Способ изготовления объемных изделий из порошковых композиций


 


Владельцы патента RU 2518046:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный технический университет" (RU)

Изобретение относится к порошковой металлургии, в частности к получению объемных изделий путем послойного лазерного синтеза. Может использоваться для производства деталей сложных форм из мелкодисперсных порошков в различных отраслях машиностроения. Компоненты порошковой композиции послойно размещают в реакционной камере по требуемой топологии. Предварительный нагрев осуществляют до предфазовых температур композиции или наименее тугоплавкого ее основного компонента источником, обеспечивающим нагрев всего объема порошковой композиции. После чего осуществляют лазерную обработку послойно формируемого объемного изделия при режимах, достаточных для осуществления фазовых переходов, и извлекают полученную модель из камеры с удалением порошковой композиции, не принявшей участия в формировании объемного изделия. Обеспечивается снижение температурного градиента в зоне обработки. 5 з.п. ф-лы.

 

Изобретение относится к технологическим процессам порошковой металлургии, в частности к технологиям лазерного синтеза объемных изделий (ЛСОИ), и может быть использовано для производства деталей сложных форм из мелкодисперсных порошков в различных отраслях машиностроения.

Известен способ изготовления объемных изделий из металл полимерной порошковой композиции (заявка на изобретение РФ №95110182, B22F 3/105, 1997 г.), включающий последовательное послойное размещение порошковой композиции в станке для селективного лазерного синтеза (СЛС), обработку каждого слоя лазерным излучением (ЛИ) по заданному контуру и извлечение полученного изделия из станка с удалением порошковой композиции, не принявшей участия в формировании объемного изделия.

Недостатком способа является то, что он характеризуется большими и резкими перепадами температур в зоне спекания, что приводит к появлению внутренних напряжений в материале, короблению, растрескиванию и снижению прочности и качества модели.

Наиболее близким по выполнению является способ изготовления объемных изделий, предусматривающий для снижения температурных перепадов в зоне спекания перед обработкой лазерным излучением по заданному контуру каждого слоя, предварительный подогрев порошка дополнительным лазерным излучением, а именно сканированием высокоэнергетическим лучом вдоль дорожек, распределенных по области предварительного нагрева слоя порошка (заявка на изобретение РФ 2009106868, B22F 3/105, 2010 г.).

Недостатком такого способа с использованием предварительного подогрева лазерным лучом зоны обработки является то, что подогрев носит локальный характер вследствие точечного режима облучения лазерным лучом, что сохраняет перепад температур в зоне обработки и угрозу внутренних напряжений в материале, приводящих к короблению, растрескиванию и снижению прочности и качества изделия.

Техническим результатом является снижение температурного градиента в зоне обработки.

Технический результат достигается тем, что в способе изготовления объемных изделий из порошковых композиций, включающем послойное размещение компонентов порошковой композиции по требуемой топологии в реакционной камере, их предварительный нагрев и лазерную обработку послойно формируемого объемного изделия при режимах, достаточных для осуществления фазовых переходов, извлечение полученной модели из камеры с удалением порошковой композиции, не принявшей участия в формировании объемного изделия, отличием является то, что предварительный нагрев осуществляют до предфазовых температур наименее тугоплавкого основного ее компонента источником, обеспечивающим нагрев всего объема обрабатываемой порошковой композиции.

Слои композиции могут содержать разные компоненты. Режим лазерной обработки устанавливают индивидуально для каждого слоя композиции.

Размещение ингредиентов в слое может осуществляться с помощью набора трафаретов или программным управлением питателей.

Режим лазерной обработки (температура и площадь нагрева лазерным лучом, скорость сканирования и время облучения) подбирают таким образом, чтобы избежать испарения компонентов смесей.

