частности от 2400 до 2900°, причем второй слой получают с толщиной, составляющей от 10 до 50%, в частности от 15 до 45%, от общей толщины катодного блока. Обеспечиваются высокая износостойкость в отношении алюминия и криолита, и снижение энергопотребления. 7 з.п. ф-лы.

Изобретение относится к катодной подине, способу ее изготовления и применения в электролитической ячейке для производства алюминия. Катодная подина содержит по крайней мере два катодных блока и/или по крайней мере катодный блок и боковой облицовочный блок, размещенные на заданном расстоянии с образованием по крайней мере одного зазора, материал для межблочного соединения, представляющий собой по крайней мере одну предварительно уплотненную пластину из расширенного графита, заполняющий зазор с возможностью присоединения по крайней мере к одному катодному блоку. Раскрыты способ изготовления катодной подины и ее использование в электролитической ячейке для производства алюминия. Обеспечивается увеличение эффективной катодной поверхности алюминиевого электролизера. 3 н. и 7 з.п. ф-лы, 6 ил.

Изобретение относится к способу изготовления катодного блока алюминиевого электролизера. Способ включает приготовление исходных материалов, содержащих два сорта кокса с различными характеристиками изменения объема, формование катодного блока, карбонизацию, графитизацию и охлаждение, во время которых в одном и том же температурном диапазоне первый сорт кокса имеет более сильные усадку и/или расширение, чем второй сорт кокса. Раскрыт также катодный блок алюминиевого электролизера. Обеспечивается увеличение длительности срока службы катодных блоков. 2 н. и 12 з.п. ф-лы, 2 ил.
Наверх