Предфазовая температура выбирается так, чтобы все компоненты после прекращения воздействия лазером не оставались в жидком состоянии и не растекались. Она зависит от теплопроводности и теплоизоляционных свойств камеры и устанавливается предварительно на 3…10% ниже наименьшей температуры фазового перехода смеси и ее компонентов, а затем уточняется опытным путем.

Для уменьшения шероховатости поверхности модели и увеличения ее прочности возможно пропитка их поверхности клеящим раствором, например эпоксидным или силикатным клеем, с последующей сушкой изделия.

Ниже приведены примеры осуществления изобретения.

Пример 1. Порошки Mg (температура плавления 651°С) и Zn (температурой плавления 491°С) предварительно просеивают на системе сит 005-05 (ГОСТ 3584-73). Порошки с размером фракции <50 мкм смешивают механически в мольной пропорции 1:2 до равномерного распределения. Реакционную камеру станка для лазерной обработки нагревают до предфазовой температуры в электропечи 430°С (для рассматриваемого случая температуры фазовых переходов это температуры плавления компонентов - 651 и 491°С и температура плавления получаемого материала - 590°С). В подогретую камеру насыпают слой смеси и по требуемой топологии текущего сечения изделия и проводят обработку энергетическим лазерным лучом до начала расплавления смеси, сканируя требуемую область. Затем насыпают следующий слой, сканируют лазерным лучом и так повторяют обработку слоев до получения модели законченной формы, после чего модель извлекают из станка, удаляют порошковую композицию, не принявшую участия в формировании объемного изделия. В результате проведенной ЛСОИ получают изделие из легкого интерметаллида MgZn2.

В течение 1 месяца выдержки при комнатной температуре растрескивания и коробления изделия не наблюдалось.

Для уменьшения шероховатости поверхности на нее наносят клеящий раствор из силикатного клея с последующей сушкой изделия.

В течение 1 месяца выдержки при комнатной температуре растрескивания и коробления изделия также не наблюдалось.

Пример 2. Порошки корунда АlО3 (температура плавления 2050°С) в качестве основного компонента, и в качестве примесей порошки окиси хрома Сr2О3 (температура плавления 2275°С) и трехокиси ванадия V2O3 (температура плавления 1970°С) предварительно просеивают на системе сит 005-05 (ГОСТ 3584-73), получая фракции размером <20 мкм. Температуру подогрева в электропечи устанавливают 1900°С градусов (температура кристаллизации конечного продукта - типа синтетического рубина составляет 1950°С). Насыпают первый слой чистого корунда и в него вводят по трафарету в качестве примеси окись хрома Сr2О3 в разных малых мольных пропорциях, с последующей обработкой лазерным лучом аналогично примеру 1. Затем насыпают следующий слой, состоящий из чистого корунда, и в него вводят по трафарету в качестве примеси трехокись ванадия в разных мольных пропорциях с последующей обработкой лазерным лучом аналогично примеру 1. Так повторяют процесс, чередуя вышеописанные слои с разным содержанием примесей до получения модели законченной формы. В результате проходящего ЛСОИ по аналогии с примером 1 получают модель из искусственного синтетического рубина с полосатой расцветкой различных оттенков.

В течение 1 месяца выдержки при комнатной температуре растрескивания и изменения цветности изделия не наблюдалось.

1. Способ изготовления объемных изделий из порошковых композиций, включающий послойное размещение компонентов порошковой композиции по требуемой топологии в реакционной камере, их предварительный нагрев и лазерную обработку послойно формируемого объемного изделия при режимах, достаточных для осуществления фазовых переходов, последующее извлечение полученной модели из камеры с удалением порошковой композиции, не принявшей участия в формировании объемного изделия, отличающийся тем, что предварительный нагрев осуществляют до предфазовых температур композиции или наименее тугоплавкого ее основного компонента источником, обеспечивающим нагрев всего объема обрабатываемой порошковой композиции.

2. Способ по п.1, отличающийся тем, что слои композиции содержат разные компоненты.

3. Способ по п.2, отличающийся тем, что режим лазерной обработки устанавливают индивидуально для каждого слоя композиции.

4. Способ по п.2, отличающийся тем, что размещение компонентов в слое осуществляют с помощью набора трафаретов или программным управлением питателей.

5. Способ по п.1, отличающийся тем, что температуру предварительного нагрева устанавливают на 3…10% ниже наименьшей температуры фазового перехода композиции или наименее тугоплавкого ее основного компонента.

6. Способ по п.1, отличающийся тем, что после окончания процесса поверхность готового изделия обрабатывают клеящим раствором, например эпоксидным или силикатным клеем, с последующей сушкой.



 

Похожие патенты:

Изобретение относится к обработке поверхности металлов. Способ получения коррозионно-стойкого покрытия на поверхности нелегированной стали включает подготовку порошка в виде нанокомпозитных частиц Fe-Ni, содержащих 3-10 мас.% никеля, и послойное нанесение его на поверхность нелегированной стали с лазерным спеканием.

Изобретение относится к порошковой металлургии, в частности к способу послойного получения трехмерных объектов из порошкового материала путем облучения высокоэнергетическим пучком.

Изобретение относится к порошковой металлургии, в частности к нанесению покрытий из порошковых материалов посредством послойного лазерного спекания. Может использоваться для упрочнения изношенных рабочих поверхностей стальных изделий, например участков вала, расположенных в зонах подшипников.

Изобретение относится к порошковой металлургии, в частности к способу послойного изготовления трехмерных объектов из порошкового материала. Порошковый материал отверждают посредством его облучения высокоэнергетическим электронным лучом, при этом осуществляют регулирование количества ионов, присутствующих в непосредственной близости от того положения, где электронный луч облучает порошковый материал.

Изобретение представляет собой стереолитографическую машину. Последняя содержит емкость (3), приспособленную для содержания текучего вещества и содержащую прозрачное дно (3a), опорную пластину (2), снабженную отверстием (2а) и предназначенную для размещения емкости (3) так, что прозрачное дно (3a) обращено к отверстию (2a), источник (4) излучения, размещенный под опорной пластиной (2) и приспособленный для подачи пучка излучения к прозрачному дну (3a) через отверстие (2a), а также блок (5) управления температурой, приспособленный для поддержания опорной пластины (2) при заданной температуре.

Изобретение относится к порошковой металлургии, в частности к устройствам для получения изделий из порошков лазерным плавлением. .

Изобретение относится к порошковой металлургии, в частности к способу получения изделий из порошков путем послойного лазерного спекания. .

Изобретение относится к порошковой металлургии, в частности к способу получения изделий из порошков путем послойного лазерного спекания. .

Изобретение относится к порошковой металлургии, в частности к технологии лазерного послойного синтеза деталей, и может применяться в разных отраслях машиностроения.

Изобретение относится к порошковой металлургии, в частности к изготовлению металлических изделий из порошков селективным лазерным спеканием. Наносят слой керамического порошка, проводят селективное спекание на заданных участках слоя и удаляют указанный материал из неспеченных участков. Между спеченными участками керамического слоя наносят слой порошка металла или сплава той же толщины и проводят селективное спекание на этих участках. Цикл повторяют до осуществления полного формирования изделия. При этом керамика образует при спекании оболочку формируемого изделия. После каждого спекания слоя металла или сплава проводят его расплавление и/или расплавление всего объема металла или сплава, а после полного формирования изделия и кристаллизации расплавленного металла или сплава производят удаление керамики. 15 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к изготовлению решетки для селективного пропускания электромагнитного излучения, в частности рентгеновского излучения. Решетка содержит конструктивный элемент со стенками, содержащими множество частиц, содержащих первый поглощающий излучение материал. Частицы спечены вместе с образованием между соседними частицами пор. Указанные поры, по меньшей мере, частично заполнены вторым твердым материалом, содержащим поглощающий излучение материал. Заполнение пор осуществляют введением в них второго материала в жидком, предпочтительно расплавленном виде. Повышается механическая стабильность решетки и повышаются ее свойства к поглощению излучения. 3 н. и 7 з.п. ф-лы, 5 ил.

Изобретение относится к порошковой металлургии, в частности к получению объемных порошковых изделий путем лазерного селективного спекания. Наносят слои из различных порошковых материалов и осуществляют селективное спекание или плавление заданной области каждого слоя. Селективное лазерное спекание или плавление осуществляют синхронным сканированием поверхности порошкового слоя лазерным источником с малым пятном фокусировки и несколькими иными источниками концентрированного потока энергии с пятнами облучения большего размера. Лазером сканируют поверхность в пределах пятен облучения иных источников. Устройство содержит рабочую камеру, лазер, оптически связанный с телескопом и системой сканирования и фокусировки луча, в виде гальваносканера с объективом, рабочий бункер с поршнем, перемещающим слой порошка и изделие в вертикальном направлении, бункер-питатель, каретку засыпки и укладки порошка. На кардановых подвесах размещены два сканирующих источника электронного пучка или ламповые источники нагрева, или источники СВЧ-излучения таким образом, что область сканирования лазерного излучения совмещена с областями воздействия на поверхность электронных пучков. Обеспечивается повышение качества изделия и кпд процесса спекания. 4 н.п. ф-лы, 4 ил.

Изобретение относится к области порошковой металлургии. Устройство для получения изделий послойным лазерным спеканием порошков содержит емкости для размещения порошка и для излишков порошка, размещенный между ними модуль формирования изделия, включающий стол с приводом его вертикального перемещения, средство для подачи порошка на стол из емкости для его размещения и сброса порошка в емкость для излишков порошка, оптическую лазерную систему спекания порошка, установленные над столом сопла для подачи на слой порошка воздуха или инертного газа и установленный под столом с возможностью соединения с вакуумной системой газозаборник. Стол выполнен газопроницаемым и оснащен закрепленной на его верхней плоскости огнеупорной газопроницаемой плитой, предназначенной для размещения на ее поверхности и спекания слоя порошка. Обеспечивается повышение качества получаемых изделий. 1 ил.

Изобретение относится к изготовлению металлических изделий из порошков послойным селективным лазерным спеканием. Способ включает образование оболочки для формируемого изделия путем нанесения слоя из первого порошкового материала и его спекание по всей рабочей поверхности. Нанесение слоя из второго порошкового материала и его последующее селективное спекание повторяют до полного формирования изделия. В качестве второго порошкового материала используют порошок металла или сплава и после каждого спекания слоя порошка металла или сплава производят его расплавление с образованием слоя толщиной от 10 до 300 мкм. После полного формирования изделия производят газостатическое прессование слоев, затем индукционный переплав с кристаллизацией всего объема нанесенных слоев и удаляют оболочку. Предложена также установка для изготовления металлического изделия данным способом. Установка для изготовления металлического изделия из порошкового материала. Обеспечивается повышение механической прочности изделий. 2 н. и 8 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к области металлургии, а именно к катодным материалам на основе нанокристаллических частиц Fe-Ni. Катод для электрохимического получения водорода выполнен в виде стальной подложки с нанесенным на ее поверхность нанокомпозитным покрытием железо-никель. Покрытие железо-никель с содержанием Ni 3-10 мас.% выполнено толщиной 0,5-0,9 мм и со средним размером зерна, составляющим до 40 нм. Способ изготовления катода для электрохимического получения водорода характеризуетсяя тем, что подготавливают и послойно наносят на стальную подложку механоактивированную порошковую нанокомпозицию железо-никель с содержанием никеля 3-10 мас.% и проводят послойное лазерное спекание. Лазерное спекание осуществляют в вакууме оптоволоконным импульсным иттербиевым лазером при частоте генерации импульсов 20000-100000 Гц и времени действия импульса 100 нс. Полученный катод характеризуется пониженным перенапряжением водорода. 2 н.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к способу изготовления трехмерного тела посредством последовательного предоставления слоев порошка и сплавления выбранных зон упомянутых слоев, соответствующих последовательным поперечным сечениям трехмерного тела. Для по меньшей мере одного из слоев выполняют наложение по меньшей мере одного слоя порошка на рабочую зону и сплавление выбранной зоны по меньшей мере одного слоя порошка посредством подачи энергии с облучающей пушки на выбранную зону. При этом устанавливают заданную траекторию луча для сплавления выбранной зоны по меньшей мере одного слоя порошка, вычисляют температуру в по меньшей мере одном слое порошка вдоль заданной траектории луча как функции воздействия удельной энергии воображаемого луча, перемещающегося вдоль заданной траектории луча, регулируют воздействие удельной энергии воображаемого луча вдоль заданной траектории луча в зависимости от вычисленной температуры и условий, установленных для этапа сплавления выбранной зоны, и предоставляют на основании вычислений и регулировок рабочую схему воздействия удельной энергии реального луча, предназначенную для использования на заданной траектории луча при сплавлении выбранной зоны указанного по меньшей мере одного слоя. Обеспечивается возможность управления температурой, а также ускорение изготовления трехмерного тела. 9 з.п. ф-лы, 8 ил., 1 пр.

Изобретение относится к технологии послойного изготовления изделий из металлических порошков. Сопло электродугового сварочного плазматрона формируют лазерным сфокусированным послойным спеканием медного порошка, который подают из бункера-дозатора предварительно подогретым до температуры 150°C. Во время проведения послойного спекания медного порошка температуру в бункере-дозаторе поддерживают постоянной. После спекания каждого слоя производят очистку поверхности формируемого сопла сфокусированным лазерным лучом с мощностью, составляющей 25% от рабочей мощности лазерного луча при спекании. Обеспечивается изготовление высокоточных деталей сложной формы с требуемой прочностью. 2 ил.

Изобретение относится к способу изготовления изделий сложной формы из порошковых систем и может найти применение в разных отраслях машиностроения, например, для изготовления сопел, завихрителей, вставок и других элементов ракетных двигателей и турбин. Осуществляют послойно-селективную лазерную обработку до расплавления порошка на глубину слоя в три этапа. Вначале на каждом нанесенном слое обработку проводят по внешнему контуру изготавливаемого сечения и по его внутренним границам. Образованное внутреннее сечение обрабатывают программно-регламентированным сканированием лазерного луча. После этого проводят прецизионную повторную обработку внешнего контура и внутренних границ изготавливаемого сечения. Траекторию сканирования лазерного луча на каждом последующем слое изменяют на 45° по часовой стрелке относительно направления сканирующего луча на предыдущем слое. Подготовку порошка осуществляют до дисперсности не более толщины наносимого единичного слоя. После образования запрограммированной формы изделия дополнительно проводят его вакуумную термообработку при температуре ниже температуры рекристаллизации материала основы порошковой системы в течение 2-3 часов. Технический результат изобретения заключается в получении высоких механических характеристик изготавливаемых изделий сложной формы и расширении областей их применения, а также в получении технологически регламентируемых наноструктурных объектов любой сложной конфигурации, работающих длительное время в агрессивных средах при повышенных температурах. 3 з.п. ф-лы, 11 ил., 1 табл.

Изобретение относится к порошковой металлургии. Заготовки из порошковой быстрорежущей стали, полученной электроэрозионным диспергированием отходов быстрорежущей стали марки Р6М5 в дистиллированной воде, получают путем горячего прессования порошка с пропусканием высокоамперного тока в вакууме в течение 2,9…3,1 минут при температуре 895…905°С. Обеспечивается снижение пористости и повышение микротвердости заготовок из порошковой быстрорежущей стали. 3 ил., 1 пр.
Наверх